
Virtual CPU Validation

Nadav Amit† Dan Tsafrir† Assaf Schuster† Ahmad Ayoub� Eran Shlomo�

†Technion – Israel Institute of Technology �Intel Corporation

{namit, dan, assaf}@cs.technion.ac.il {ahmad.ayoub, eran.shlomo}@intel.com

Abstract
Testing the hypervisor is important for ensuring the correct

operation and security of systems, but it is a hard and challeng-

ing task. We observe, however, that the challenge is similar in

many respects to that of testing real CPUs. We thus propose

to apply the testing environment of CPU vendors to hyper-

visors. We demonstrate the advantages of our proposal by

adapting Intel’s testing facility to the Linux KVM hypervi-

sor. We uncover and fix 117 bugs, six of which are security

vulnerabilities. We further find four flaws in Intel virtualiza-

tion technology, causing a disparity between the observable

behavior of code running on virtual and bare-metal servers.

1. Introduction
Since hardware-assisted virtualization was introduced to com-

modity x86 servers ten years ago, it has become the common

practice for server deployment [7]. Today, about 75% of x86

server workloads run in virtual machines (VMs) [13]. Virtual-

ization enables the consolidation of multiple VMs on a single

server, thereby reducing hardware and operation costs [14].

Virtualization promises to reduce these costs without sacrific-

ing robustness and security. We contend, however, that this

promise is not fulfilled in practice, because hypervisors—the

software layers that run VMs—are bug-prone. Hypervisor

bugs can cause an operating system (OS) that runs within a

VM to act incorrectly, crash, or become vulnerable to security

exploits [18].

Hypervisor bugs are software bugs, but the damage they

cause is similar to that of hardware bugs. Since hypervisors

virtualize the hardware of VMs, their bugs cause the VMs to

experience that the underlying hardware violates its specifi-

cation. Patching hypervisor bugs is much easier than fixing

the hardware, yet doing so may induce VM downtime and de-

ter cloud customers, as indeed experienced by leading cloud

providers [24, 71].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SOSP’15, October 4–7, 2015, Monterey, CA.
Copyright 2015 ACM 978-1-4503-3834-9/15/10 $15.00. http://
dx.doi.org/10.1145/2815400.2815420

Several studies have addressed hypervisor bugs, but the

proposed solutions are still inadequate. Existing formal ver-

ification techniques of hypervisors [3] are not full-fledged,

limited by the lack of formal hardware specifications [20]

and the inability to validate important virtualization features

such as interrupts. Code fuzzing approaches have been lim-

ited to testing instructions, suffer from a high rate of false-

positives, and in general have not been used to thoroughly

test hypervisors [42–44]. Avoiding hypervisor bugs is possi-

ble in principle by exposing to VMs a paravirtual hardware

interface that is simpler and more easily verifiable than actual

hardware [37]. But such an interface seems inapplicable for

virtual CPUs (VCPUs), as it requires intrusive modifications

to VM OSes.

Our work is based on the insight that hypervisor bugs

resemble real hardware bugs in many cases, as they are trig-

gered similarly and have similar consequences. We thus hy-

pothesize that hardware validation tools would efficiently

detect hypervisor bugs. We aspire to validate the most compli-

cated virtual hardware component—the virtual CPU (VCPU).

We focus on x86 CPU virtualization, which requires hosts

to be able to emulate multiple VCPU subsystems, notably

(and perhaps counterintuitively) most x86 instructions. This

requirement—like our proposed approach—holds regard-

less of whether hosting is software based [39], hardware

assisted [35], and/or includes a dynamic binary translation

component [1, 8].

We adapt Intel’s tools for validating physical x86 CPUs

[60] to test the KVM hypervisor [36], which is integrated in

Linux and is used by cloud providers such as Google [28]. We

find that the adaptation effort is reasonably low and that the

result preserves the appealing features of the original tools:

high coverage, reproducibility, and ease of debugging.

We use our testing infrastructure to study the number,

severity, and cause of hypervisor bugs. We uncover 117 con-

firmed bugs that make VCPUs violate the CPU specifications.

We fix most of the bugs—those that can be fixed—and com-

mit the corresponding patches to KVM. We find that the

severity of the majority of the bugs is moderate, but that a few

(5%) introduce serious security vulnerabilities to the VMs or

negatively affect their stability; for example, one bug existed

in KVM for nearly five years, reportedly causing sporadic

VM freezing [62]. We further find that most bugs (85%) are

caused by implementors failing to strictly follow available

311

CPU specifications, but that a few of these can nevertheless

be attributed to missing or wrong documentation. Finally,

we find four cases in which the CPU architecture is missing

features, causing a disparity between the observable behavior

of CPUs and VCPUs that cannot be fixed by software.

2. Virtualization Bugs
The hypervisor, which runs VMs, has the task of providing

them with a virtual environment that behaves like real hard-

ware. Yet building a fully-functional and bug-free hypervisor

remains an arduous task despite CPU hardware assistance. To

date, bug reports are continually being filed for the most popu-

lar hypervisors, and many of the reported bugs have existed in

the code for a long time. Such bugs often cause the VM to fail

(e.g., [11, 50, 51, 72]), or introduce security vulnerabilities

(e.g., [18, 55, 71]).

CPU virtualization is probably the most important and

difficult feature to implement correctly in hypervisors, as

CPU architectures tend to be highly complicated. RISC

CPUs are hard to virtualize [22], and even harder in the

x86 architecture, whose instruction set consists of over 800

instructions, and which supports a variety of debug and

performance monitoring facilities. To virtualize the CPU,

the hypervisor traps and emulates dozens of types of events,

and saves, restores and manipulates a VCPU state of over 100

registers.

CPU virtualization bugs can do a lot more harm than

virtualization bugs in other hardware devices. While OSes

are built to be robust and handle I/O device failures, they often

cannot recover if the CPU, or VCPU in the case of VMs, does

not conform to the specifications. Techniques for avoiding

virtual device bugs, such as using a verifiable simplified

paravirtual device [46], or disabling emulated devices after

boot [52], are mostly inapplicable for CPU virtualization,

as they require intrusive modification of VM OSes. Unlike

device virtualization, CPU virtualization requires the use of

privileged instructions that can only be executed in the kernel

space. As a result, CPU virtualization bugs are more likely

than others to become security vulnerabilities.

Uncovering hypervisor bugs—of which there are many—

is a tedious job. Indeed, some bugs can easily be detected

when a new OS or device driver is deployed (e.g., [50, 51,

72]), yet others are hard to reproduce (e.g., [67, 68]) or might

even be ignored due to reproducibility difficulties (e.g., [34,

56]). The difficulty in validating hypervisors prevents new

features from being employed in production systems. The

most blatant example is nested virtualization, in which a

hypervisor runs within a VM [9]. To this day this feature

is still considered experimental [73], is unsupported [45], and

suffers from a large number of bugs [66], despite the fact that

it was introduced several years ago.

One of the greatest threats of hypervisor bugs is that they

jeopardize VM security and isolation, which are actually the

primary advantages of hardware virtualization over operating

system-level virtualization [57]. In the worst case scenario,

hypervisor bugs may allow code which runs within a VM

to launch a privilege escalation attack on the hypervisor,

and thereby run kernel-level operations on the virtualization

host ([25, 29]).

Other attacks are also dangerous, especially in cloud

environments, where VMs of different organizations are co-

located, and an attacker can instantiate a VM that would be

co-resident with a certain target VM [58]. Consequently, a

malicious cloud user may be able to exploit hypervisor bugs

to steal data from another VM, or to launch a denial of service

(DoS) attack on a certain VM by crashing the host. In fact,

even DoS attacks not directed at a certain VM may have other

extreme effects. To achieve high-availability, virtualization

platforms are usually configured to restart crashing VMs on

another physical machine in the same resource pool [19, 71].

As a result, a single malicious VM that deploys a DoS attack

can exhaust significant physical resources.

Even when security vulnerabilities are found before they

are exploited, patching them in a timely manner without incur-

ring VM downtime is not an easy task. In cloud environments,

patching can introduce non-trivial bandwidth requirements,

as it often requires that the running VMs be migrated to an-

other physical server before the patch is applied [63]. Using

direct attached storage for the VMs increases the bandwidth

requirement even further and can render massive live migra-

tion impossible [23].

The damage caused by virtualization bugs may be best

exemplified by the recent Xen security advisory, XSA-108,

which reported a bug in the emulation of x2APIC machine

state registers (MSRs) [18]. While real x86 CPUs hold up

to 256 x2APIC MSRs, Xen erroneously emulated 1024, and

served excessive MSR read operations from memory beyond

the memory page that was used for emulating these MSRs. As

a result, a malicious VM could issue MSR read operations that

would either crash the entire host or read data from other VMs

or the hypervisor. Although there were no reports of actual

exploits of this bug, patching it required cloud vendors to

invest substantial IT resources. More importantly, since many

of the vendors could not perform live migration, patching was

performed over a week, presumably because the patches were

applied when the VMs were shut down. Eventually, cloud

vendors, including Amazon Web Services, Rackspace and

IBM SoftLayer, still needed to reboot many of the servers

whose VMs were not shut down voluntarily. Amazon reported

that 10% of the VMs were rebooted, and a survey revealed

that some cloud users experienced a non-negligible downtime:

over 18% of SoftLayer users reported a downtime of over an

hour. Consequently, 29% of surveyed SoftLayer customers

claimed to now be considering other providers [69].

3. Intel Virtualization Technology
Intel VT presents an instruction set that enables a hypervisor

to run VCPUs of a VM in a less privileged mode called “guest

312

mode.” Code that runs in this mode can run both in kernel

mode and in user mode, making it possible to run an entire OS

within a VM. The VCPUs are controlled by the hypervisor,

which runs in “root mode,” and can trap VCPU sensitive

instructions—instructions which may affect the entire system

(e.g., writes to control registers)—as well as other sensitive

events (e.g., interrupts). When such an event occurs, the CPU

performs a “VM-exit,” switching the CPU to “root mode”

and running the hypervisor code. The hypervisor can then

inspect the cause for the VM-exit and handle it, for instance

by emulating the trapped instruction. Once the VM-exit is

handled, the hypervisor can resume the execution of the VM

in guest-mode by performing “VM-entry.” The hypervisor

configures which of the sensitive events should be trapped in

a VM control structure (VMCS).

In addition to trapping sensitive events, the hypervisor

can control how VM code is executed, without triggering

a VM-exit. For example, Intel VT supports “second level

address translation” (SLAT), from guest physical memory

to host physical memory. The hypervisor sets SLAT paging

structures according to the physical memory it allocated for

the VM. When a CPU that runs in guest-mode issues memory

accesses, the address goes through two levels of translation,

first from guest virtual to guest physical, and then from guest

physical to host physical.

When the CPU performs VM-entry and exit, it loads/stores

certain portions of the VCPU state from/to the VMCS. How-

ever, part of the VCPU state, such as general purpose and

floating-point unit (FPU) registers, are not kept in the VMCS.

The architecture leaves it to the hypervisor to save and restore

this state. To reduce exit handling time, hypervisors may de-

cide not to save and restore some registers on every exit, if

these registers have not been changed.

Sometimes the hypervisor also needs to handle certain

infrequent events that are not virtualized by hardware, such

as hardware “task-switch” or configuration of the interrupt

controller (I/O APIC). Hypervisors can also report that the

VCPU supports “nested virtualization” and emulate the exe-

cution of VT instructions in a VM, making it possible to run

a hypervisor within the VM.

4. Testing
Our system validates that the behavior of the virtual CPU

conforms with the specification of the physical CPU. It

is therefore based on the methodology and tools used for

physical CPU validation [60]. We next describe the existing

Intel testing infrastructure for physical CPUs that we use in

this study (§4.1) and the manner by which we adapt it to apply

to virtual CPUs (§4.2).

4.1 Testing Physical CPUs
The physical CPU validation system consists of test genera-

tion, execution, and analysis, as depicted in Figure 1.

arch.
simulator

test
generator

debugger

tracer
(logic analyzer)

mem+regs
dump

failure
collector

loader

SUT

test

arch.
trace

SUT
config.

biasing

test
era

rch

d

SUT

ilur

generation execution analysis

Figure 1. Physical CPU validation system. Rectangles denote
computing entities. Ellipses denote files.

Generation Intel employs several test schemes to achieve

good coverage. Some tests are focused on validating spe-

cific behaviors, like the CPU reset sequence; such tests are

typically fixed or include a minor, carefully controlled ran-

dom component. Most tests, however, are constructed via

a random code generator, which utilizes code fuzzing and

differential testing techniques. The generator creates compre-

hensive tests that exercise all the CPU subsystems. Unlike

other code fuzzing tools, the generator is tightly coupled with

an exact architectural simulator, used as a reference system.

Both generator and simulator use a system-under-test

(SUT) configuration file that describes the SUT, specifying

the physical memory map, the number of CPUs and their

generation, the supported MSRs and their initial values, the

supported instruction set extensions, and so on. The generator

additionally uses a bias file that defines such parameters as

the probability to generate individual instructions.

In Intel, there is no formal model that fully defines CPU

behavior. Instead, an architectural simulator—reflecting the

public and internal CPU specifications—is used as the ref-

erence system. The simulator is functional and unaware of

the microarchitecture. As it is not cycle accurate, it operates

at a reasonable speed and is thus usable for testing. By sim-

ulating execution of tests, the simulator provides their final,

correct outcome for reference. The generator utilizes these

outcomes to create self-checking tests. Each test is a mem-

ory image that is later loaded onto the (OS-less) SUT. The

execution outcome then indicates whether the test passed or

failed depending on whether it matched or mismatched the

reference.

A test consists of three parts. The first is short initializa-

tion code that sets the basic environment, i.e., descriptor and

page tables, model-specific registers (MSRs), and so forth;

as this initial state is random, it helps to increase converge.

The second part contains N random instructions that com-

ply with the bias file. (Long random instruction sequences

make debugging harder, whereas short sequences make ini-

tialization dominate the runtime; the test system typically

313

uses N = 4096, striking a balance between the two.) The

random sequences include every possible valid/invalid in-

struction, collectively exercising nearly all the architectural

features. The third part of the test runs upon completion and

reports the results.

Unlike typical fuzzing mechanisms, the generator is inti-

mately aware of the semantics of the instruction set: (1) it

employs instruction pre-handlers to, e.g., fulfill or purposely

violate non-trivial preconditions (for instance, read MSR op-

erations load the value of the ECX register, so an associated

pre-handler can arrange things such that ECX would hold

a valid MSR index if this is not the case already); (2) it

employs instruction post-handlers to, e.g., eliminate nonde-

terminism (for instance, read timestamp counter instructions

yield unknown results at generation time, so a handler can

add subsequent instructions to overwrite these values); (3) it

stresses bug-prone mechanisms such as memory aliasing and

wraparound; (4) it ensures that random hardware breakpoints

are meaningful by backpatching breakpoint-setting instruc-

tions to point to valid target instructions; (5) it prevents races

between cores by tracking every byte used in the test (with

the simulator’s help); and (6) it avoids deadlocks and ensures

completion by generating loops and branches in a carefully

controlled way.

One feature that greatly enhances the generator’s semantic

awareness is that it works in tandem with the simulator on a

per-instruction basis, simulating each instruction immediately

after generation. It is thus capable of, for example, avoiding

a host of undesirable situations, such as unintended excep-

tions that it was unable to foresee. The simulator allows the

generator to roll back one instruction and try again.

Randomizing instructions individually as described above

is highly effective. But some scenarios are too complex to

be tested in this way. For example, inter-processor interrupts

(IPIs) are hard to test, as they are inherently asynchronous and

so the generator and simulator cannot tell which instructions

will get hit by IPIs [10]. The generator therefore employs

test “templates,” which encode a recipe instructing it how to

test. The IPIs template encoding includes: creating a fixed

code chunk that synchronizes between the cores; generating

a chunk of random code on the IPI target cores; and then

emitting instructions that block the cores until the expected

interrupts are received. Other templates are used, for example,

when validating timer interrupts and cross-modifying code.

Execution Test generation is compute intensive and is sig-

nificantly longer than test execution. Generation is therefore

performed by multiple machines, outputting memory images

that constitute self-checking tests. When a test is ready, it

is immediately communicated via the network to the loader,

whose role is to dispatch the test on the SUT, to retrieve indi-

cation whether the test has passed, and to forward the test to

bug analysis if it has failed.

The loader and SUT are two distinct physical machines.

The loader is connected to the SUT and controls its power

switch. The SUT is equipped with a test device—denoted

here as “Ldev”—which is likewise connected to the loader.

Ldev gets the image from the loader, loads it into the SUT’s

memory, and generates an INIT event that starts the SUT

working, running the newly arriving image. Ldev services the

memory-mapped I/O (MMIO) and programmed I/O (PIO)

issued by tests, such that MMIO/PIO read operations simply

return the values previously written to the corresponding I/O

addresses. Ldev is also used to generate external interrupts

when their functionality is tested.

A running test indicates that it is finished by issuing an

I/O write operation to Ldev via a predetermined I/O address.

Ldev forwards the information to the loader, which in turn

checks whether the test passed or failed. Sometimes, however,

test failure causes the SUT to hang instead of exiting cleanly.

The loader therefore sets a timer to bound the test execution

time, and it proactively fails the test if the timer expires.

Analysis As noted, at the end of the execution, the SUT’s

state is compared against the reference outcome generated

by the architectural simulator, which is encoded in the test.

(The generator optimizes this procedure, using the simulator

to identify the memory regions and registers that are affected

by the test, such that only they will be compared.) Tests,

however, may detect divergent executions sooner than their

completion time, attempting to ease debugging and facilitate

the root cause analysis. To this end, the generator incorpo-

rates within the test occasional partial comparisons of rele-

vant memory locations and registers to their corresponding

simulator-generated values. For example, tested exception

handlers compare the SUT’s registers and exception error

code with the correct values output by the simulator.

Whether in the middle of the execution or at its end, a

test fails when divergence is detected. The test then encodes

in a suitable memory-resident structure information that

accurately characterizes the divergence, to be retrieved later

on by analysis tools seeking to identify the exact point where

the divergence occurred. For instance, if a register value

was found to be different than expected during an exception

handler, the test records the register number, the actual and

expected values, the bit-mask of the compared bits (not all bits

are necessarily defined), and the faulting instruction pointer.

Likewise, before synchronously waiting for interrupts, which

might never arrive and thereby cause the test to hang, the

test saves checkpoints in memory indicating the cause of the

potential failure in case the test is timed out by the loader.

The loader then dumps this memory structure into a file that

is handed to the failure collector for later use.

When debugging a failing test, users utilize a remote x86

debugger that controls the SUT through an in-target probe

(ITP) device [70] that the SUT houses. The ITP allows the

debugger to, e.g., examine the internal CPU state, set break-

points, and execute in single-step mode. Sometimes, however,

a debugger affects the outcome of the test and interferes with

the analysis. The system therefore supports non-intrusive

314

tracing using logic analyzers that are connected to CPU pins,

interconnects, or buses within the SUT. To further assist de-

bugging, the architectural simulator can generate a detailed

trace of the reference test execution, including, for example,

all memory references and exception causes.

4.2 Testing Virtual CPUs
When adapting the physical CPU (PCPU) validation system

to apply to VCPUs, we use the test generation subsystem

unchanged. This approach is aligned with our insight that

VCPUs should behave identically to PCPUs when subjected

to the same tests. Thus, our adaptation efforts focus on

enabling the execution and analysis of tests on VCPUs, as

described next. (We report the analysis results in §5.)

System We test the Linux KVM/QEMU hypervisor (Linux

versions 3.14–3.18 and QEMU version 2.1.0). QEMU is

a regular user-level process that encapsulates a guest VM,

such that each guest VCPU is in fact a thread within the

QEMU process. KVM is a kernel module. KVM/QEMU

employs hardware-assisted virtualization, which means that

the VM code typically runs natively on the PCPU. Some VM

operations, however, trap to, and are served by KVM/QEMU.

For example, guest I/O requests directed at certain I/O devices

are served by QEMU, which uses standard system calls to

satisfy the requests, thereby emulating the functionality of

these devices. In this setup, the SUT is the hypervisor.

We assign the role of the test loader to a Linux process that

we implement, called “Vloader.” Upon initialization, Vloader

starts a QEMU instance that matches the SUT configura-

tion file. The corresponding VM is diskless and has no OS.

Vloader waits for the VM to boot (only BIOS), and then it

starts getting requests from test generators as in the original

PCPU validation system. Upon receiving a test memory im-

age, Vloader communicates with the running QEMU instance

via the QEMU Machine Protocol (QMP) [54], instructing it

to: (1) suspend its preexisting OS-less VM, (2) load onto the

VM the newly received memory image, and (3) send to the

VM an INIT signal. Out of these three actions, QEMU only

supports the first. We therefore implement the latter two.

Similarly to the original system, Vloader is also responsi-

ble for setting a timer and failing a test if it hangs, by commu-

nicating with QEMU. This action, however, can be accom-

plished using standard QMP operations.

Recall that the PCPU SUT is equipped with Ldev, a test

device that handles I/O operations, such as the write operation

that indicates that a test ended and whether it passed or failed.

We add similar functionality in QEMU, by coupling our

VM with a newly implemented emulated I/O device that has

equivalent I/O semantics. We only implement PIO support,

which is required for allowing tests to communicate their

outcome.

Upon completion, the self-checking test compares the

relevant memory regions to the reference produced by the

architectural simulator. In the PCPU validation system, this

comparison is performed (accelerated) using special hardware

devices. But these devices are unaware of the additional

memory indirection of virtualization in our VCPU validation

system, so we modify QEMU to compare in software. If it

discovers a difference, it dumps the memory-resident debug

regions into a file. After the debug information is safely stored

for later analysis, Vloader disposes of the running QEMU

instance, spawning a new instance so as to prevent the failing

test residues from causing additional failures.

Debug Support Being able to debug a failed test is impor-

tant in both PCPU and VCPU validation systems—in the

former, debugging uncovers PCPU bugs, whereas in the latter

it uncovers hypervisor bugs. KVM allows for VM debugging

with gdb. It supports single-stepping and hardware break-

points by respectively manipulating the EFLAGS trap flag

and the debug registers (DRs) of the VM. This approach

is useful for debugging OSes of VMs. But it is unsuitable

for our purposes, as it allows VMs to interfere with our de-

bugging and our tests. For example, if a single-stepped VM

invokes PUSHF, then the manipulated EFLAGS value be-

comes visible to the VM, which might affect the test’s result.

Likewise, when a VCPU encounters an exception, EFLAGS

may change, thereby disabling single-stepping.

We overcome the problems associated with single-stepping

by modifying KVM to utilize the Monitor Trap Flag (MTF)

of Intel VT. MTF allows us to single-step VMs without

changing their observable state or permitting them to occa-

sionally disable single-stepping. We additionally use MTF

to overcome the problems associated with breakpoints by

modifying KVM to refrain from using the DRs of the VM

altogether; instead, we opt for iteratively single-stepping the

VM until reaching the instruction pointer associated with

the breakpoint. This approach incurs a slowdown. But the

slowdown is tolerable because tests consist of only a few

thousands of instructions, and so the approach suffices.

Emulation Mode There are circumstances where hyper-

visors are required to trap and emulate VM instructions in

software, even if some of these instructions are non-privileged

and could have otherwise been executed directly on the PCPU

(§5.1). Malicious guests can purposely create these circum-

stances and force emulation of arbitrary instructions, so it is

important to get the emulation right. Our analysis, however,

indicates that the relevant hypervisor subsystem is especially

bug-prone due to the complexities involved in emulating x86

instructions while supporting multiple addressing modes, ex-

ecution modes, operand sizes, etc. Consequently, to allow for

thorough testing of this subsystem, we implement a KVM

mode that exercises this subsystem whenever possible, al-

ways preferring to emulate instructions whose emulation is

supported instead of running them natively on the PCPU.

Under this mode, if emulation of an instruction is unsup-

ported, we use MTF to resume the VM’s native execution

for one instruction only (single-stepping). Additionally, since

KVM does not know how to emulate interrupt and exception

315

events, we inject the interrupt/exception to the VM when

it fires so as to make the VM aware, and then we likewise

resume the VM for one instruction using MTF.

Nondeterminism The PCPU SUT is an OS-less, bare-metal

machine dedicated to running tests. Conversely, the VCPU

SUT operates within a general-purpose host environment,

which runs services as kernel threads and allows uncontrolled

interrupts. Such asynchronous activity might interfere with

timing considerations of, e.g., IPI tests. We therefore curb

asynchrony by following well-known practices to reduce OS

jitter [47], including: off-lining and on-lining test cores to

force workers away from them; setting interrupt affinity to

core 0 and never using it for tests; utilizing a tick-less kernel;

and pinning different VCPU threads to different PCPUs.

QEMU allocates memory for VMs on demand, and KVM

populates extended page tables (EPT) on-demand [12, 31].

The hypervisor is thus a source of nondeterminism, as mem-

ory allocation in one test affects the execution of the subse-

quent test because the corresponding allocated/mapped pages

persist between executions. We resolve this problem by in-

structing QEMU to always preallocate VM memory and by

modifying KVM to always premap VM memory in the EPT.

Jitter and asynchrony did not affect our analysis, namely,

all failing tests we found were reproducible.

Virtual I/O Paths Emulated I/O devices implement inter-

faces identical to those of physical devices, interacting with

VMs in four ways: PIO, MMIO, DMA, and interrupts. The

testing of I/O devices is out of scope. Still, CPU instructions

and subsystems are in fact used to interact with I/O devices,

and so execution correctness partially relies on certain hyper-

visor code paths. We contend that these paths are in scope,

since they are generic and independent of specific devices.

Suppose, for example, that an instruction J traps since it

involves MMIO. KVM decodes J , stages its operands, and

learns that at least one of them resides in MMIO. If this

operand should be obtained via input, KVM interacts with

the device (possibly invoking QEMU), and it reissues J after

the input becomes available. Among all of these activities,

only the device interaction is specific; J’s decoding, operand

staging, and reissuing (among others) are generic.

The above corresponds to emulated I/O devices. Other

generic hypervisor code paths are indirectly exercised with

assigned I/O devices—instances of a physical devices that

the hypervisor hands to VMs for their exclusive use, largely

removing itself form the data path to boost performance. With

this I/O model, relevant generic code paths include IOMMU

programming and interrupt remapping and posting [32].

We did not test device assignment code paths, nor did we

emulate device DMAs and external interrupts. For MMIO, we

tested the initial part, namely, the activity before the device-

specific interaction. The only I/O emulation mechanism we

fully tested—notably, the reissuing of instructions that occurs

after the device-specific interaction—is PIO.

ID description added

K1 no #AC exceptions on emulated instructions

K2 missing instructions emulation

K3 atomic ops may be emulated as non-atomic

K4 no emulation of port and data breakpoints

K5 multiple nested virtualization bugs

K6 missing emulation of machine state registers �

K7 no support for system management mode

K8 no support for MONITOR and MWAIT �

K9 no support for performance monitor unit v3 �

K10 different number of MTRRs than real CPUs �

Table 1. Missing CPU virtualization support in KVM. We imple-
mented K6,K8–K10 and disabled the use of the rest.

Bootstrapping The effort to adapt the PCPU testing infras-

tructure along with finding bugs, fixing them, reporting them,

and getting the associated patches committed took roughly

a year. Running the first N = 0 test (where the number of

random instructions comprising the middle part of the test is

zero; see §4.1) took about two weeks. The test unsurprisingly

failed, and making it pass took another month. Passing the

first N = 100 test took approximately an additional month.

A main difficulty we faced while bootstrapping the sys-

tem was that hypervisors may not virtualize certain CPU

features, perhaps because they are viewed by the developers

as unnecessary or as too hard to implement. In some cases,

such missing support violates the CPU specification (entries

K1–K7 in Table 1), whereas in other cases it conforms with

the specifications since the (V)CPU is allowed to declare

the missing support via capability registers (K8–K10). Re-

gardless of whether the missing support is legitimate, our test

generator relies on these features and fails to run if they are

unsupported. We therefore implement the missing features in

KVM if they are impactful, or entirely prevent their use with

the bias file (§4.1) if they are not.

5. Results
We used the VCPU validation tools to test the KVM hy-

pervisor. Our tests were executed on Intel’s Skylake Client

CPU. We ran over 100k tests, each containing 4096 random

instructions per VCPU.

We now describe the bugs we encountered. We divide the

bugs into different domains that correspond to the affected

CPU features. For each domain we describe the architectural

feature, the associated virtualization features, the bugs, and

their potential impact. We then analyze the causes of the bugs

and discuss the lessons we learned. Table 3 lists the bugs we

found, a short description of each bug, and the patch number

of its fix. We denote each bug as Bx as in Table 3.

5.1 Instruction Emulator
Ideally, the hypervisor would only need to emulate a small

subset of the instruction set. However, on x86 architecture,

316

the hypervisor may be required to emulate most instructions,

for four reasons [6]:

Shadow Page Tables Prior to Nehalem micro-architecture,

Intel CPUs did not support second level address transla-

tion. Hypervisors therefore employed page tables that held

the translations of guest virtual memory addresses to host
physical addresses. To efficiently synchronize them with the

“shadow page tables” that the VCPU controlled, the hypervi-

sor tracked changes of the shadow page tables, by trapping

and emulating VM write accesses to them.

Real-Mode Prior to Westmere micro-architecture, Intel

CPUs set restrictions on the guest-mode state, which pre-

vented running real-mode code in guest-mode. Since CPUs

boot in real-mode, hypervisors emulated the VCPU execution

until it could run natively in guest-mode [16].

Port I/O (PIO) and Memory Mapped I/O (MMIO) Instruc-

tions that perform I/O operations using an emulated device

are trapped by the hypervisor before they are executed. The

hypervisor decodes and performs partial emulation of the in-

struction to recognize the accessed I/O space address. Using

this information, the hypervisor then emulates the I/O device

and completes the emulation of the trapped instruction. To

avoid the overhead that VM-entries and exits incur, some hy-

pervisors emulate entire code blocks that frequently perform

I/O operations [1]. Note that the use of paravirtual devices

does not obviate the need to emulate certain I/O devices, for

example the programmable interval timer (PIT).

Vendor-Specific Instructions To allow migration of run-

ning VMs, hypervisors expose the “lowest common denomi-

nator” of physical server CPU features. In other words, hy-

pervisors avoid exposing features not supported by all hosts

that might run the VM. Hence, minor disparities between

AMD and Intel CPUs may prevent the VM from using very

useful instructions whose absence would degrade the VM’s

performance. To circumvent this limitation, the KVM hyper-

visor reports that the VCPU supports these instructions. KVM

then traps illegal instruction exceptions that these instructions

trigger and emulates them.

Since the x86 instruction set is relatively big, the instruction

emulator is bug-prone. On modern CPUs, only a subset of the

instructions would be emulated, yet as we show later (§6), the

emulator can be tricked into emulating any instruction. We

therefore use the emulator stress mode that tests the emulation

of all instructions (§4.2). As we expected, the instruction

emulator incorporates many bugs.

Some of these bugs are a serious threat as they pose se-

curity vulnerabilities. We discuss these vulnerabilities in §6.

Other bugs may cause VM workloads to fail. For example,

one of the bugs caused the decoder to miscalculate the in-

struction length when it was crossing a page boundary (B26).

As a result, the emulator could mistakenly consider legal in-

structions as illegal, and deliver an exception. Although this

bug was not previously reported, we believe it is likely to be

experienced by KVM users.

During our tests, we encountered several bugs in the em-

ulation of instructions commonly used for MMIO opera-

tions. The CPU flags could be updated incorrectly during

the emulation of string scan and compare instructions (B37),

compare-exchange instructions (B11), or when an instruction

triggers an exception (B34). The emulation of some instruc-

tions used the wrong memory address (B7), and others the

wrong operand size (B31, B32). Some bugs caused more sub-

tle errors, for example the delivery of the wrong exception

(B25) or the wrong error-code (B21, B52).

Some bugs are unlikely to occur on common VM work-

loads: assemblers might not generate machine code that trig-

gers bugs (B2, B40, B67); OSes avoid invalid operations that

lead to exceptions (B25); and the segmentation mechanism,

whose emulation introduced many bugs, is not used by most

OSes (B13, B14, B24, B25).

The causes for the bugs vary. Several are because of

incorrect emulation of known x86 quirks [2] (B3, B4, B8, B36,

B67, B75) or of lesser-known quirks (B46). Some are related

to known architecture pitfalls such as wraparound (B54, B65).

Some were introduced because of incorrect adaptation of the

emulator to 64-bit (B7, B9, B22) or other new CPU features

(B35). Other bugs, for instance, NULL pointer dereferencing

(B43, B45, B66), or wrong return value (B53), are caused by

coding errors. One bug was caused due to a mistake in the

CPU documentation (B63). Code redundancy caused some

bugs to appear twice (e.g., B18 and B76).

Lessons Learned As we reviewed the bugs, we found that

three of the instruction emulator bugs (B20, B26, B48) are

software regressions, i.e., bugs caused by enhancements or

other bug fixes. Two additional software regressions were

found in other virtualization mechanisms (B89, B102). This

result indicates that hypervisor testing is not a one-time effort,

and should be performed on a regular basis.

Our analysis indicated that disabling the emulation of

vendor-specific instructions could prevent one of the bugs

(B20) and mitigate others (B27, B46, B47, B64). Since this

emulation is necessary only in certain environments, we

suggest it be disabled by default. Since we discovered other

bugs caused by rarely used hypervisor features (§5.2), we

generalize our suggestion: every optional hypervisor feature

should be disabled unless it is explicitly required.

Since over half of the bugs we found are instruction emula-

tor bugs, it appears that hypervisor developers would benefit

from hardware enhancements that would simplify their soft-

ware implementation. While eliminating the need for an in-

struction emulator is complicated due to the complex format

of x86 instructions and the fact that they can access multiple

memory locations, other partial solutions are possible.

For example, Intel VT includes a “decode assist” feature,

which provides information about instructions that trigger

VM-exits, thereby eliminating the need to decode these in-

317

structions in software. However, this feature does not provide

decode information on most VM-exits, and therefore it cannot

be used by the instruction emulator. We suggest enhancing

the decode assist to provide information about every VM-exit

triggered by a VM instruction and to provide more data about

it, for instance, its operand values. Providing this information

can eliminate hypervisor bugs as well as some of the security

vulnerabilities we present in §6.

5.2 Debug Facilities
Each x86 CPU has four debug registers in which the OS can

set linear addresses of desired breakpoints or watchpoints. A

control debug register is used to activate the breakpoints and

set their type. When the condition of a breakpoint is met, the

processor invokes the debug exception handler and updates

the debug status register to indicate the exception cause.

In our experiments we found eleven bugs in the way KVM

virtualized the debug facilities: mishandling the architectural

“Resume Flag” triggered multiple debug events on a single

breakpoint (B77, B78) or caused breakpoints to be skipped

(B76); transactional memory debug could not be enabled

(B79); execution of the ICEBP instruction did not advance

the instruction pointer (B75; it was fixed by others); and

breakpoints did not correctly update the debug status and

control registers (B80, B82, B83). These bugs can cause VM

debuggers to fail, and since debug exceptions are handled in

OS code, they may even cause the VM OS to panic.

Lessons Learned Discovering bugs in the virtualization

of CPU debug facilities may be surprising, as Intel VT

makes it possible for hypervisors to virtualize debug facilities

correctly without trapping any debug exception and debug

register access. KVM, however, trapped these events to allow

a host level debugger to debug the VM. KVM performs

this debugging by setting hardware breakpoints of the host

debugger in debug registers that the VM does not use. To hide

this manipulation, the hypervisor then traps VM access to the

debug registers and emulates them. When a debug exception

occurs, KVM traps it and determines whether it was triggered

by a breakpoint of the host debugger, or whether it should be

delivered back to the VM. Handling hardware breakpoints in

this manner is obviously bug-prone.

One way to mitigate the impact of such bugs is not to trap

debug register accesses and exceptions when a host debugger

is not used. Indeed, recent KVM changes eliminated many

of these traps. A better way is to enhance the virtualization

architecture to allow the hypervisor to debug VMs without

trapping the VM debug register accesses and exceptions.

Finally, we note that like debug registers, other CPU re-

sources can be used by both the hypervisor and the VM. For

instance, performance counters can be used by the hypervisor

to monitor the VM [15] while the VM OS uses them for its

own purposes. Supporting this use-case requires extensive

software support, and intrusive intervention of the hypervisor

in the VM run. As we experienced, such intervention can

result in bugs as well (B111). Hypervisor robustness would

therefore benefit from CPU features that would allow provi-

sioning of all CPU resources without software intervention.

5.3 Local APIC
Each x86 core holds a “local advanced programmable inter-

rupt controller” (LAPIC), which receives external and inter-

nal interrupts (e.g., timer-interrupts), and sends and receives

inter-processor interrupts (IPIs). The LAPIC is a feature-rich

component whose efficient emulation is difficult. New server

CPUs can virtualize some of its behavior in hardware.

In our tests we encountered seven bugs in LAPIC emula-

tion. Some of the bugs we found are rather disturbing as we

believe they occur on common VM workloads.

The most disturbing bug that we found reportedly caused

certain VMs to sporadically freeze. Due to this bug, an

interrupt may not be delivered to a VCPU unless an additional

interrupt is later sent to the same VCPU (B89). This bug

occurs due to improper synchronization in a highly optimized

lock-free code, which leads to a non-trivial race. Fixing

this bug, which existed in KVM code for nearly five years,

resolved a reported issue of occasional freeze of VMs [62].

Due to the complex nature of this bug, and since it occurred

roughly once a month and only on certain systems, substantial

efforts to debug it on real OSes were futile.

Two additional bugs that we found occur when a VM OS

uses the APIC timer “time-stamp counter deadline” operation

mode, similarly to the way Linux uses it. A timer set to this

mode should deliver a single interrupt at a given absolute time.

Yet we found that KVM often injects a spurious interrupt to

the VM after the timer has elapsed and an interrupt has already

been delivered to the VM (B87, B88). Apparently, OSes are

robust enough not to crash despite this spurious interrupt.

Other bugs that we found could lead to spurious or missing

interrupts (B85, B86, B90) or render the APIC useless (B84).

Lessons Learned Debugging the LAPIC was more com-

plicated than other mechanisms, as two of the bugs (B86,

B89) were caused by non-trivial races. Nonetheless, by run-

ning fewer than 1k iterations of these tests, we were able to

recreate the failures and find their root causes in a few hours.

5.4 Model-Specific Registers
The x86 architecture includes model-specific registers (MSRs)

for controlling CPU functions and for state monitoring. MSRs

can be read and written using the privileged RDMSR and

WRMSR instructions. To virtualize MSRs, Intel VT uses

MSR bitmaps that allow the hypervisor to configure which

MSRs can be accessed directly by the VM, and which are

handled by the hypervisor and therefore trigger a VM-exit

when they are accessed.

Our tests—although they were not intended to stress MSR

accesses—found eight bugs in MSR handling. First, writing

invalid values to MSRs or accessing non-existent MSRs

should cause an exception (#GP). We found that KVM did not

318

emulate this behavior correctly (B91, B92, B96). In one case

(B92), KVM emulated WRMSR by writing the MSR value to

the real CPU without checking that the value is valid, and

therefore could cause the host kernel to panic.

Second, we found cases where KVM erroneously emu-

lated MSR writes without reflecting MSR values on the real

CPU. As a result, certain features with observable implica-

tions were not enabled or disabled, resulting in wrong VCPU

behavior (B93, B94, B97). Last, we found that invalid WRMSR
instructions in real-mode caused VM-entry to fail, and the

VM to crash (B95), since KVM mistakenly delivered an error-

code for real-mode exceptions.

Lessons Learned Reviewing these bugs, we find they are

all byproducts of the complexity of MSR architecture. Some

MSRs affect the visible architectural behavior of the VM,

whereas others do not. Deducing this information from the

specification is not an easy task. It appears such bugs could

easily have been avoided by documenting this information.

The VM BIOS might actually prevent the occurrence

of some bugs, but it cannot be relied on to always prevent

them. Bugs that occur upon MSR configuration that is only

carried out by the BIOS might never be triggered; by default,

hypervisors power-on VMs with a certain BIOS, which may

not trigger them. However, some hypervisors make it possible

to use a different BIOS or Unified Extensible Firmware

Interface (UEFI) [26], which may trigger these bugs. Running

a nested hypervisor that runs nested VMs with different BIOS

may trigger these bugs as well.

But the VM BIOS can also introduce bugs of its own.

In our research, as we addressed one of the disparities in

the behavior of VCPUs and CPUs (K10), we unintentionally

triggered a bug in the VM BIOS that caused the 32-bit version

of Windows 7 to display the so-called blue screen of death [4].

The fact that we hit a VM BIOS bug suggests that more

thorough VM BIOS testing is required, especially since such

bugs may compromise system security [17].

5.5 Task-Switch
OSes often switch tasks, saving the current task state in mem-

ory and loading that of the next one. To facilitate this in soft-

ware, Intel introduced the hardware “task-switch” mechanism

30 years ago. However, this rather complex mechanism never

gained significant traction, reportedly because it was slow

and not portable. Due to its infrequent use and complexity,

Intel does not support the native execution of task-switch in

guest-mode and AMD’s support lacks important features [59].

As a result, hypervisors are required to emulate task-switch

and cope with its complexity. Despite its unpopularity, task-

switch remains in use in most 32-bit OSes, since it provides

atomic context switching upon serious errors. 32-bit Linux,

for instance, uses task-switch when it encounters a “double-

fault,” which is caused by unexpected exceptions.

In our tests we encountered five bugs in task-switch

emulation. In two cases valid task-switch operations could

fail due to incorrect privilege checks (B101, B102). The latter

(B102) was introduced during our research by another KVM

developer, and we therefore believe that it could indeed harm

common workloads. In addition, we found that task-switch

emulation mistakenly saved registers (B100), and erroneously

masked hardware breakpoints (B99, B103).

Lessons Learned Bugs in task-switch emulation are ex-

pected due to its complexity and infrequent use. Nonetheless,

these bugs are harmful since task-switch is used when the OS

encounters an error. In such cases these bugs may prevent the

VM OS from performing graceful shutdown.

5.6 Initialization
x86 CPUs support two initialization events: reset and INIT.

The CPU responds to these events by initializing the CPU

state to a fixed predefined state. The two events are similar

but different as INIT leaves part of the CPU state unchanged.

OSes commonly use INIT IPIs to enable the bootstrap pro-

cessor to wake up the other processors [31].

Intel VT does not virtualize these initialization events and

requires the hypervisor to emulate them. Although our tests

were not intended to test CPU initialization, they revealed

four bugs. As we described in §4.2, each test is invoked by

injecting an INIT event to the VCPUs.

Two bugs were revealed directly by the tests. One caused

pending exceptions and interrupts to be delivered after INIT

(B105). This bug was discovered accidentally, as we initially

ran the tests without restarting the VM after each test failure,

and interrupts from one failing test were received on the

following test, causing it to fail too. The second bug resulted

in unexpected interrupts due to improper initialization of

LAPIC during RESET (B109). This incorrect behavior was

actually a workaround to circumvent an old bug in the VM

BIOS used by QEMU. Although the BIOS bug was resolved

long ago, the workaround was not removed.

Two additional bugs did not cause tests to fail, but were ap-

parent when we examined execution traces during debugging,

as they prevented the hypervisor from changing the bootstrap

processor (B106, B104). The latter bug had additional impli-

cations as it cleared part of the CPU state that should remain

intact during INIT. Motivated by these bugs, we created unit-

tests to test the reset sequence and found that KVM does not

initialize some registers during it (B107, B108).

Lessons Learned Again, we see that the VM BIOS and

the OS initialization code may hide certain bugs. However,

initialization bugs may become apparent when BIOS imple-

mentation or OS code change. The recent development of the

OVMF project, which delivers UEFI support for VMs [26],

revealed additional bugs in the initialization code.

Arguably, hypervisors should use non-buggy BIOSes in-

stead of circumventing these bugs. However, in practice it

is not always feasible, as the VM BIOS may be developed

as a separate project. In KVM removing the code that cir-

cumvented BIOS bugs turned out to be complicated, as KVM

319

merely provides an API for virtualizing VCPUs, and may

therefore be used with old and buggy BIOS implementations.

To fix KVM bugs without causing legacy software to fail,

we extended KVM API so it would allow the turning off of

quirks that were used to circumvent legacy BIOS bugs.

5.7 Bug Summary and Discussion
We are encouraged by the quantity and severity of the bugs

exposed during the validation process. Running the tests

provided several insights.

Debugging Time Debugging each bug and analyzing its

root cause took between a few minutes to a day, and on

average two hours. In general, instruction emulator bugs

triggered only by a certain instruction were the easiest to

debug. Bugs caused by races, missing documentation, or those

that were affected by the debugging process were significantly

harder to debug. The hardest bug to debug was certainly B89,

which occurred due to complex race conditions.

Execution Time The generation of each test takes on aver-

age five seconds, and running it on the VM less than a second.

To saturate the host, multiple generators can be used, and

each test can be executed multiple times. The size of each

test image is 1MB on average and copying the tests from the

generator to the host can take negligible time.

Code Review Whenever we encountered a bug, we re-

viewed both the related code (e.g., the faulty function) and the

code that deals with related architectural features. Soon after,

we released code patches for fixing the bug, and these patches

were then reviewed by the KVM community. Although eight

of the bugs were found in internal or external reviews, the

reviews often missed similar bugs that were later hit by the

random test generator. For example, three of the bugs (B99,

B103 and B83) occurred practically on the same line of code,

yet the reviews missed the latter two bugs. Code review is

therefore essential but insufficient for hypervisor validation.

Bug Causes Hypervisor bugs can be attributed to two main

causes: not following the hardware specifications, and coding

errors. While the vast majority of the bugs (85%) were caused

by non-conformance to CPU specifications, they were less

severe, as they only jeopardized VM security and stability.

Some coding errors, however, caused the host to panic (§6)

and others could degrade the VM performance (B111, B112).

In the long run, we expect that most bugs would be caused

by coding errors once hypervisors implement and fix CPU

emulation features. Indeed, four out of the five software

regression bugs we encountered were due to coding mistakes

(B26, B48, B89, B101).

CPU Specification Intel x86 CPU specifications consist of

over 3000 pages due to the high complexity of the architecture.

We were not surprised to find that some bugs resulted from

documentation errors. In one case the CPU behavior was

undocumented (B69), in other cases it is undocumented

but publicly known (B71, B75, B103), and in another the

documentation was recently fixed (B70). In some cases the

behavior is documented but unclear (B68, B102, B113).

False Positive During the initial stages of our validation

effort we encountered several false indications of bugs. These

indications were caused by the adaptation of the test envi-

ronment to VCPUs and by missing KVM features (Table 1).

Afterwards, we encountered a single false-positive failure

in a test that exercised an internal and undocumented CPU

feature. Excluding these false indications, we encountered a

few test failures that were caused by incorrect emulation of

undocumented CPU features. Some may question whether

such bugs are real ones, yet since software tends to rely on

undocumented yet consistent hardware behavior, we do not

consider these cases as false positive indications.

False Negative To check whether the validation tool missed

bugs, we reviewed KVM bug reports and patches that were

sent to the stable 3.18 Linux branch. Our review found no

bugs that the validation tool should have hit. Nonetheless, our

testing was limited as we used a desktop CPU and have not

completed the enabling of the test devices. As a result, we

did not hit a bug in the way KVM handles machine-check

exceptions. Using a coverage tool [27] we checked which

KVM code is exercised by our tests. We found that the tests

do not cover some cases, for example, 16-bit task-switch.

Remaining Bugs As we concluded our project, we hit no

more failures in over 50k tests that ran in the regular KVM

execution mode. We believe that running more tests in this

mode on our testbed may find a few more bugs. We assume

that enabling the test devices, using other CPUs, and exercis-

ing hypervisor control features (e.g., VM save/restore) would

uncover many more bugs. In contrast to the regular execu-

tion mode, using the “emulation mode,” which stresses the

instruction emulator, continually reveals more bugs. Fixing

some of these bugs requires significant changes in the way

the instruction emulator operates.

5.8 CPU Architecture Flaws
We encountered in our project four test failures that were

caused by discrepancies between CPU and VCPU behavior,

but cannot be resolved by changing hypervisor software.

These failures occurred since the CPU architecture violates

in certain cases the VM properties as defined by Popek

and Goldberg [53]: hypervisors can either make VCPU

execution equivalent to real CPU execution1 or run most

instructions efficiently by executing them directly on the

CPU, but it cannot do both. We attribute these limitations

to CPU architecture flaws. Although these flaws are likely to

have limited impact, they were previously unknown and we

therefore describe them in detail. We categorize the failure

causes into three groups.

1 Excluding increased latency and reduced physical resources.

320

Non-Virtualizable State Intel VT does not virtualize the

physical address-width, which determines the size of the

physical addresses produced by paging [31]. This width

implicitly defines the number of reserved bits in PTEs, as

address bits above the width are reserved. A page-walk that

uses a PTE whose reserved bits are set triggers a page-fault.

Software can obtain this width using the CPUID instruction.

We find that hypervisors are incapable of setting a suitable

physical address-width for VCPUs [5]. Since the VM may

be migrated between servers with different physical address

width, hypervisors set a predefined fixed width that fits all

servers. As we tried to generate tests that match the physical

address-width that KVM reports, we encountered test failures,

and could not solve them by changing the hypervisor: if the

reported value is lower than the actual one, a page fault error-

code can incorrectly indicate, from the VM point of view,

that the reserved-bits are cleared; but if the reported value

is higher, the VM may map device RAM to unsupported

physical memory, thereby triggering an exit whenever the

VCPU accesses this memory.

Missing State Save/Restore Facilities When the hypervi-

sor performs VM-entry and exit, it needs to restore and save

the VM state correspondingly. Intel VT saves and restores

some of the VCPU registers atomically during VM-entry and

exit, and the hypervisor saves and restores others in software.

Our experiments indicated that the registers are restored in-

correctly in two cases.

The first case occurs when a VM executes an FSAVE
instruction, which stores the floating point unit (FPU) reg-

isters in memory. This state includes the last floating point

instruction pointer (FIP). In real-mode this value is calculated

using two internal registers:

[FSAV E FIP] = [Internal FCS]×4+[Internal FIP].
Hypervisors, however, cannot save the internal FCS register,

as its saving was deprecated in new CPUs. As a result, after

the hypervisor saves and restores the FPU registers of a VM,

execution of an FSAVE instruction in the VM may store an in-

valid FIP [5]. A similar issue was reported before to cause the

blue screen of death in certain Windows environments [11]

and was resolved with the recent deprecation of FCS storing.

Yet, our findings show that refraining from saving the FCS

had undesired side-effects.

The second case occurs when the hypervisor uses the

XSAVES instruction to save the VM extended-state regis-

ters. XSAVES does not save the raw value of a certain bit,

(XINUSE[1]), that serves to indicate whether a group of CPU

registers (XMM) are zeroed. Our findings show that as a

result the VCPU may save and restore these registers unnec-

essarily even when they are zeroed. The hypervisor can work

around this issue using the XSAVE instruction instead.

Errata While errata are undesirable regardless of virtual-

ization, they can also break the equivalence property of VMs.

This may occur when a VM executes the ENTER instruction,

which creates a stack frame for a procedure by copying stack

MITRE requires potential bug
ID CVE ID privilege attack ID

C1 2014-3610 � host DoS B92

C2 2014-3647 � guest DoS B42

C3 2014-7842 � guest DoS B23

C4 2014-8480 � host DoS B43

C5 2014-8481 � host DoS B45

C6 2015-0239 � privilege escalation B64

Table 2. Security vulnerabilities.

frame pointers from an old stack into a new one. Due to a

public erratum, copy operations may be carried out even if

the instruction execution encounters a page-fault [33]. This

behavior is observable when the source and destination mem-

ory overlap, thereby causing re-execution of the instruction to

read the partial copy results from the source memory, instead

of the original data. Our results indicate that page-faults in the

second level address translation page tables trigger the erra-

tum as well. As a result, VMs would experience it even when

no page-fault—from the point of view of the VM—occurs.

It should be emphasized that in all of the cases we de-

scribed, the physical CPU behavior follows public documen-

tation. Nonetheless, it results in differences between VCPUs

and CPUs that allow the VM to detect hypervisor presence

(red-pilling), a technique which malware uses to avoid analy-

sis.

5.9 Other Hypervisors
Using our methods for validating every hypervisor is possi-

ble, but requires some effort, as described in §4. Validation

of proprietary hypervisors is more challenging, yet requires

modifying the way the test is loaded and results are communi-

cated to the tester, as well as only using assigned test devices.

In addition, debugging and finding the root cause of bugs on

proprietary hypervisors is a cumbersome task.

Although we have not run our VCPU validation system

to test other hypervisors, we see no reason it cannot be done,

and initial indications are that doing so would reveal bugs

in these hypervisors as well. The Xen hypervisor developers

tracked our bug reports and found several similar bugs in their

system (B42, B44, B23), as well as a similar security exploit

(XSA-110). To obtain some indication whether VMware

suffers from similar bugs, we ran the KVM unit-test suite

on VMware Workstation 10. This suite incorporates tests

originally created to validate KVM bug fixes, as well as

additional tests we introduced to validate several fixes of

the KVM bugs we encountered. Running these tests revealed

that VMware Workstation 10 suffers from one of the bugs

(B94).

6. Security
We found that the bugs introduce six security vulnerabilities,

listed in Table 2, along with their MITRE CVE ID, whether

321

they can be exploited by an unprivileged userspace code, the

potential attacks, and the bugs that caused them. We denote

these vulnerabilities by Cx.

As shown, some bugs can cause the VM to crash since

KVM shuts it down due to missing emulation support (C3),

or because it corrupts the VCPU state and causes VM-entry

to fail the CPU consistency tests (C2). These bugs can be

used to launch a DoS attack on the VM. Other bugs cause

the host to panic (C1, C4, C5), and can therefore be used to

launch a DoS attack on the host. One of the bugs can corrupt

the VCPU state in a way that allows unprivileged userspace

code to gain VM kernel-space privileges. This bug can be

used to launch a privilege escalation attack on the VM (C6).

Four of the vulnerabilities we found can be exploited by

an unprivileged VM userspace code. This may be surprising,

as hypervisors usually trap only a few events that occur in the

VM userspace. However, unprivileged userspace applications

can trigger bugs in the most bug-prone hypervisor component:

the instruction emulator.

Instruction emulator bugs are exploitable by crafted in-

structions that access MMIO regions. Although most MMIO

regions are accessible only to the OS, they are sometimes

also accessible from userspace. In Linux, to speed up the ex-

ecution of the gettimeofday system-call, the OS grants

processes a read access to the high precision timer (HPET)

MMIO region, which is emulated by the hypervisor. In addi-

tion, some systems assign devices to userspace processes [21].

As a result, a malicious VM process can cause the hypervisor

to emulate most of the instructions, triggering most of the

bugs, and thereby exploiting most of the instruction emulator

vulnerabilities (C3, C4, C5).

Yet certain instruction emulator bugs occur during the

emulation of instructions that do not have memory operands,

or occur only when these operands have specific values. A

malicious VM process can still exploit these bugs in VMs

that consist of multiple VCPUs that run concurrently on

multiple physical CPUs, by employing cross-modifying code:

the VM triggers an exit on an instruction that accesses an

MMIO region, and replaces it with another instruction before

the hypervisor decodes it. Using this technique, a malicious

process can trigger every instruction emulator bug.

The flow of such an attack (C6) is depicted in Figure 2.

The malicious application creates two threads, thereby caus-

ing the VM OS to schedule each one on a different VCPU.

The first thread, which runs on VCPU0, writes a benign in-

struction that accesses MMIO, MOV from the HPET in our

example (1). This thread then executes the instruction (2),

which causes VCPU0 to exit to the hypervisor (3). Then,

VCPU1 overwrites the instruction that VCPU0 executed with

the bug triggering instruction, SYSENTER in our example

(4). Since it is hard for VCPU1 to hit the exact point in time

in which the exit occurs, it alternately switches between the

MOV and SYSENTER instructions. The hypervisor then tries

to emulate the instruction that triggered the exit, but fetches

Figure 2. Exploiting an instruction emulator bug.

the modified instruction instead (5). Once emulated (6), this

instruction triggers the bug.

As long as hypervisor code can introduce bugs, hypervisor

security may be compromised. Obviously, removing code in

the hypervisor can improve security, but doing so can sacri-

fice hypervisor functionality and optimizations. To improve

security without such sacrifice, others have suggested pre-

serving the previous VM state after failure [40], reducing the

trusted computing base of hypervisors [30, 64], and avoiding

assertions that may crash the host. Our research leads us to

suggest two additional security improvements.

One way to improve security is for hypervisors to avoid

killing VMs, even if they cannot handle a VM trap or cannot

reenter guest-mode, since such errors can be triggered by

malicious VM processes. The hypervisor should gracefully

recover, fix corruptions in the VCPU state and deliver an

error indication to the VM. The architecture can define

a new architectural event to indicate that the hypervisor

encountered a recoverable error. OSes would be able to

react to this event according to their policy, e.g., by killing

the running process. Although this behavior allows a VM

process to detect hypervisor presence, it is more secure since

it prevents malicious processes from crashing the entire VM.

We implemented a partial solution in KVM (B23).

7. Related Work
The challenge of developing a secure and correct hypervisor

has been addressed using various approaches.

Formal Verification Arguably, the most compelling ap-

proach is using formal verification to prove hypervisor code

correctness. The most ambitious attempt for such verifica-

tion has been the Verisoft-XT project, which verified the

Microsoft Hyper-V [41]. The effort of verifying this hypervi-

sor required 60 person-years. Despite this effort, verification

is incomplete, as fewer than 200 instructions were modeled,

and the verification of several basic CPU features such as

interrupts is partial at best [20]. During the project, “less than

a handful (bugs) have been found” [41], which the project

developers attributed to the low defect density of the hypervi-

322

sor. However, despite the relatively small number of Hyper-V

bug reports, some bugs, which one may expect verification

would eliminate, postdate the project [48, 49, 71].

Micro-Hypervisors Micro-hypervisors can deliver better

security because they have a smaller attack surface. For in-

stance, the NOVA hypervisor [64] consists of fewer than 10k

lines of code (LoC) in its trusted computing base (TCB). The

reduction of the TCB indeed reduces the risk of comprising

the host security. Yet micro-hypervisors still need to carry

out the same virtualization tasks as other hypervisors. Al-

though micro-hypervisors run these tasks in userspace, they

are just as susceptible to software bugs that can compromise

the VM security and robustness. To eliminate at least some of

these bugs, there should be as little interaction as possible be-

tween the VM and the hypervisor. Unfortunately, this also re-

sults in reduced usability. For example, the NoHype [65] and

Jailhouse [61] micro-hypervisors cannot perform dynamic

provisioning of CPUs and memory.

Fuzzing Hypervisors can be validated by code fuzzing and

differential testing—generating a random test, running it

on both a VM and bare-metal system, and comparing the

results. Recent work includes PokeEMU [42], which creates

test cases based on high fidelity emulator implementation.

PokeEMU uses symbolic execution to explore code-paths

in a CPU emulator and thereby infers the CPU instruction

set and the machine state that affects each instruction. Using

this information, PokeEMU creates test cases, each of which

exercises a single instruction under certain conditions. The

test cases can then be executed on an instruction emulator

and a real CPU to find discrepancies.

In contrast to PokeEMU, our system exercises multiple

random instructions and test templates on each test, and con-

sequently can reveal additional bugs. We found, for example,

bugs that are only apparent when running multiple random in-

structions (B48, B111), bugs in interrupt delivery (B88, B90),

and bugs that only occur on multi-core VMs (B85, B106).

To reduce testing time PokeEMU makes assumptions that

allows it to test fewer cases, yet limit its coverage. First, it

exercises only a single byte sequence of each instruction,

under the assumption that the incremental benefit from more

testing is relatively low. However, our results indicate that

several bugs occur only when an instruction is emulated with

a certain prefix, addressing mode or operands (B6, B73).

Second, PokeEMU generates an initial machine state that

exercises only exercises previously unexplored code-paths,

and therefore may not find computation bugs (B54, B65).

Unlike vendor validation tools, PokeEMU delivers a high

rate of false-positive indications of bugs. Roughly 10% of

PokeEMU test-cases that the QEMU emulator ran failed,

undefined CPU behavior was identified as the cause for a sub-

stantial number of failures. Our system suffered a negligible

false-positive rate, since the architectural simulator indicates

which instruction results are undefined, and the test generator

prevents nondeterministic results due to interrupts or errata.

8. Future Work
One of the main challenges is the validation of host events that

affect the VM execution, for example live migration of a VM

from one physical host to another or paging of VM memory.

Since such events often involve I/O operations, testing them

is a prolonged process, and test failures are thus not likely to

be reproducible. Although testing is possible using execution

replay mechanisms [38], doing so can prevent existing bugs

from being triggered, because it adds synchronization events.

Additional effort is also required for the validation of bug-

prone subsystems of hypervisors. While CPU validation tools

use test templates that stress bug-prone CPU subsystems,

hypervisors may have additional weak spots. For instance, hy-

pervisors often erroneously virtualize the time-stamp counter.

Test templates for the validation of such features should there-

fore be incorporated into the CPU validation tools.

Finally, CPU validation usually focuses on changes in the

and macro- or micro-architecture and assume the executed

code is reasonable. This strategy is based on the assump-

tion that bugs in legacy features or bugs that are triggered by

senseless code do not occur in common OSes and therefore,

if such a bug is uncovered, the CPU vendor can publish an

erratum and guide software developers to avoid it. Nonethe-

less, virtualization raises the question whether this scheme is

reasonable. Future research may evaluate the implications of

existing CPU errata on virtualized environments and whether

they pose a security threat.

9. Conclusions
Hardware-assisted virtualization is popular, arguably allow-

ing users to run multiple workloads robustly and securely

while incurring low performance overheads. But the robust-

ness and security are not to be taken for granted, as it is

challenging to virtualize the CPU correctly, notably in the

face of newly added features and use cases. CPU vendors

invest a lot of effort—hundreds of person years or more—

to develop validation tools, and they exclusively enjoy the

benefit of having an accurate reference system. We therefore

speculate that effective hypervisor validation could truly be

made possible only with their help. We further contend that

it is in their interest to provide such help, as the majority of

server workloads already run on virtual hardware, and this

trend is expected to continue. We hope that open source hy-

pervisors will be validated on a regular basis by Intel Open

Source Technology Center.

Acknowledgments
We thank Paolo Bonzini from Redhat and our shepherd An-

drew Baumann. The research leading to the results presented

in this paper was partially supported by: the Israel Science

Foundation (grant No. 605/12); the Ministry of Science and

Technology, Israel (grant No. 3-9779); and the Google Patch

Reward Program.

323

id description patch

Instruction Emulator

B1 Compatibility mode recognized incorrectly 42bf549f3c67
B2 Rep-IN uses memory operand e6e39f0438bc
B3 NOP emulation clears RAX[63:32] a825f5cc4a84
B4 CMOV DWORD does not clear [63:32] 140bad89fd25
B5 Outer-privilege level RET unsupported 9e8919ae793f
B6 Wrong emulation of ’XADD Rx,Rx’ ee212297cd42
B7 Bit-ops emulation ignores offset on 64-bit 7dec5603b6b8
B8 SMSW emulation is incorrect in 64-bit 32e94d0696c2
B9 CMPXCHG16B emulated as 8B aaa05f2437b9
B10 RDPMC checks the counter incorrectly 67f4d4288c35
B11 CMPXCHG emulation sets incorrect flags 37c564f2854b
B12 SGDT/SIDT with CPL=3 causes #GP 606b1c3e8759
B13 Loading segments ignores extended base 2eedcac8a97c
B14 LDTR/TR extended base is ignored e37a75a13cda
B15 VEX-prefix is decoded incorrectly d14cb5df5903
B16 No canonical check on near branches 234f3ce485d5
B17 #DB is injected when RF is set 4161a569065b
B18 RF=1 after instruction emulation 4467c3f1ad16
B19 POPF restores RF 163b135e7b09
B20 Broken vendor specific instructions check 3a6095a0173a
B21 Wrong error code on limit violation 3606189fa3da
B22 No #GP on descriptor load w/L=1&D=0 040c8dc8a5af
B23 Guest userspace can crash VM a2b9e6c1a35a
B24 Spurious segment type checks c49c759f7a68
B25 Wrong exception when using DR4/5 16f8a6f9798a
B26 Instructions that cross page boundary fault 08da44aedba0
B27 SYSCALL mistakenly clears FLAGS[1] 807c142595ab
B28 #GP exception instead of #SS abc7d8a4c935
B29 Missing limit checks on RIP assignments d50eaa18039b
B30 Segment privilege checked on each access a7315d2f3c6c
B31 Wrong stack size on linear address calc. 1c1c35ae4b75
B32 MOVNTI minimum opsize is not respected ed9aad215ff3
B33 No #GP when loading non-canonical base 9a9abf6b6127
B34 FLAGS are updated on faulting instructions 38827dbd3fb8
B35 MOV to CR3 cannot set bit 63 9d88fca71a99
B36 PUSH sreg is not emulated as new CPUs do 0fcc207c66a7
B37 Wrong flags on CMPS and SCAS 5aca37223626
B38 MOV-sreg to memory uses incorrect size b5bbf10ee6b6
B39 DR6 incorrect on general detect exception 6d2a0526b09e
B40 Wrong mod/rm decoding 5b38ab877e5b
B41 Wrong address calculation on relative JMP 05c83ec9b73c
B42 No canonical check on far JMP d1442d85cc30
B43 NULL dereference on PREFETCH 3f6f1480d86b
B44 Wrong CLFLUSH decoding 13e457e0eebf
B45 NULL dereference of memopp a430c9166312
B46 MOVBE reg/mem determined incorrectly 39f062ff51b2
B47 No RIP/RSP mask on 32-bit SYSEXIT bf0b682c9b6a
B48 Immediate is considered as memory op. d29b9d7ed76c
B49 Privileged instructions cause #GP on VM86 64a38292ed5f
B50 PUSHF on VM86 does not mask VM flag bc397a6c914c
B51 Near branches operand size is incorrect 58b7075d059f
B52 #PF error-code does not indicate write c205fb7d7d4f8
B53 Failure on em call far returns success 80976dbb5cb2
B54 No wraparound on LDT/GDT accesses edccda7ca7e5
B55 POP [ESP] is not emulated correctly ab708099a061
B56 Segment loads set access bit when it is set e2cefa746e7e
B57 FNSTCW/FNSTSW cause spurious #PF 16bebefe29d8
B58 #GP on JMP/CALL using call-gate 3dc4bc4f6b92
B59 IRET does not clear IRET blocking 801806d956c2
B60 CMPXCHG does not set A/D 2fcf5c8ae244
B61 ARPL cause spurious exceptions 2276b5116e98
B62 CALL uses incorrect stack size 82268083fa78
B63 Wrong far RET opsize in 64-bit 16794aaaab66
B64 SYSENTER emulation is broken f3747379accb

id description patch

B65 32-bit operand wraparound fails bac155310be3
B66 NULL dereferencing on SLDT/STR 63ea0a49ae0b
B67 MOV CR/DR does not ignore MOD 9b88ae99d2fe
B68 Mishandling REP-string 32-bit counters ee122a7109e4
B69 Discrepencies on zero iterations rep-string 428e3d08574b
B70 Wrong call-far operand size in 64-bit mode acac6f89574c
B71 BSF and BSR misbehave when source is zero 900efe200e31
B72 POPA emulation may not clear bits [63:32] 6fd8e1275709

Debug

B73 Incorrect MOV RSP to DR a4ab9d0cf1ef
B74 #GP on MOV DR6 with [63:32]!=0 5777392e83c9
B75 RIP is not advanced on ICEBP fd2a445a94d2
B76 RF=1 after skipped instruction bb663c7ada38
B77 RF=0 on fault injection d6e8c8545651
B78 RF=0 on interrupt during REP-string b9a1ecb909e8
B79 DR6/7.RTM cannot be written 6f43ed01e87c
B80 DR7.GD is not cleared on #DB 6bdf06625d24
B81 Breakpoints do not consider base 82b32774c2d0
B82 DR6[3:0] not cleared on #DB 7305eb5d8cf1
B83 Wrong DR7 on task-switch when host debug 3db176d5b417

Local-APIC

B84 No relocation of APIC base db324fe6f20b
B85 APIC broadcast does not work 394457a928e0
B86 Wrong local APIC mode 1e1b6c264435
B87 TSC-deadline is not cleared fae0ba215734
B88 Spurious interrupt on TSC-deadline 1e0ad70cc195
B89 Lost interrupt due to race f210f7572bed
B90 No NMI with disabled LAPIC 173beedc1601

MSRs

B91 No #GP on invalid PAT CR 4566654bb9be
B92 No canonical checks on WRMSR 854e8bb1aa06
B93 CPUID limit not reflected
B94 Fast-string not reflected
B95 Entry failure on real-mode exception 3ffb24681cc4
B96 No #GP on ICR2 and DFR MSRs c69d3d9bc168
B97 XD DISABLE not reflected
B98 MSR IA32 BNDCFGS is corrupted after exit 9e9c3fe40bcd

Task-Switch

B99 Breakpoints are mistakenly disabled 1f854112553a
B100 CR3/LDTR are saved in TSS 5c7411e29374
B101 Incorrect CPL check on task-switch 2c2ca2d12f5c
B102 Wrong CS.DPL and RPL check 9a4cfb27f723
B103 Clear DR7.LE during task-switch 0e8a09969afb

Reset

B104 No INIT and reset differences d28bc9dd25ce
B105 Exception delivery after reset 5f7552d4a56c
B106 BSP core cannot be reconfigured 58d269d8cccc
B107 CR2 is not cleared on reset 1119022c71fb
B108 DR0-DR3 are not cleared on reset ae561edeb421
B109 LINT0 was enabled after boot 90de4a187518

Other

B110 VMX ignores compability mode 27e6fb5dae28
B111 Perf. counters cause exit storm 671bd9934a86
B112 XSAVES sets all XSTATE BV bits df1daba7d1cb
B113 CPL!=0 on protected mode entry ae9fedc793c4
B114 CR reads ignore compatibility mode 1e32c07955b4
B115 PDPTE[7] is not always reserved 5f7dde7bbb3c
B116 CR3 reserved bits are incorrect 346874c9507a
B117 Wrong reserved bits in page tables cd9ae5fe47df

Table 3. Summary of the bugs we found and their associated patches (clickable in the digital format of the paper).

324

References
[1] AGESEN, O., MATTSON, J., RUGINA, R., AND SHELDON, J.

Software techniques for avoiding hardware virtualization exits.

In USENIX Annual Technical Conference (ATC) (2011).

[2] ALBERTINI, A. x86 oddities.

http://code.google.com/p/corkami/wiki/
x86oddities, 2011.

[3] ALKASSAR, E., HILLEBRAND, M., PAUL, W., AND

PETROVA, E. Automated verification of a small hypervisor. In

Verified Software: Theories, Tools, Experiments (VSTTE),
vol. 6217 of Lecture Notes in Computer Science. Springer,

2010, pp. 40–54.

[4] AMIT, N. Increase the number of fixed MTRR regs to 10.

http://comments.gmane.org/
gmane.linux.kernel/1727771, 2014.

[5] AMIT, N. Two CPU conformance issues in KVM/x86.

http://article.gmane.org/
gmane.comp.emulators.kvm.devel/133306, 2015.

[6] ARCANGELI, A. Using Linux as hypervisor with KVM.

CERN Computing Seminar http://indico.cern.ch/
event/39755/material/slides/0.pdf, 2008.

[7] BAILEY, M. The economics of virtualization: Moving toward

an application-based cost model.

www.vmware.com/files/pdf/Virtualization-
application-based-cost-model-WP-EN.pdf
International Data Corporation (IDC), 2009.

[8] BELLARD, F. QEMU, a fast and portable dynamic translator.

In USENIX Annual Technical Conference (ATC) (2005),

pp. 41–46.

[9] BEN-YEHUDA, M., DAY, M. D., DUBITZKY, Z., FACTOR,

M., HAR’EL, N., GORDON, A., LIGUORI, A.,

WASSERMAN, O., AND YASSOUR, B.-A. The turtles project:

Design and implementation of nested virtualization. In

USENIX Symposium on Operating Systems Design &
Implementation (OSDI) (2010).

[10] BENNÉE, A. Validating and defending QEMU TCG targets.

KVM Forum, 2014.

[11] BEULICH, J. x86-64: properly handle FPU code/data

selectors. Linux Kernel Mailing List

http://lkml.org/lkml/2013/10/16/258, 2013.

[12] BHARGAVA, R., SEREBRIN, B., SPADINI, F., AND MANNE,

S. Accelerating two-dimensional page walks for virtualized

systems. In ACM Architectural Support for Programming
Languages & Operating Systems (ASPLOS) (2008).

[13] BITTMAN, T. J., DAWSON, P., AND WARRILOW, M. Magic

quadrant for x86 server virtualization infrastructure. Tech.

Rep. ID:G00268538, Gartner, Inc., July 2015.

http://www.gartner.com/technology/
reprints.do?id=1-2JFZ1KP&ct=150715.

[14] BITTMAN, T. J., MARGEVICIUS, M. A., AND DAWSON, P.

Magic quadrant for x86 server virtualization infrastructure.

Tech. Rep. ID:G00262673, Gartner, Inc., 2014.

[15] BOHRA, A. E., AND CHAUDHARY, V. VMeter: Power

modelling for virtualized clouds. In IEEE Parallel &

Distributed Processing, Workshops and Phd Forum (IPDPSW)
(2010), pp. 1–8.

[16] BONZINI, P. KVM: x86 emulator: emulate MOVAPS and

MOVAPD SSE instructions. Linux Kernel Mailing List

http://lkml.org/lkml/2014/3/17/384, 2014.

[17] BULYGIN, Y., LOUCAIDES, J., FURTAK, A., BAZHANIUK,

O., AND MATROSOV, A. Summary of attacks against BIOS

and secure boot. DEF CON, 2014.

[18] CITRIX SYSTEMS. Xen security advisories.

http://xenbits.xen.org/xsa/. Visited: Mar 2015.

[19] CITRIX SYSTEMS. Citrix XenServer 6.2.0 administrator’s

guide, 2014.

[20] COHEN, E., PAUL, W., AND SCHMALTZ, S. Theory of multi

core hypervisor verification. In SOFSEM: Theory and
Practice of Computer Science. Springer, 2013, pp. 1–27.

[21] CORBET, J. Safe device assignment with VFIO. LWN.net,

http://lwn.net/Articles/474088/, 2012.

[22] DALL, C., AND NIEH, J. KVM/ARM: The design and

implementation of the Linux ARM hypervisor. In ACM
Architectural Support for Programming Languages &
Operating Systems (ASPLOS) (2014), pp. 333–348.

[23] DARROW, B. Is live migration coming to Amazon Web

Services? smart money says yes. Gigaom, 2014.

[24] DARROW, B. Xen security issue prompts Amazon, Rackspace

cloud reboots. Gigaom, 2015.

[25] ELHAGE, N. Virtunoid: Breaking out of KVM. Black Hat
USA (2011).

[26] ERSEK, L. Open virtual machine firmware (OVMF status

report). http://www.linux-kvm.org/downloads/
lersek/ovmf-whitepaper-c770f8c.txt, 2014.

[27] gcova test coverage program. https:
//gcc.gnu.org/onlinedocs/gcc/Gcov.html, 2015.

[28] GOOGLE, INC. Google cloud platform FAQ.

http://cloud.google.com/compute/docs/faq.

Visited: Feb 2015.

[29] GRUSKOVNJAK, J. Advanced exploitation of Xen hypervisor

Sysret VM escape vulnerability. VUPEN Vulnerability

Research Team (VRT) Blog, 2012.

http://www.vupen.com/blog/
20120904.Advanced_Exploitation_of_Xen_
Sysret_VM_Escape_CVE-2012-0217.php.

[30] HONIG, A. Security hardening of KVM. KVM Forum, 2014.

[31] INTEL CORPORATION. Intel 64 and IA-32 Architectures

Software Developer’s Manual. Reference number: 325462,

2014.

[32] INTEL CORPORATION. Intel virtualization technology for

directed I/O, architecture specification, Rev. 2.3, 2014.

[33] INTEL CORPORATION. Intel Xeon processor E5 family

specification update. Reference number 326510-015, 2014.

[34] KERNEL BUG TRACKER. Bug 86161. http://
bugzilla.kernel.org/show_bug.cgi?id=86161,

2014.

325

[35] KIVITY, A., KAMAY, Y., LAOR, D., LUBLIN, U., AND

LIGUORI, A. KVM: the Linux virtual machine monitor. In

Ottawa Linux Symposium (OLS) (2007), vol. 1, pp. 225–230.

[36] KIVITY, A., KAMAY, Y., LAOR, D., LUBLIN, U., AND

LIGUORI, A. KVM: the Linux Virtual Machine Monitor.

Ottawa Linux Symposium (OLS) (2007).

[37] KLEIN, G., ELPHINSTONE, K., HEISER, G., ANDRONICK,

J., COCK, D., DERRIN, P., ELKADUWE, D., ENGELHARDT,

K., KOLANSKI, R., NORRISH, M., ET AL. seL4: Formal

verification of an OS kernel. In ACM Symposium on
Operating Systems Principles (SIGOPS) (2009), pp. 207–220.

[38] LAADAN, O., VIENNOT, N., AND NIEH, J. Transparent,

lightweight application execution replay on commodity

multiprocessor operating systems. In ACM SIGMETRICS
International Conference on Measurement and Modeling of
Computer Systems (2010), pp. 155–166.

[39] LAWTON, K. P. Bochs: A portable pc emulator for unix/x.

Linux Journal 1996, 29es (1996), 7.

[40] LE, M., AND TAMIR, Y. Rehype: Enabling VM survival

across hypervisor failures. In ACM/USENIX International
Conference on Virtual Execution Environments (VEE) (2011),

pp. 63–74.

[41] LEINENBACH, D., AND SANTEN, T. Verifying the Microsoft

Hyper-V hypervisor with VCC. In FM 2009: Formal Methods.

Springer, 2009, pp. 806–809.

[42] MARTIGNONI, L., MCCAMANT, S., POOSANKAM, P.,

SONG, D., AND MANIATIS, P. Path-exploration lifting: Hi-fi

tests for lo-fi emulators. ACM SIGARCH Computer
Architecture News (CAN) 40, 1 (2012), 337–348.

[43] MARTIGNONI, L., PALEARI, R., FRESI ROGLIA, G., AND

BRUSCHI, D. Testing system virtual machines. In ACM
International Symposium on Software Testing and Analysis
(ISSTA) (2010), pp. 171–182.

[44] MARTIGNONI, L., PALEARI, R., ROGLIA, G. F., AND

BRUSCHI, D. Testing CPU emulators. In ACM International
Symposium on Software Testing and Analysis (ISSTA) (2009),

pp. 261–272.

[45] MATTSON, J. Running nested VMs. http:
//communities.vmware.com/docs/DOC-8970,

2015.

[46] MCCOYD, M., KRUG, R. B., GOEL, D., DAHLIN, M., AND

YOUNG, W. Building a hypervisor on a formally verifiable

protection layer. In IEEE Hawaii International Conference on
System Sciences (HICSS) (2013), pp. 5069–5078.

[47] MCKENNEY, P. E. Reducing OS jitter due to per-CPU

kthreads. Linux

3.19:Documentation/kernel-per-CPU-kthreads.txt.

[48] MICROSOFT. ”0x20001” stop error when you start a Linux

VM in Windows Server 2008 R2 SP1. KB2550569, 2011.

[49] MICROSOFT. Cross-page memory read or write operation

crashes virtual machine. KB2894485, 2013.

[50] NATAPOV, G. KVM: VMX: mark unusable segment as

nonpresent. http://comments.gmane.org/
gmane.comp.emulators.kvm.devel/111948, 2013.

[51] NAYSHTUT, A. KVM: x86: emulate MOVDQA.

http://bugs.launchpad.net/ubuntu/+source/
linux/+bug/1330177, 2014.

[52] NGUYEN, A., RAJ, H., RAYANCHU, S., SAROIU, S., AND

WOLMAN, A. Delusional boot: Securing hypervisors without

massive re-engineering. In ACM SIGOPS European
Conference on Computer Systems (EuroSys) (2012),

pp. 141–154.

[53] POPEK, G. J., AND GOLDBERG, R. P. Formal requirements

for virtualizable third generation architectures.

Communications of the ACM (CACM) 17 (1974), 412–421.

[54] The QEMU machine protocol (QMP).

http://wiki.qemu.org/QMP. Accessed: Aug 2015.

[55] RED HAT, INC. Red Hat vulnerabilities.

http://access.redhat.com/security/cve/,

2014.

[56] RED HAT, INC. Bug 1167595. Bugzilla

http://bugzilla.redhat.com/show_
bug.cgi?id=1167595, 2015.

[57] RED HAT, INC. Linux containers compared to KVM

virtualization.

http://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/
Resource_Management_and_Linux_Containers_
Guide/sec-Linux_Containers_Compared_to_
KVM_Virtualization.html, 2015.

[58] RISTENPART, T., TROMER, E., SHACHAM, H., AND

SAVAGE, S. Hey, you, get off of my cloud: Exploring

information leakage in third-party compute clouds. In ACM
Conference on Computer and Communications Security (CCS)
(2009), pp. 199–212.

[59] ROEDEL, J. SVM: Keep intercepting task switching with NPT

enabled. KVM mailing list,

http://thread.gmane.org/
gmane.comp.emulators.kvm.devel/80905, 2011.

[60] ROTITHOR, H. Postsilicon validation methodology for

microprocessors. IEEE Design & Test of Computers 17, 4

(2000), 77–88.

[61] SINITSYN, V. Understanding the Jailhouse hypervisor.

LWN.net, http://lwn.net/Articles/578295, 2014.

[62] SLAVICIC, S., AND CAMPBELL, B. XP machine freeze.

KVM mailing list, http://comments.gmane.org/
gmane.comp.emulators.kvm.devel/133956, 2014.

[63] SOUNDARARAJAN, V., AND ANDERSON, J. M. The impact

of management operations on the virtualized datacenter. In

ACM/IEEE International Symposium on Computer
Architecture (ISCA) (2010), pp. 326–337.

[64] STEINBERG, U., AND KAUER, B. NOVA: a

microhypervisor-based secure virtualization architecture. In

ACM SIGOPS European Conference on Computer Systems
(EuroSys) (2010), pp. 209–222.

[65] SZEFER, J., KELLER, E., LEE, R. B., AND REXFORD, J.

Eliminating the hypervisor attack surface for a more secure

cloud. In ACM Conference on Computer and Communications
Security (CCS) (2011), pp. 401–412.

326

[66] THE LINUX KERNEL ORGANIZATION. Kernel bug tracker.

http://bugzilla.kernel.org. Visited: Aug 2014.

[67] UBUNTU BUG TRACKER. Bug 1268906.

https://bugs.launchpad.net/ubuntu/+source/
linux/+bug/1268906.

[68] UBUNTU BUG TRACKER. Bug 924247.

http://bugs.launchpad.net/ubuntu/+source/
qemu-kvm/+bug/924247,.

[69] WEINS, K. Xen bug drives cloud reboot: Survey shows users

undeterred.

http://www.rightscale.com/blog/cloud-
industry-insights/xen-bug-drives-cloud-
reboot-survey-shows-users-undeterred, 2014.

[70] WIKIPEDIA. In-target probe. https:
//en.wikipedia.org/wiki/In-target_probe.

Accessed: Aug 2015.

[71] WILHELM, F., AND LUFT, M. Security assessment of

Microsoft Hyper-V. ERNW Newsletter 43, 2014.

[72] WILLIAMSON, A. KVM: x86 emulator: emulate MOVNTDQ.

Linux Kernel Mailing List

http://lkml.org/lkml/2014/7/11/569, 2014.

[73] XEN PROJECT. Nested virtualization in Xen.

http://wiki.xenproject.org/wiki/Nested_
Virtualization_in_Xen, 2014.

327

