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Abstract to prevent data loss and preserve responsive data availabil-

Distributed storage systems often triplicate data to reduce
the risk of permanent data loss, thereby tolerating at least
two simultaneous disk failures at the price of 2/3 of the
capacity. To reduce this price, some systems utilize erasure
coding. But this optimization is usually only applied to cold
data, because erasure coding might hinder performance for
warm data.

We propose RAIDP—a new point in the distributed storage
design space between replication and erasure coding. RAIDP
maintains only two replicas, rather than three or more. It
increases durability by utilizing small disk “add-ons” for stor-
ing intra-disk erasure codes that are local to the server but
fail independently from the disk. By carefully laying out the
data, the add-ons allow RAIDP to recover from simultaneous
disk failures (add-ons can be stacked to withstand an arbi-
trary number of failures). RAIDP retains much of the benefits
of replication, trading off some performance and availability
for substantially reduced storage requirements, networking
overheads, and their related costs. We implement RAIDP in
HDFS, which triplicates by default. We show that baseline
RAIDP achieves performance close to that of HDFS with only
two replicas, and performs within 21% of the default tripli-
cating HDFS with an update-oriented variant, while halving
the storage and networking overheads and providing similar
durability.

CCS Concepts. - Hardware — External storage; « Soft-
ware and its engineering — Operating systems.

1 Introduction

Due to the scale of modern datacenters and the non-negligible
likelihood of failures, datacenters must employ safeguards
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ity. Preventing loss necessitates that data can be eventually
recovered after a failure. Responsive data availability, on the
other hand, implies that data can quickly be accessed at will,
suggesting that no reconstruction is required after a failure
or that such reconstruction is transparent and unnoticeable
in terms of performance to a user [17, 25, 45].

In today’s distributed storage systems, data is typically
stored in a declustered fashion using replicas or erasure coded
data with parity information. Each logical unit of data is
spread across many servers, typically chosen at random [19].
Upon a failure, modern systems reconstruct the data using
the declustered chunks, in parallel, for a fast recovery [9, 16,
30, 37, 56].

Distributed storage systems overwhelmingly favor the use
of replication over erasure coding when storing warm data
[11, 14, 23, 28, 56, 70] for the following reasons. Replication is
preferable for reads because: (1) it allows for load balancing,
such that if one node is heavily loaded, the desired data
can be retrieved from another node; (2) it can accelerate
reads by utilizing several replicas in parallel; and (3) it avoids
the problem of “degraded reads” [23, 37, 41] whereby the
desired data needs to be reconstructed due to residing on an
unavailable (e.g., rebooting) node, inducing many more I/O
operations.

Replication is preferable for synchronous writes, because
(4) it may reduce latency by not needing to wait for a full
stripe to accumulate before computing parities.

Replication is preferable to erasure coding for both reads
and writes because: (5) it avoids the CPU processing of en-
coding the data and decoding it upon a reconstruction; (6) it
may generate fewer random seeks as it can sequentially
write (and later read) a small stripe rather than partition
it to even smaller fragments designated to different drives;
and, importantly, (7) it induces substantially less networking
traffic overhead for recovery, because replication recovery
involves only one node that holds a replica, whereas erasure
recovery involves many nodes associated with the encoding
which dramatically interferes with and reduces the available
bandwidth for foreground jobs [55, 64].

Alongside the advantages of replication, it has one serious
deficiency: high storage overhead (a replication factor of k
results in % overall “wasted” capacity). This drawback has
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Figure 1. Triplication has low repair traffic, but it wastes capacity.
Erasure coding is more storage efficient but has much higher repair
traffic. For this and additional reasons, triplication is suitable for warm
data and erasure coding is not. RAIDP is a middle point enjoying most
of the benefits of triplication while being more storage efficient.

brought about the use of replication for warm data in tandem
with erasure coding for cold, read-only data [11, 15, 23, 37,
55, 64, 82]. For example, in Ceph [80], “erasure-coded pools
[are used for] cold storage with high latency and slow access
time” [15]. Such designs allow erasure coding to occur in the
background, which increases sequentiality because blocks
that comprise an erasure stripe can be set to a large size. As
cold data is accessed infrequently, it can tolerate the reduced
responsiveness that can occur with erasure coding, e.g., due
to degraded reads or a slow device in the stripe.

The state of the art is to provision a datacenter using both
redundancy schemes, leaving data in one of two extremes:
either the system is performant, induces little repair traffic,
but is wasteful in terms of storage or it is subject to large
response delays, induces significant repair traffic, but is effi-
cient in terms of storage.

We introduce a new distributed redundancy scheme called
RAIDP, which stands for ReplicAtion with Intra-Disk Parity.
RAIDP is a new point in the design space of distributed stor-
age systems. It is a hybrid system combining replication with
“local” erasure coding, deemphasizing the weaknesses of the
two redundancy schemes at the expense of some of their
strengths. RAIDP is a middle ground design that is applicable
to warm data—largely enjoying the aforementioned seven
advantages of replication, providing comparable resiliency,
while substantially reducing its overheads. Fig. 1 illustrates
how RAIDP relates to both replication and erasure coding.

RAIDP is characterized by three key traits. First, it uses
two replicas instead of the typical three (or more) [11, 14,
28, 41, 56]. This potentially reduces much of the storage and
networking overheads of triplication-based systems. Conse-
quently, RAIDP can also save upto 33% in hardware (disks,
servers enclosing the disks, switches, etc.), power, and facil-
ity costs of data centers. RAIDP is intended as a solution for
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large distributed systems with thousands of disks. Notably,
at hyper-scale, even saving a small 1% of these costs can have
significant financial implications [31, 34].

Second, RAIDP subdivides each disk into logically contigu-
ous “superchunks”, which are uniformly-sized in the order of
a few GBs. A superchunk holds the shared content between
two disks and RAIDP lays out data such that every two disks
share at most one superchunk.

The third RAIDP trait is that it relies on disk “add-ons”,
which are small auxiliary storage devices attached to each
disk. We denote these devices as “local storage devices” or
Lstors. An Lstor fails separately from its disk, is much faster/s-
maller, and is persistent. An Lstor can be implemented using
a form of NVRAM, whose independence is commonly uti-
lized [3, 21, 51, 81].

RAIDP uses Lstors to save the need for an additional third
replica. In its simplest configuration, RAIDP associates each
disk with its own Lstor, which allows the system to toler-
ate dual disk failures without losing data. Generally, RAIDP
may associate k > 1 Lstors per disk, allowing the system to
survive k + 1 simultaneous failures.

An Lstor stores a non-rotated erasure code [41] of its
disk’s superchunks. Since this information is completely
local to the node containing the disk, Lstors do not burden
the network to be kept up to date. When two disks D; and D,
fail simultaneously, the properties of the RAIDP layout dictate
that: (1) the only data that is lost is their shared superchunk,
and (2) this data is easily recoverable with the help of either
of the two disk’s Lstor and surviving superchunks, which
are replicated elsewhere. Fig. 2 illustrates a simple example
for a legal RAIDP configuration using a single Lstor for every
disk. We elaborate on this example later in the paper. We
compare RAIDP to other storage system configurations in §2
and describe its design in §3. We analyze the economical
feasibility of RAIDP in a datacenter environment in §4.

We implement RAIDP in the Hadoop Distributed File Sys-
tem (HDFS) by superimposing on it the superchunk layout,
supplementing each disk with a simulated Lstor, and incor-
porating a journal for crash consistency. We describe our
implementation in §5. Our experimental evaluation in §6
confirms that the network and storage overheads are halved
as compared to the default (triplicating) HDFS. The cost is
up to 21% runtime degradation on update-intensive work-
loads, largely due to the additional disk operations required
to maintain the parity on the Lstors. We additionally demon-
strate that RAIDP successfully recovers from dual disk fail-
ures. We survey related work in §7, and discuss future work
and conclude in §8.

2 Why Replication is Hard to Avoid

Table 1 lists the advantages and disadvantages of storage
system configurations that can withstand two simultane-
ous failures, including RAIDP. In this section, we compare
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Figure 2. Illustrating RAIDP. Each superchunk appears twice, no two
disks share more than one superchunk, and every disk’s superchunks
are XORed in the Lstor.

properties 3 erasure raidp
replicas n+2

storage capacity - + +

read + - +

parallelism

load balancing

degraded read (temp. unavailable data)

cpu consumption (sync latency) + - +

disk sequentiality + - +

write—network

sub-stripe (small write) - -

full stripe (large write) - + +

write—disk

sub-sector (small write) - - +

sub-block (medium write) + - +

multi-block (large write) + + -

repair traffic (network and disk)

single failure + - +

dual failure + - +

failure domain tolerance + + +

Table 1. Comparing RAIDP to triplication and erasure coding with

€ 3 o 2

two parities—all tolerate double disk failures. (Notation: “+”, -, and
“+” mean “best”, “worst”, and “in between”.) RAIDP improves upon the
worst offending system in all but the two bolded cases. In the first case
(disk multi-block write), RAIDP becomes superior to replication with
higher levels of failure tolerance, leaving the second (failure domain

tolerance) as the only remaining disadvantage.

these systems, noting that despite its high storage overhead,
replication has key advantages that make it the redundancy
scheme of choice for warm data in modern distributed sys-
tems [6, 11, 14, 23, 28, 41, 56, 70].

Capacity. With distributed replication, k copies of each
datum are made and stored across servers.

With distributed erasure coding, a piece of data is divided
into n uniformly-sized blocks plus an additional k parity
blocks, together comprising an n + k “stripe” Each of the
original n blocks can be recovered so long as at least n of
the n + k stripe blocks are available [37, 66]. Typically n > k,
so erasure coding provides failure tolerance with a smaller
storage overhead as compared to replication. Many different
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erasure codes have been suggested to safely store data on a
distributed system with various trade-offs [37, 48, 49, 63, 70].
Therefore, without loss of generality, we focus on systematic
codes such as the popular Reed-Solomon codes [66].

RAIDP stores two replicas plus a local erasure code in order
to achieve the required failure tolerance. Thus, RAIDP is more
storage-efficient than triplication, but worse than erasure
coding.

In our discussion, we assume that the erasure codes are
“systematic”, which means that a stripe is comprised of data
blocks that can be directly read and of parity blocks that are
used to recover lost data [5]. The prevalent Reed-Solomon is
an example of such a code [66]. In “non-systematic” codes,
all data accesses require decoding, and are hence slower
[58]. The payoff is that in many cases reconstruction induces
less disk/network recovery traffic than systematic codes.
Although we limit the discussion to former codes, much of
the discussions also apply to the latter (barring additional
write and CPU overheads). For erasure coding systems, we
also assume maximum distance separable (MDS) codes, such
as Reed-Solomon, in the discussion below. With MDS codes,
any n devices can be used to recover the lost data [48]. While
the discussion below also applies to non-MDS codes, the
exact parameters we use apply to MDS codes.

Ability to Load Balance & Parallelize. Replication is
well-suited for reads because traffic can be redirected away
from highly trafficked or temporarily unavailable nodes
[11, 46]. Reads in a replicated system can also leverage the
multiple copies to read several parts of a file in parallel, po-
tentially providing a significant boost in read bandwidth [38].
When data is encoded with a typical erasure code, by con-
trast, only one copy of each datum is stored, plus the means
to reconstruct the data. While the blocks from an erasure
coded stripe in theory can be read in parallel, the system’s
response time will be constrained by the slowest node. To
avoid stressed or unavailable nodes, the system can perform
a much slower “degraded read”, burdening n nodes in the
stripe with reading and transmitting n blocks [23, 37, 41].

Improved Sync Latency & Sequentiality. Distributed
storage systems partition streams of incoming data to blocks
of m bytes [9, 11, 56, 70]. Relatively large m values improve
performance, because they promote sequentiality and reduce
the number of random disk seeks. However, they might ad-
versely affect the latency of synchronous writes for n + k
erasure coding systems; when the k parity values are com-
puted over the incoming data in an online manner the system
must wait for all the n- m bytes to arrive before finalizing the
computation of the associated k parities and acknowledging
the client’s request. With replication, in contrast, every m-
sized block can be immediately replicated and ack-ed [9, 10].
On the other hand, reducing the block size m reduces the
sequentiality on disk for impending writes and future reads,
and generates more metadata. RAIDP has the sequentiality
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of a replicated system, but incurs a small latency penalty due
to the encoding process required to maintain local erasure
codes.

Reduced CPU Consumption. Erasure coding addition-
ally induces CPU overhead that is absent from replicating
systems, because write operations consume cycles when
encoding the parities associated with the stripe.

The CPU is further consumed when decoding missing
data upon reconstruction via erasure codes, which may or
may not occur when fulfilling a (degraded) read request [55].
Hence, systems reserve erasure coding for cold data and
relegate the encoding to the background, whereby the afore-
mentioned disadvantages are less of a concern [11, 23, 55, 70].

RAIDP requires CPU processing to update its dual local
erasure codes with every write, incurring the same CPU
overhead as fully-erasure coded systems with two parity
blocks per stripe. However, parity updates are offloaded to
dedicated hardware logic on the Lstor, and there is no ad-
ditional CPU overhead for reconstruction when only one
superchunk copy is unavailable.

Reduced Repair Traffic. The final—and arguably most
important—advantage of replication over erasure coding con-
cerns “repair traffic” — the disk and network I/O used to
overcome disk failures. Consider the case of a single miss-
ing block, which according to Rashmi, et al., accounts for
98% of the observed failure scenarios in distributed stor-
age systems [64]. Upon such a failure in a replicating sys-
tem, the amount of data that needs to be read from the
disks across the system, as well as transmitted over the
network, is equivalent to the amount of data that was lost.
In contrast, the repair traffic induced by an n + k erasure
coding system is n times greater [37, 70]. The importance
of this drawback was highlighted by a significant body of
recent research directed towards reducing the repair traf-
fic [20, 37, 41, 53, 64, 70, 77, 78, 84].

Even in the event of a double failure, RAIDP improves over
erasure coding for subsequent failures since only a fraction
of the data on the failed drive - the shared superchunk - is
recovered in an erasure coded fashion, as described in §3.

Writing. For brevity, we focus on large writes, which is
one of only two problematic areas for RAIDP. As noted above,
RAIDP uses local erasure codes to increase its failure toler-
ance. These erasure codes must remain in sync with the data
for every incoming write. For deleted data parity calcula-
tions may be deferred to idle times (see §5). However, for
update-intensive workloads the system must immediately
update the erasure code for old data before it is overwritten,
resulting in a read-modify-write sequence on each replicat-
ing node. In such cases, if a client wishes to write n blocks
of data, then on each node n blocks of data are read and
subsequently written to disk, for a total of 4n blocks of disk
traffic in RAIDP.
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When writing a full stripe, erasure coded systems can
calculate the parity solely based upon the newly written
data; with two parity blocks, this entails a total of n + 2
blocks of disk and network traffic. Triplication requires n
blocks for every replica, resulting in 3n.

Failure Domains. The other problematic area for RAIDP
is failure domains. As discussed below in §3.2, RAIDP uses
the erasure codes stored locally alongside disks in order
to achieve a higher failure tolerance. Disk failures are the
most probable cause of failures in modern datacenter servers
(e.g., [76]). We assume that disks fail separately from the
devices storing the erasure codes. However, in practice this
assumption may not always hold. For example, a failure of
an entire rack would render both a disk and its local erasure
codes inaccessible. Thus, RAIDP is inferior to triplication
and erasure coding systems in terms of availability because
those systems can spread different parts of a (replicated or
erasure coded) stripe over more than just two failure domains
(e.g., multiple racks). However, RAIDP is on par with other
systems in terms of durability since data and local erasure
codes remain intact in RAIDP even when an entire rack fails.
We discuss ways to increase RAIDP availability in §8.

3 Design

We contend that distributed storage systems can benefit from
a redundancy scheme that (1) remains applicable to warm
data, (2) largely retains the advantages and failure tolerance
of triplication, and (3) carries less of a storage footprint. We
further contend that RAIDP meets these criteria. Next we
describe the layout of RAIDP (§3.1) and its disk “add-ons”
(83.2), which, when combined, allow the system to recover
from simultaneous failures. We then explain how RAIDP
recovers after such failures (§3.3), and how it maintains crash
consistency (§3.4).

3.1 Layout

RAIDP enforces a distributed data layout, such that when
two disks fail simultaneously, the shared lost content is con-
tiguous on disk. This layout is realized by first partitioning
the disk into “superchunks”, which are uniformly-sized data
regions, on the order of several GBs. Each superchunk is
bitwise mirrored on a different disk so that when the system
writes into one superchunk, it also writes to the other in iden-
tical offsets in both disks. We call this property “1-mirroring”.
RAIDP also ensures that no two disks share more than one
superchunk, so at most one superchunk is lost in the event
of a dual failure. This latter property is called “1-sharing”.

Construction. An illustration of one possible RAIDP data
layout in a seven-disk system is depicted in Fig. 3. Observe
for example how the superchunks on disk D; are replicated
on the rest of the disks (highlighted by a shaded background).
D; adheres to 1-mirroring and 1-sharing, as no two copies



RAIDP

L1011 12,013 | 14

superchunks
el

s, 13 1478 "9 ["10 71 12
Ss |15 16 17, 18 | 19 | 20 | 21

S | 19120 | 21 [15 ["16 |17 |18

Figure 3. Example for a superchunk layout that satisfies 1-sharing
and 1-mirroring. Columns are disks. Rows are superchunks within
disks. Numbers are IDs of superchunks. IDs in bold correspond to
superchunks that mirror disk D1.

of its superchunks exist on the same disk and all are repli-
cated twice. In our example, a failure of any two disks would
result in one lost superchunk. In general, a failure of two
disks in RAIDP results in at most one lost superchunk, be-
cause the layout may include pairs of disks that do not share.
Also, disks do not have to be identical as long as the layout
maintains 1-sharing and 1-mirroring.

Arranging data across the system in a manner that pre-
serves 1-sharing and 1-mirroring is easy and could be done
in many ways. Fig. 3 illustrates one example. The dotted lines
identify pairs of superchunk replicas. To preserve 1-mirroring
every i-th row’s superchunks are replicated in the i + 1 row
for every odd i. To preserve 1-mirroring the replication shift
between rows gradually increases: the replica shift between
the first and second rows is one column, the shift between the
third and fourth row is two columns, and, generally, the shift
between the pair of rows 2i — 1 and 2i is always i columns.

As in other distributed storage systems [10, 11, 14, 28, 56]
replicas should be placed not just on different devices but
also in different failure domains (e.g., servers, racks or rows).
Location metadata for each relevant superchunk may be kept
in dedicated master nodes (similarly to HDFS’s NameNode).

Implications. In the seven-disk example in Fig. 3, no disk
has more than six superchunks. This limit is due to 1-sharing,
which dictates that two disks share at most one superchunk.
Thus, with N disks, each disk will be comprised of at most
N — 1 superchunks, limiting the number of superchunks in
the system to at most N - (N — 1).

This limit also dictates the minimal size for a superchunk
— for a disk of size S in a system with N disks the minimal

s

size for a superchunk will be 5>5. In a system with 1000

4TB disks this translates to ~ 4GB per superchunk !. This

I The actual size of a superchunk will also be influenced by the need to place
the replicas in different failure domains
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limit also dictates that Lstors are a better fit in large systems,
where they can be reasonably-sized (and economical).

Recovery following a disk failure involves replicating
non-redundant superchunks to different disks in the sys-
tem. Therefore, keeping the number of superchunks per disk
less than the maximum is critical to recovery in RAIDP. Gen-
erally speaking, superchunks can be arranged to maintain
1-sharing and 1-mirroring after f failures, so long as there
are at most (N — f) - (N — f — 1) superchunks to arrange. In
large systems with thousands of disks finding enough disks
that do not violate these constraints to allow recovery should
not be difficult. The superchunks layout should leave enough
free space in every node to allow the recovery process to
take load balancing into consideration when re-arranging
superchunks. Additional movement of superchunks may also
be required during a recovery process, to construct a layout
that enables recovery from future failures. We discuss one
possible way to improve recovery time in §3.3.

More shared superchunks are lost as clusters inevitably
experience multiple failures. To increase the likelihood of
tolerating these failures, it is important that disks be repli-
cated across racks so that if a single rack goes down, the
availability of the other replica is preserved. Keeping the
number of superchunks per disk less than the maximum is
also beneficial for failure tolerance. If fewer superchunks
reside on each disk, then fewer shared superchunks are lost
during failures.

3.2 Disk Add-Ons (Lstors)

To be able to recover a superchunk following a dual disk
failure, RAIDP associates each disk with a small disk “add-on”,
which stores parity information that is exclusively dependent
on the local disk’s content. We call these add-ons “local
storage devices”, or Lstors for short. The storage capacity
of an Lstor is similar to that of one superchunk, with the
addition of a small journal (see below). An Lstor stores an
erasure code computed over all local superchunks in the
associated disk. When necessary, this parity information is
used to recover the lost data with the help of the mirroring
nodes. We defer specifying the actual recovery procedure
to §3.3. Here, we discuss the properties that Lstors should
possess.

Lstor Properties. An Lstor is a small, simple device that
has just enough computational power to process the I/O
traffic that flows to/from the disk with which it is associated,
and just enough memory to allow it to store one superchunk
and a small journal to buffer data when processing incoming
writes (discussed further in §3.4). Lstors interpose the I/O
between their disk and its controller, as illustrated in Fig. 4
(though we acknowledge that it may be better situated in
other locations in the storage architecture). Interposition
can be logical or physical. We also assume the following
properties:
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1. Disk failures that lead to loss of data occur separately
from Lstor failures.

2. Parity information can be stored on the Lstor at least
as quickly as data can be stored on the associated disk.

3. The Lstor parity and journal content are persistent.

Building Lstors. For Lstors to be practical, they need to
be cheap. Their storage capacity (that is tightly correlated
to their cost) can be reduced by making the superchunks
smaller as explained above.

The Lstor’s journal must be fast enough to incur negligi-
ble overhead on the corresponding disk I/O. An immediate
solution would be to implement Lstors using battery-backed
DRAM. The realistic example mentioned earlier requires
4GB of disk space per superchunk. Therefore, implementing
the matching 4GB Lstor requires 4GB of flash, 4GB of DRAM,
and a battery. Using an independent power source, such as a
battery, may also assist in recovery following a power failure.
Using this setup we can store updates in DRAM and persist
the DRAM contents on the flash storage either periodically
or following a power failure, effectively making the DRAM
non-volatile. Another possible alternative is to employ some
form of low-latency non-volatile memory [4]. However, such
memories are typically slower than DRAM and are either
not commercially available or only sold as part of a large
device (e.g., 3D Xpoint). In this study we assume that it is
possible to build Lstors (see §4), and we simulate them in
DRAM as discussed in §5

Overhead of Using Lstors. The Lstors on each machine
store parity data for the local disk’s superchunks. For every
incoming write to a superchunk, the parity must be updated.
This update requires RAIDP to read the old data from the disk,
compute the delta between the old and the new, and update
the existing parity information accordingly, as dictated by the
erasure code being used. This may result in a read-modify-
write sequence which hurts performance in RAIDP due to
the extra disk read. Lstor accesses, however, do not affect
performance because (1) parity I/O is done in parallel with
the disk accesses, and because (2) writes to the journal are
performed at a high bandwidth relative to the disk.

Let us compare the total disk I/O operations conducted by
RAIDP and a triplicating system, as both tolerate dual disk
failures. Where triplication performs three writes, RAIDP
performs two reads and two writes for a total of four I/Os.
RAIDP could equalize the overhead by reading the old data
once, and transmitting it to the mirroring node (thereby
doubling network traffic). We decided, however, not to utilize
this optimization so as to keep all parity calculations local
and thus avoid synchronizing between replicas on the critical
path, as well as to avoid doubling the network requirements
when writing.

A write to a RAIDP superchunk may result in two slow
seek operations on disk, making RAIDP prohibitively slow
for latency-sensitive workloads. However, this predicament
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Figure 4. Lstor interposes between a drive and its controller. The
interposition can be physical (as shown in the figure) or logical, as
long as the Lstor and disk fail separately.

is relaxed if the disk write I/O is scheduled by the host im-
mediately after its related read, so it only incurs reduced
rotational delays. For throughput-sensitive workloads RAIDP
results in 2 seeks and 4 I/Os, versus 3 seeks and 3 I/Os in
a triplicating system. However, RAIDP must perform parity
modifications for every read-modify-write sequence. Conse-
quently, intervening I/O scheduling during lengthy parity
modifications can introduce increased latency overheads.
To mitigate, RAIDP can streamline parity calculations for
already-read data to minimize the time period spent in the
modify phase so that the following write can be more quickly
served. Notably, during an update in RAIDP every replica disk
performs two I/Os consecutively. In a triplicating system ev-
ery replica disk performs only a single I/O. However, since
seeks incur significantly higher delays than I/Os, overall
RAIDP might actually improve performance in some cases
versus triplication.

3.3 Recovery

To provide a recovery solution that withstands simultaneous
disk failures, the Lstors local to a disk continuously maintain
the up-to-date superchunk erasure codes of that disk. To
explain how a RAIDP system survives double disk failures
we now return to the illustrative example in Fig. 2. In this
example, a single-Lstor layout is shown, where the erasure
code on the Lstor is a simple XOR. Let us now assume that
a double disk failure has occurred. Seemingly, such a fail-
ure means that we have lost the shared content of the two
failing disks, as there is no other replica in the system. But
1-sharing ensures that this shared content is comprised of
only one superchunk. In addition, 1-mirroring ensures that
all the other superchunks of the failing disks are still avail-
able elsewhere. Lastly, the Lstors of the two failing disks are
still accessible to us because Lstors and disks fail separately,
so we also have the superchunk parity of the failing disks
at our disposal. Consequently, we can reconstruct the lost
superchunk and recover.

For example, suppose D; and Ds in Fig. 2 fail, then block
e is lost because both of its replicas are gone. But e can be
recovered in two ways, either using Lstor Ly: Ly @ by, or
using Lstor Ls: L3 @ dy. This flexibility allows RAIDP to use a
different Lstor if one is unavailable or if there are hotspots
that are ideally avoided for the reconstruction. Or, the two
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Lstors and sets of mirroring superchunks can be used to
rebuild the “lost” superchunk in parallel, with each set used
to rebuild half.

As mentioned in Section §3.1, in a RAIDP-based system
each disk can be mirrored on a smaller subset of the to-
tal available disks. As a more concrete example, consider a
RAIDP-based system with 10K 1TB disks, 12 disks per server
and a superchunk size of 4GB. Each disk is split into 256
superchunks, and each superchunk is mirrored on another
disk. Following a disk failure, this still leaves over 9K disks
as potential candidates for the 256 non-redundant super-
chunks previously stored on the failed disk. Even if an entire
server fails (meaning that access to all 12 of its disks is perma-
nently lost) RAIDP needs to re-replicate only 3K superchunks
to recover. Again, this leaves us with enough empty slots
in disks that do no violate any of RAIDP’s constraints. We
note that with enough disks RAIDP can even preserve node-
independence up to a degree. To wit, with 30K disks (and
2.5K servers) in the above example RAIDP can lay out recov-
ered superchunks so that after recovery most servers will
store only one superchunk from the failed server.

Improving recovery time. In most replication schemes
blocks are allocated randomly or pseudo randomly [27, 56].
When blocks are small, random allocation does not severely
impact the failure tolerance of a system, as disks still only
share a small portion of their data with other disks and data is
typically triplicated. In RAIDP, superchunks are much bigger
and the system must maintain 1-sharing, severely restricting
how data is organized. A naive allocation of superchunks
and unwise assignment of superchunk mirrors after a failure
can both burden the system and potentially prolong failure
recovery. Additional failures during recovery will further
exacerbate reconstruction overheads and may even cause
data loss.

One of the challenges of RAIDP is how to optimize the
recovery process after a failure. The system would strive
to accomplish two goals when duplicating superchunks in
a recovery: maintain 1-sharing and minimize load imbal-
ance between disks. 1-sharing would have to be maintained
throughout recovery because it ensures that any lost data
in a double disk failure is recoverable using Lstor. Keeping
disks load balanced would prevent a situation where some
disks become hotspots after being on the receiving end of
many superchunk transfers. Load balancing goes hand in
hand with ensuring that all transfers happen in parallel in or-
der to quicken the recovery process. Thus, no disk should be
on the receiving end of more than one superchunk transfer
per failure recovery.

For the simple case of a single disk failure, disks stor-
ing non-redundant data after the failure would be tasked
with transferring risky superchunks. We refer to these disks
as senders. Optimally, a recovery would match each sender
with a receiving disk according to the above criteria, namely
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Figure 5. Disk D; fails in a 5 disk array. To recover, disks Dy, Da,
and D4 must duplicate the now risky superchunks that they shared
with D1.

Figure 6. Senders (left) have edges to the disks that do not share a
block with the receiver (right). Each receiving disk on the right side
may only receive one risky superchunk per recovery. Edges quantify

the load on disks.

where 1-sharing is maintained and no disk receives two su-
perchunks, the latter criterion ensuring parallelism. We could
frame the recovery process as a maximum matching prob-
lem between sender disks and receiver disks, for which all
senders must be matched with a receiver disk. There are read-
ily available algorithms that efficiently provide a solution
for maximum matchings [26, 36].

Fig. 5 depicts the failure of disk D; in the RAIDP setup
from Fig. 2. We provide an initial formulation for recovery
as a matching problem under this setup in Fig. 6. Each sender
disk (left) has an edge to each receiving disk that it can be
matched with (right), for now disregarding the numerical
value on each edge.

Finding a matching solution based on this formulation
further requires that all senders could be matched, and no
receiver will be matched with more than one sender. A naive
matching algorithm might provide a matching such that Dy
sends a chunk to D,, and D, sends a chunk to Dy. Such a
matching is unacceptable because Dy and D, would violate
1-sharing. This example is intended to illustrate that the
assignment is a nontrivial task due to 1-sharing. Another
shortcoming of the current formulation is that it does not
take the load on a disk into account, which means lightly
loaded disks may be neglected in favor of heavily loaded
ones in a matching. Such a recovery is sub-optimal.

We could amend the formulation by assigning costs to
edges according to the amount of load on disk, and apply a
“minimum-cost” matching algorithm that finds the smallest
total cost for the assignment [44]. We could use a dynamic
algorithm that allows us to remove edges and update costs
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after each assignment. Edge removal could be used to pre-
vent a situation like the previous example where one sharing
is violated, and cost updates could be used to weigh the as-
signments in favor of disks that contain fewer superchunks.
Mills-Tettey et al. provide a dynamic version of the Hungar-
ian Algorithm that could be used for such a formulation [52].
We plan to explore and compare optimal recovery-friendly
allocation schemes in future versions of RAIDP.

Stacking Lstors. RAIDP can straightforwardly survive ad-
ditional failures by stacking multiple Lstors per disk, such
that every disk is associated with k > 1 Lstors, rather than
just one (each with its own, separate, power source). Addi-
tional Lstors on each disk enable the storage of more local
parities, which can be used to recover from more simultane-
ous failures. The required capacity per Lstor remains as that
of a single superchunk, regardless of the number of Lstors
per disk. Alternatively, by using ideas or constructions simi-
lar to Reed-Solomon codes [49, 61] RAIDP can recover from
k + 2 simultaneous failures using only k Lstors on each disk
(e.g. use a single Lstor on each disk and recover from three
simultaneous failures). We leave the implementation of a
RAIDP recovery scheme using these codes as future work.

3.4 Crash Consistency

Lstors provide us with the ability to recover a lost super-
chunk after a simultaneous failure. Consequently, the parity
data on a node with a failed disk is largely only called upon
during a superchunk reconstruction. The challenge that we
need to address is that the Lstor parity reflects the erasure
code of its own local superchunks, whereas it is used for re-
covery in conjunction with corresponding surviving remote
superchunks that may have been updated prior to detecting
the disks’ failures.

Therefore, from the instance a simultaneous disk failure
is detected until the recovery process completes, we divert
writes away from the superchunks on the failed disks. Read-
ing is handled similar to erasure coded systems, but the
scope of impact is substantially smaller due to the fact we
only reconstruct a single superchunk rather than an entire
disk.

Next, the Lstor used for recovery must be synchronized
with its remote superchunks. These can fall out of sync in the
event of transient failures, power outages, and disk failures.
To synchronize the Lstor and superchunks, RAIDP utilizes a
simple, append-only journal, which resides on the Lstor and
is used to roll the Lstor forward. The roll-forward procedure
is inspired by the canonical crash consistency protocols [54,
59, 62], where the journal re-establishes consistency between
parities and remote supechunks.

The journal is stored in high-bandwidth memory on the
Lstor. Local journal entries, created on each node performing
the replicated write, mainly contain the new disk data, the old
disk data, and newly computed parity. To ensure consistency,
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RAIDP writes a journal record to the Lstor for every incoming
write. Once the journal record is synced, RAIDP can commit
the incoming write to disk. After the journal record and write
are synced, an acknowledgment is sent to the corresponding
remote Lstor. Upon receipt of acknowledgment from the
remote Lstor, the entire write is deemed successful and the
local journal record is cleared.

If journal records are not cleared, then a component is fail-
ing on either the local node or the remote node. In such cases,
to re-establish cluster wide consistency between remotely
located superchunks and/or parities, the system transfers
unresolved journal records and replays the write requests
that they represent. For a double disk failure as soon as the
failure is detected, the system stops sending new writes to
the superchunks in the recovery series. In our experiments
(see §6) we observed that journal acknowledgments arrive
very quickly with at most one or two outstanding journal
records residing in the journal at a time. This behavior al-
lows us to keep the journal small (e.g., 128MB) under normal
operating conditions. We describe our full solution in [68].

4 Feasibility and Cost

RAIDP’s fundamental trade-off is the ability to trade a third
replica, typically stored on disk, for two small disk add-ons
on the remaining two replicas. In this section we explain
why this trade-off is feasible and economical, especially for
a large datacenter setup.

An Lstor is based on flash and enough RAM to maintain
parity and a journal of writes to the device. The combined
cost of 4GB of flash and 4GB of DRAM is $9 [1] (all costs
as of December 2019). Lstors also require a micro-controller
to maintain independence from the local machine and disk.
Several relatively powerful micro-controllers are currently
available for as little as $5 (e.g., [2]). During a disk failure
we also require several hundred amperes for 2-3 minutes,
to read data from the Lstor, easily obtainable from a small
supercapacitor. Physically, Lstor components should fit into
a small SATA-to-USB converter [7]. In comparison even a
modestly-priced commodity 2.5” 4TB disk for storing an ad-
ditional replica costs $100 [8], 66% more than a conservative
estimate of the cost of two Lstors.

However, the total cost of ownership (TCO) is much more
than the direct purchase costs of the disks. We envision
RAIDP as a solution for storing warm data in a datacenter en-
vironment, comprised of thousands of servers that manage
dozens of disks each. Therefore, the associated costs of data-
center storage capacity needs to include the costs of servers
as well as their operational costs. These costs scale more or
less linearly with the number of disks, meaning that up to a
1/3 of the TCO may be saved by decreasing the replication
factor from three to two.

To exemplify the server costs attached to disks using real
world examples, we use two possible server configurations.
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Figure 7. An example datacenter cost analysis by Ama-
zon [33]. Additional costs, other than the acquisition of
servers, comprise almost half of overall costs over time.

The first is a high-end Hyper Converged storage server re-
cently purchased by a large academic institution (details
omitted for commercial reasons). The total cost of the server
is 20K$ and its primary storage devices are six 2TB hard
drives. To estimate the hard drives net contribution to the
overall cost we use the Dell website [79] as a publicly avail-
able source for server component pricing, and chose a repre-
sentative 2TB 7.2K RPM SATA 3.5” hard drive (priced at $302).
Following talks with purchasing administrators, we also as-
sume that large-scale clients receive a significant discount
over list prices, e.g. 50%, setting the effective disk price at
~150$. We conclude that attached server costs can increase a
drive’s derived costs to 2K8=01505 + 3K¢ significantly more
than the drive’s net cost. The second use case is a simpler Su-
perMicro 6048R-E1CR72L storage server configuration [74],
with 72 7.2K RPM 2TB disks, and 500GB of RAM, priced at
23K$ out of which 9K$ are attributed to disks. Therefore,
even in this relatively low-end setup the derived disk cost
almost triples the disk’s direct cost.

Other significant indirect costs, beyond the acquisition
of servers to house the disks, include power consumption,
labour, physical space, and networking. Fig. 7 shows one
typical estimate from Amazon [33], which illustrates that
over time (e.g., three years) these expenses constitute 43% of
the datacenter TCO, a number repeated in other estimates
(e.g., [13]). More servers take up more physical space, con-
sume more power, need more manual labor for maintenance,
etc. Therefore, it is likely that these costs also scale propor-
tionally with the number of disks in the datacenter, nearly
doubling the derived costs of using more disks.

In this work we simulate Lstors in RAM. However, as previ-
ously explained, a real Lstor would occupy significantly less
physical space than a typical drive. Therefore, maintaining an
Lstor in addition to every drive in a server would not change
the physical space requirements dramatically. An Lstor also
performs its parity calculations independently, and does not
consume additional computational resources from the host.
Finally, an Lstor contains several GBs of DRAM. Therefore,
attaching an Lstor to every disk significantly increases the
amount of DRAM in the system. However, the added power
consumption is minor since most of the power is utilized by
other server components and datacenter systems [39, 85].

EuroSys ’20, April 27-30, 2020, Heraklion, Greece

In conclusion, trading Lstors for a drive is a significant
improvement both in terms of direct purchase costs, as well
as derived costs. As a result, replacing a third replica for two
Lstors brings us close to the upper limit of 33% savings in
datacenter TCO.

5 Implementation

We implement RAIDP within HDFS with two replicas. We
selected HDFS because it is open source, packaged with
standard benchmarks, and well-documented in past systems
research.

The RAIDP implementation uses a single Lstor per disk
simulated in DRAM. We extended HDFS version 1.0.4 with
~ 3K lines of code for our RAIDP patch. Our simulated Lstor
interposes HDFS accesses to disk, similarly to how a real
Lstor employs DRAM and interposes the disk controller.

Superimposing Superchunks on HDFS . Like other dis-
tributed storage systems, HDFS stores data in “blocks” whose
size typically ranges between single to hundreds of megabytes
[9, 11, 56, 70]. In HDFS, the default block size is 64MB, and
every block is stored as an ordinary data file (plus an associ-
ated checksum file). The “ID” of the block is the name of the
file. RAIDP supports only 64MB blocks for simplicity.

HDFS is a virtual file system that maps files to blocks. This
mapping is maintained in a central “Namenode”, whose role,
among other things, is to assign names to blocks and decide
which set of “Datanodes” mirror each newly allocated block.
To create a block, the local client HDFS library connects to
the Namenode and receives a pair of Datanodes that will mir-
ror the new block. RAIDP limits this assignment only to pairs
of Datanodes that have a common superchunk. Once such a
pair is allocated for a block, the identity of the two mirroring
nodes is readily available for both the client and RAIDP, and
is used by RAIDP to identify the destination superchunk.

In HDFS, blocks are stored in each Datanode’s local file
system as files. To straightforwardly and easily add support
for RAIDP superchunks we introduce another layer of indi-
rection between the stock HDFS Datanode code and the local
file system. This layer pre-allocates a dedicated directory for
every superchunk stored in the Datanode. HDFS blocks are
then sequentially assigned to matching files in the relevant
pre-allocated superchunk directory. The mapping between
an HDFS block and its matching superchunk directory/file
pair need only be maintained locally on each Datanode.

Notably, HDFS only appends data to existing files and does
not support rewrites of data in place. Instead, old data must
first be deleted before writing newly updated data. HDFS is
not designed for such update-intensive workloads, and as-
sumes that deleted data is generally not immediately purged.
This setup is favorable to RAIDP, since parity updates of
deleted data can be done in idle times, leaving the remaining
block null. This removes much of the overhead of expensive
read-modify-write operations once the block is reallocated.
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To demonstrate the full functionality of RAIDP under non-
favorable terms, we implemented two versions of RAIDP. The
base version assumes parity calculations of deleted blocks are
done in idle times. An additional update-oriented version as-
sumes that data rewrites, and the resulting read-before-write
and parity updates, occur online.

To evaluate the update-oriented version of RAIDP, we pre-
allocate every superchunk’s files to induce the overhead
of read-modify-writes. Preallocation ensures that reading
causes disk accesses instead of returning logical zeros. The
implications of this option are evaluated in §6.

Maintaining Local Parity. RAIDP stores parity and jour-
naling information in an Lstor, which is simulated in DRAM.
The available DRAM in each machine in our cluster is 16GB,
half of which is used to store the parity and journal informa-
tion.

We modified the HDFS Datanode to interface with the
local superchunks layout and Lstor. All HDFS data accesses
are conducted via a unified file system interface (called FS-
DatasetInterface), whose implementation is transparent to
the rest of HDFS. The central method of the interface (with
respect to updating superchunks) is “writeToBlock”. This
method returns a pair of FileOutputStreams for writing a
block and its associated checksum data. Our implementa-
tion returns two instances of a FileOutputStream subclass
that write the same block and checksum data along with the
added functionality required for RAIDP (we also maintain a
parity for the checksum data across the superchunks). When
writing a block to a superchunk at a given offset, RAIDP also
updates the parity at this same offset.

Optimizations. HDFS transmits data packets over the
network at a resolution of 64KB packets. A single 64MB
block is thus comprised of 1024 such packets. When all the
packets comprising a block arrive, HDFS synchronizes? the
data to the disk. However, as explained in §3.4 RAIDP also
employs a journal, which accumulates records for all writes.
Acknowledging a write to a remote node in RAIDP requires
that every journal update is followed by a synced write to
disk. Therefore, every 64KB write is synced to disk, which
cripples performance.

Our solution to this problem was to couple the syncing
protocol with a mechanism for accumulating the write oper-
ations for a full HDFS block in memory before propagating
it to the disk and its Lstor. Thus, instead of journaling (and
syncing) after each packet, RAIDP syncs at the granularity
of entire blocks.

2We note that in our baseline version of HDFS, there is no sync performed
when concluding the write of a block. We unsurprisingly observe that
the disk may perform I/O up to 30 seconds after the application reports
completion—leaving the system vulnerable to data loss. To remedy this, we
add a sync statement to both RAIDP and the baseline version of HDFS for
our evaluation. In more recent versions of HDFS, a sync statement has been

added [43].
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By itself, however, accumulating is not enough. A Datan-
ode may write multiple blocks (64MB files) concurrently.
When an empty ext4 filesystem is instructed by HDFS to
write several 64MB block files in parallel, the local file sys-
tem interleaves the blocks of the different files on the disk,
writing sequentially and avoiding seeks. Later, when block
files are deleted from HDFS, the sectors they occupy in the
local file system will be deallocated, and can be used anew
upon subsequent reallocations but will incur seeks to use. In
RAIDP blocks always retain their offset within their associ-
ated superchunk (for consistency with the parity in Lstor).
Since in our evaluation we preallocate each superchunk’s
files, HDFS block files that were created at the same time
in RAIDP will not be interleaved on the disk but will each
be physically contiguous on the disk. As a result, a series of
concurrent writes to two HDFS block files creates a “ping
pong” effect, whereby the read/write head of the drive moves
back and forth between the locations assigned to these files
on disk.

To remedy such useless seeking and enforce sequential I/O,
we extend the aforementioned accumulation optimization
with a locking mechanism: When a block file has fully accu-
mulated, the HDFS thread designated for writing the block to
disk acquires a lock, thereby preventing other threads from
writing to disk concurrently. These optimizations largely
eliminate the performance degradation due to syncing and
seeking, as shown in §6.1.

6 Evaluation

Hardware setup. We evaluated RAIDP on a 16-node clus-
ter. Each node is a Dell PowerEdge R210 II and is equipped
with a 3.10GHz Intel Xeon CPU E3-1220 V2, 16GB of mem-
ory, and a 7200 RPM 2TB disk. Each node has two ethernet
NICs: a 10Gbps Broadcom NetXtreme II BCM57810 and a
1Gbps Broadcom NetXtreme II BCM5716. All of the nodes
connect to a switch in a star topology via both NICs. Nodes
run Ubuntu 14.04 with the 3.13.0 kernel and use the ext4
filesystem.

Methodology. We focus our evaluation exclusively on
warm data, so that the valid comparison is to replicating sys-
tems. Erasure coding variants focus on colder data and are
therefore irrelevant in this context (see §2). We implemented
RAIDP in Hadoop 1.0.4 using a 6GB superchunk size so that
all nodes replicate each other (i.e., 768GB effective RAIDP
capacity). We compare our baseline RAIDP implementation
with two-way replicating and triplicating HDFS, referred to
as HDFS-2 and HDFS-3 respectively. In experiments involv-
ing the update-oriented version of RAIDP it is referred to as
“raidp (re-write)”. We perform the evaluation with Hadoop’s
default configuration. Most notably, this includes the HDFS
block size of 64MB.
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Figure 8. RAIDP write performance as compared to HDFS-2 and
HDFS-3. The basic configuration tested the performance without par-
ity updates and journaling enabled (only superchunks). We then en-
able parity updates in Lstors, and the journal. Finally, we measure
performance in all configurations with and without our suggested
optimizations, and repeat the optimized setup with read-before-write.
The numbers on top of the bars show the relative performance.

We use standard benchmarks provided with Hadoop. We
measure each result five times and present the average (un-
less stated otherwise all standard deviations measured were
up to 8%). We run TeraSort and Wordcount benchmarks via
Intel’s HiBench suite [40]. Before running workloads, caches
are cleared so that reads reach the disk.

6.1 Writing

Nodes in HDFS process two types of writes: “original” data,
and replicated data that originates from other nodes. Be-
cause such writes may occur concurrently, data from mul-
tiple sources gets interleaved while the node writes to disk.
We explained earlier in §5 that in HDFS there is no perfor-
mance penalty for such interleaving, as the data is serialized
sequentially by the underlying local filesystem. But having
a superchunk structure means the local file sytem cannot
sequentially allocate space for a series of writes to different
HDEFS blocks. Since the superchunks are pre-existing, writes
originating from different nodes must be stored in different
superchunks, each of them associated with a different mirror-
ing node, by definition. Consequently, the disk’s read/write
head movement may span different superchunks between
consecutive writes and incur a random I/O performance
penalty.

RAIDP largely eliminates this penalty by employing the
optimizations outlined in §5. Namely, it buffers the entire
incoming block in memory and writes it to disk only after
it arrived in its entirety, and it employs a writer’s lock to
prevent concurrently writing HDFS threads from interfering
with each other.

Fig. 8 depicts the performance of both versions of RAIDP
compared to baseline HDFS, running the standard HDFS
TestDFSIO benchmark configured to write 100GB. A bench-
mark that only performs writes is the worst-case for RAIDP
in terms of performance.
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The two left most subfigures pertain to baseline RAIDP
that does not perform a read-before-write, employing the
superchunk layout with and without the aforementioned
optimizations. In the unoptimized setup, RAIDP works with
a write resolution size of 64KB (corresponding to HDFS’s
default “packet” size). In the optimized setup, RAIDP aggre-
gates these packets until the entire 64MB block arrives and
prevents concurrent writers to disk.

Each of the RAIDP subfigures shows three bars. The left-
most depicts a RAIDP configuration whereby only the super-
chunk layout takes effect without parity updates. The middle
bar in the leftmost subfigure adds the overhead of updating
the parity, though with no journaling.

The third bar adds journaling. To the unoptimized RAIDP
variant it demonstrates an off the chart result due to the small
default packet resolution. Recall that the journal dictates a
disk sync after each transaction.

The optimized results for RAIDP perform much better, with
the “only superchunks” setup achieving performance on par
with HDFS-2 (right of Fig. 8) and even slightly superior due
to a marginally imbalanced data distribution by HDFS. Parity
updates and journaling add some overhead, but performance
is still better than triplicating HDFS. We conclude that our
optimizations eliminate most of the overhead associated with
the superchunk layout.

Comparing the optimized update-oriented “re-write” vari-
ant (second subfigure from the right in Fig. 8) to triplicating
HDFS shows that the former is 21% slower, which is less than
the 33% upper-bound caused by having four I/Os rather than
three. The journal adds a small overhead.

6.2 Reading

To evaluate the read performance of RAIDP we run a 100GB
TestDFSIO benchmark that reads the data written previously
by TestDFSIO (in §6.1). Fig. 9 shows the results are similar
across the different configurations.

A more interesting result of the read benchmark does not
appear in Fig. 9. Rather, it arises from comparing it to Fig. 8,
which reveals that the runtime of reading 100GB (roughly 4
minutes) is on par with the runtime for writing 100GB in the
optimized superchunks-only and HDFS-2 configurations (left
and right of Fig. 8). This result stands out, because the amount
of I/0 produced by writing is twice that of reading, due to the
replication (200GB for writing vs. 100GB for reading). Note
that the optimized superchunks-only RAIDP is equivalent to
HDFS-2 in that both write two replicas and nothing else, so
their similar performance makes sense.

We find that this counterintuitive outcome is due to the
concurrency in HDFS. Writing is done across all 16 nodes
with the default setting of two tasks per node. Nodes send
and receive replicas while performing their tasks, which
further increases the interleaving and results in decreased
disk sequentiality. Reading is done similarly, however with a
50/50 chance of reading from either replica. Whereas writes
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Figure 9. RAIDP and HDFS read performance under different con-
figurations.

are serialized by the local filesystem as they arrive, reads
must adhere to the arbitrary layout that was generated pre-
viously when data was first written, inducing much more
disk seek activity.

6.3 Benchmark Performance

We summarize the results of the standard read (§6.2) and
write (§6.1) HDFS benchmarks, and contrast them with two
additional benchmarks. We now only use the optimized ver-
sion of baseline RAIDP and HDFS-3, as both tolerate two
simultaneous disk failures. (We use the unoptimized ver-
sions of RAIDP above to increase understanding).

The first additional benchmark is TeraSort, which sorts
100GB data. The sorted data is generated by TeraGen prior to
running TeraSort (generation is not included in the measured
runtime). TeraSort only outputs one replica of the sorted
data, so we modify it to replicate based on the configured
replication factor—three for HDFS-3 and two for RAIDP—to
expose the differences in performance and network usage.
The results are shown in Fig. 10 (top) positioned near the
results of the write benchmark to allow for easy comparison.
The results indicate that the performance of HDFS-3 and
RAIDP is similar. The reason is that TeraSort requires both
read and write I/O as well as processing for sorting. Hence,
most of the advantage of writing less replicas in RAIDP is
less significant. To verify this we also repeated this test with
HDFS-2, which performed only 15% better than HDFS-3 in
this benchmark (versus 32% improvement over HDFS-3 in
the write benchmark).

With the TeraSort and write benchmarks, data is gener-
ated locally and then replicated based on the configured
replication. In RAIDP, there is one additional replica and in
HDFS-3 there are two. The lower replication factor in RAIDP
produces half the network traffic relative to HDFS-3, shown
in the bottom left of Fig. 10. The TeraSort network results
on RAIDP and HDFS-3 are qualitatively similar to those of
writing,.
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Figure 10. RAIDP versus HDFS-3 performance

The second benchmark is Wordcount, which computes
string frequency over a 100GB input. Again, data genera-
tion is not part of the measured workload. Wordcount op-
erates on individual word instances to produce a histogram
of the counts of each word. While there are 100GB of word
instances to count, there are only 100 unique words to be out-
put along with their counts at the conclusion of the workload.
Thus, Wordcount is similar to the read benchmark in that its
I/0 is overwhelmingly comprised of reads. However, Word-
count also includes a significant CPU component, accounting
for the longer runtimes as compared to the read benchmark
(top right of Fig. 10). Reads in RAIDP and HDFS-3 are similar
in performance. Combined with the significant CPU pro-
cessing element of Wordcount, the runtimes of RAIDP and
HDFS-3 are nearly identical. The quantitative difference in
their network volume is negligible and can be attributed to
noise (bottom right of Fig. 10). Network traffic for RAIDP in
this experiment was the only one with a standard deviation
of 23%.

6.4 Superchunk Recovery

The procedure for recovering from a single disk failure in
our implementation is similar to the one used by HDFS, and
involves replicating non-redundant superchunks to different
disks in the system. Recovering from a much rarer double-
disk failure requires a similar process for most superchunks
in the failed disks that are temporarily non-redundant. How-
ever, it also requires reconstructing a single superchunk that
is no longer available in the system. During a superchunk
reconstruction, a recovery node starts threads that request
chunks of superchunk or parity data from the relevant nodes
in the cluster (see §3.4). Upon receiving each chunk of parity
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System type chunk size  10Gbps NIC  1Gbps NIC

RAIDP 4MB 125 sec 827 sec

byte range lock ~ 64MB 160 sec 848 sec

RAIDP 64MB 187 sec 850 sec

superchunk lock 4MB 211 sec 852 sec

RAID-6 4MB 1,823 sec 12,300 sec
64MB 2,227 13,146 sec

Table 2. 16 node cluster, 6GB superchunk recovery runtimes under
different configurations (lower is better).

or superchunk data, the client threads XOR the data in mem-
ory, moving each fully-assembled block file to disk until the
entire superchunk is recovered.

With 16 nodes available to participate in a 6GB super-
chunk reconstruction, the recovery node creates 15 different
threads: 14 threads to request and XOR superchunk data,
and one thread to request and XOR Lstor parity data (with a
simulated dead disk). To avoid overwriting of interim data by
several threads that are concurrently accessing and XORing
the yet-to-be reconstructed block data, each thread in turn
acquires a lock on the superchunk data that it is XORing.

Our evaluation of superchunk recovery after a double disk
failure spans several different configurations for the recovery
of the 6GB superchunk. We vary the amount of superchunk/-
parity data requested at a time (4MB versus 64MB), and the
network configuration (10Gbps versus 1Gbps interconnect
between the nodes). Next, we vary the resolution of the lock
over the data being XORed by the threads, and compare lock-
ing the entire superchunk versus locking only a portion of
it (i.e. byte range). We also simulated the recovery time of a
RAID-6 system following a dual disk failure under similar
conditions.

First, we refer to the RAIDP results in the column located
second-most to the right in Table 2 which use the 10Gbps
network. Intuitively, when locking on the entire superchunk,
working with larger (64MB) data chunks performs better
than working with smaller ones (4MB). With larger chunks,
a greater percentage of the recovered file is XORed while
other threads wait and we better amortize the overhead of
locking. This intuition is confirmed in the middle two rows
(10Gbps column) of Table 2.

In contrast, if each thread locks only on the byte range of
the recovered file being XORed, then requesting and XOR-
ing smaller data chunks allows more nodes to work on the
recovery in parallel. The recovery configuration using a byte
range lock with a 4MB chunk size performs better than the
configuration with the 64MB chunk, and the best overall.

We next changed the network being used to a 1Gbps con-
figuration, shown in the right column of Table 2. This config-
uration creates a network bottleneck. Changing the chunk
size and lock granularity has a minimal effect on runtime,
evident in the narrow range of 827 to 852 seconds shown in
the table.

Finally, a RAID-6 system (bottom two rows) requires read-
ing, transferring over the network, and performing parity
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calculations of all data in the remaining valid disks to recon-
struct two 96GB pieces of data. As expected, for both stripes
with 64MB and 4MB chunks, recovering data this way re-
sulted in significantly longer recovery times than RAIDP.

7 Related Work
Hybrids Combining Erasure Coding & Replication.

Google File System (GFS)[28], Windows Azure Storage (WAS) [11],

Flat Datacenter Storage (FDS) [56], Haystack [12, 55] and
HDFS [14] all triplicate warm data. The storage overheads
associated with replication are costly. Each replica needs
to be accommodated by not just more storage capacity, but
also additional servers, power, and facility space. These costs
can be decreased by utilizing only two replicas, but corre-
lated failures [25, 71] and bad sectors on replicas used for
recovery [60] encourage a higher level of redundancy.

We refer to WAS [11, 37], Facebook’s storage [55, 64], HP
AutoRaid [82] (which is not distributed) and DiskReduce
[23] as hybrid storage systems because data is erasure coded
after first being replicated on the critical path. Ghemawat et
al. also discuss the potential for erasure codes for Google’s
read-only data [28]. Specifically for HDFS there have been
several efforts to extend it with erasure codes, including
HDFS-RAID [22], DiskReduce [23], HACFS [83], and Xor-
bas [70].

These hybrid systems exist primarily to minimize the stor-
age costs of replication [11, 55, 64]. RAIDP is unique in that
it combines replication with local erasure coding such that
it is suitable for warm data, reduces storage overhead, ap-
proaches the failure tolerance of triplication, and facilitates
an efficient distributed erasure coding recovery on the afore-
mentioned warm data.

Efficient Repair. In replicated systems, re-replication of
non-redundant data after a failure can be parallelized and
even sped up when more disks are added, as copies of a disk’s
data chunks can be distributed throughout a cluster. For
example, Microsoft’s FDS uses a heavily parallelized recovery
by utilizing a full bisection bandwidth network [56].

The same recovery using erasure codes, though paralleliz-
able, induces significantly more network traffic, having a
greater impact on the foreground jobs [64]. This traffic is
due to the amount of data that must be moved to reconstruct
a missing block [25, 67, 73], e.g. downloading n blocks on a
remote node with a Reed-Solomon n + k code.

Reducing erasure code recovery costs is an important
area of research. Proposed solutions include delaying re-
covery [25, 73], recovering blocks that contain only popu-
lar data [75], improved block layouts [35], using SSDs or
NVRAM devices to store parity [81], early failure identifi-
cation [24], pipelining [47], partial parallelization [53], or
applying erasure codes that minimize the number of blocks,
bandwidth and/or IOPs required to recover lost data [20, 37,
41, 57, 63-65, 70, 77, 78, 84].
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RAIDP’s Closest Ancestors. RAIDP is in fact a specific point
within design spaces described by others. RAIDP could be
viewed as a variant of the “two dimensional” erasure codes
[29, 32]. The n local superchunks and associated k Lstor (s)
comprise one n+k dimension, and the distributed replication
comprises a 1 + 1 erasure code dimension.

A more accurate representation of RAIDP than a two di-
mensional erasure code could be devised by using the Disas-
ter Recovery Codes (DRC) layout [30], which like RAIDP uses
persistent parity devices. DRC divides disks into 1GB “data
buckets” that are two-way mirrored. Each bucket contributes
to a parity value stored in a “parity group” with the parity
values stored on NVRAM. The data buckets contributing to a
parity group are stored on different disks. In RAIDP, given a
disk, its mirroring superchunks comprise such a parity group
with respect to the given disk’s Lstor parity. That is, RAIDP
adds the constraint that superchunks comprising a parity
group reside on one disk with no other superchunks on that
disk, and that no two disks share more than one superchunk.

Imposing the 1-sharing property on the above layouts and
augmenting the systems with Lstors is what makes RAIDP
suitable for warm data, because: (1) parity updates are local
to nodes and require distributed synchronization only upon
reconstructing a lost superchunk due to double disk failure;
and (2) the local journal updates are accelerated by Lstors. In
contrast, Multi-dimensional / DRC erasure codes that span
multiple nodes are, by definition, distributed erasure codes
and thus are unsuitable for warm data as explained in §2. The
theory behind Lstor’s design was also previously presented
in a non-archival workshop [69].

Other systems that bear resemblance to RAIDP’s approach
include WAS, which relies on an enhanced erasure coding
scheme that includes both locally and globally computed par-
ity fragments [37] in order to minimize repair costs. Tiered
Replication [18] uses triplication but assigns one replica as a
write-dominated backup that is only read during recovery
to reduce costs. RAIDP has elements of both replication and
erasure coded systems in terms of repair traffic. As described
in §1 and depicted in Fig. 1, RAIDP is on par with replication
for single failures. While RAIDP reconstructs block(s) after
experiencing additional failures, it only does so for a fraction
of the disk, resulting in substantially less traffic than erasure
coding.

8 Conclusion and Future Work

RAIDP has room for growth. Our implementation still has yet
to be extended for multiple Lstors per node. Additionally, the
RAIDP implementation should extend its parent distributed
filesystem to support in-place updates. Real-world traces
from databases could be used to showcase the I/O savings
that such updates provide.

Our Lstor is simulated. The main challenge associated
with making Lstors a reality is their cost efficiency. At the
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extreme, if Lstors turn out to be more costly or bigger than
their disks, then of course they will be impractical. Consider
for example the journal. The journal must be significantly
faster than its disk for the system to perform well. But a
large DRAM or an exceptionally powerful battery will make
it expensive. One important question is whether we can
utilize a small “enough” journal in a manner that does not
unacceptably degrade the performance in the face of failures.

We also hope to experiment with different storage media.
As the cost per GB of SSDs continues to drop SSDs may soon
replace hard drives in geo-distributed data storage systems.
For RAIDP the implications are multi-fold. First, upgrading
to SSDs will likely reduce the amount of performance im-
pact that random I/O currently has in our workloads. On
the other hand, SSD request latency is sensitive to internal
scheduling [42] which can make RAIDP Lstor update and re-
covery times less predictable. Second, SSDs are expected to
remain significantly more expensive than hard drives, which
increases the importance of reducing the TCO of systems
using solutions like RAIDP.

For Lstors, there are other forms of storage worthy of con-
sideration such as network-connected drives [50, 72], which
do not require a server to be accessed since they come em-
bedded with their own ethernet. With such an arrangement,
the parity data could be further separated relative to the
failure domain of the server because the disk is accessible in-
dependently. A natural extension to the idea of a networked
Lstor would be to equip each Lstor with cheap wireless com-
munication, for use in the event of a failure. Coupled with
independent power such as a battery, Lstors would then be
able to transmit parity and journal data with less dependence
on their surrounding failure domains.

RAIDP is a performant storage solution that offers fast
recovery, tolerates simultaneous failures, and provides cost
savings versus other systems. RAIDP retains most of the
benefits of replicated schemes while trading off some of the
storage savings of erasure coding to achieve better perfor-
mance, in particular for warm data and on the recovery path.
In update-intensive setups RAIDP has a 21% write overhead
as compared to triplication, but we believe that the potential
cost savings in both hardware, power and facility costs and
its suitability for warm data are a worthwhile tradeoff. We
hope our design can enrich the conversation on how failure
tolerance is built into data centers.
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