
Hash, Don’t Cache (the Page Table)

Idan Yaniv
Technion – Israel Institute of Technology

idanyani@cs.technion.ac.il

Dan Tsafrir
Technion – Israel Institute of Technology

dan@cs.technion.ac.il

ABSTRACT
Radix page tables as implemented in the x86-64 architecture
incur a penalty of four memory references for address trans-
lation upon each TLB miss. These 4 references become 24 in
virtualized setups, accounting for 5%–90% of the runtime and
thus motivating chip vendors to incorporate page walk caches
(PWCs). Counterintuitively, an ISCA 2010 paper found that
radix page tables with PWCs are superior to hashed page
tables, yielding up to 5x fewer DRAM accesses per page walk.
We challenge this finding and show that it is the result of com-
paring against a suboptimal hashed implementation—that
of the Itanium architecture. We show that, when carefully
optimized, hashed page tables in fact outperform existing
PWC-aided x86-64 hardware, shortening benchmark run-
times by 1%–27% and 6%–32% in bare-metal and virtualized
setups, without resorting to PWCs. We further show that
hashed page tables are inherently more scalable than radix
designs and are better suited to accommodate the ever in-
creasing memory size; their downside is that they make it
more challenging to support such features as superpages.

“In all affairs it’s a healthy thing now and then
to hang a question mark on the things you have
long taken for granted.” (B. Russell)

“The backbone of the scientific method involves
independent validation of existing work. Valida-
tion is not a sign of mistrust—it is simply how
science is done.” (D. Feitelson)

1. INTRODUCTION
Computer systems typically utilize translation lookaside

buffers (TLBs) to accelerate the conversion of virtual ad-
dresses to physical addresses. The TLB is consulted upon
each memory reference, and if it misses, the hardware re-
trieves the absent translation using the corresponding page
tables and places it in the TLB. In the x86-64 architecture,
the page tables are hierarchical, organizing the translations
in a 4-level radix tree. Finding a missing translation in this

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMETRICS ’16, June 14 - 18, 2016, Antibes Juan-Les-Pins, France
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4266-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2896377.2901456

hierarchy—a.k.a. “walking” the page tables—thus incurs an
overhead of four memory references. Although the TLB often
avoids this overhead (when it hits), TLB misses might still
degrade performance substantially and might account for up
to 50% of the application runtime [9, 10,14,34,38].

Attempting to mitigate the cost of TLB misses, hardware
vendors introduced special page walk caches (PWCs) to ac-
celerate the page table walks [5, 27]. PWCs store partial
translations—of prefixes of virtual addresses—thus allowing
the hardware to quickly skip over upper levels in the radix
tree hierarchy instead of traversing them. In the best-case
scenario, when the table walker always hits the PWC, a
walk requires only one memory access instead of four. SPEC
CPU2006 benchmarks, for example, require 1.13 memory
references per walk, on average [9].

Utilizing PWCs to shorten table walks is specifically tai-
lored for the radix tree structure of x86 page tables. Shorten-
ing table walks can, in principle, be achieved without resorting
to PWCs by replacing the radix page tables with hashed page
tables, which yield short page walks by design [22,29,39]. As-
suming no hash collisions, a hashed page table walk consists
of only one memory reference rather than four, similarly to
the best-case scenario of radix page tables with PWCs.

Arguably, as hashed page tables obviate the need for PWCs,
they may constitute an appealing alternative to the com-
monly used radix page tables design. Counterintuitively, how-
ever, an ISCA 2010 study by Barr et al. [9] proclaimed that
radix page tables are more efficient than hashed page tables:

“. . . this paper contributes to the age-old discourse
concerning the relative effectiveness of different
page table organizations. Generally speaking, ear-
lier studies concluded that organizations based
on hashing [...] outperformed organizations based
upon radix trees for supporting large virtual ad-
dress spaces [29, 39]. However, these studies did
not take into account the possibility of [PWCs]
caching page table entries from the higher levels of
the radix tree. This paper shows that [PWC-aided]
radix tables cause up to 20% fewer total mem-
ory accesses and up to 400% [=5x] fewer DRAM
accesses than hash-based tables”.

Barr et al. explained that this poor performance is the result
of: (1) hashed page tables being “unable to take advantage of
the great locality seen in virtual address space usage” since
hashing scatters the page table entries (PTEs) associated
with virtually-adjacent pages, as opposed to radix tables,
which tightly pack such PTEs within the same cache lines;
(2) radix page tables having “a smaller page table entry size,

337

http://dx.doi.org/10.1145/2896377.2901456

because [hashed page tables] must include a tag in the page
table entry”, making hashed PTEs consume significantly more
cache lines; and (3) the presence of hash collisions, inevitably
increasing the number of memory accesses required per walk
to “more than one reference to follow a collision chain.”

In this study, we find that, in fact, hashed page tables
can be more performant than radix page tables. We con-
tend that the above findings by Barr et al. do not apply
to hashed page tables in general; rather, they are specific
to the hashed page table implementation that the authors
used for their evaluation—the Itanium architecture [19,25].
We present three optimizations that correspondingly tackle
the aforementioned three flaws in this hashed page table
design: (1) utilizing a hashing scheme that maps groups of
PTEs of virtually-adjacent pages into the same cache line [39];
(2) leveraging properties of hashed paging (inapplicable to
radix page tables) that allow us to pack PTEs more densely
and thereby fit more of them per cache line; and, consequently,
(3) substantially reducing the load factor of the hash table,
thus decreasing the number of collisions and lowering the
page walk latency.

Our first contribution, therefore, is to show that the
ISCA 2010 findings are not applicable to hashed page tables
in general. We do so by experimentally demonstrating (1) why
the Itanium design is suboptimal and (2) how to optimize it
to be more performant than the radix design. Our proposed
hashed page table reduces benchmark runtimes by 1%–27%
compared to the 4-level radix page tables baseline with PWCs
as implemented in current x86-64 hardware.

The ISCA 2010 work pertains to bare-metal (non-virtual)
setups only. Here we also consider virtualized setups, because
they substantially increase the page walk length and am-
plify the overhead caused by TLB misses. Hardware-assisted
virtualization utilizes two layers of page tables, one for the
host system and one for the guest virtual machine. The trans-
lation process of simultaneously walking these page tables
is done in a “two-dimensional” (2D) manner, requiring 24
instead of 4 memory references [5,6,26]. Such 2D page walks
make up 5%–90% of the total runtime when TLB miss rates
are high, prompting hardware vendors to extend PWC sup-
port to virtualized setups [4, 28]. Previous work showed a
15%–38% improvement in guest performance by extending
the PWCs to store entries from both the guest and the host
page tables [11].

Our second contribution is the design, optimization, and
experimental evaluation of a 2D hashed page table hierarchy
suitable for virtualized setups. Our insight is that the number
of memory accesses required to satisfy one TLB miss when
using a d-dimensional page table is 2d − 1 for hashed page
tables and 5d − 1 for (4-level) radix page tables, making
hashed page tables exponentially more efficient. Thus, for
a 2D paging system suitable for current virtualized setups
(d = 2), our hashed page table allows for walks consisting
of only 3 (rather than 24) memory references, assuming no
hash collisions.

Interestingly, to achieve optimal performance, we find that
the hashed page tables of the host and guest should be con-
figured to impose different locality granularities on the PTEs
that they house. The host should group PTEs of virtually-
adjacent pages at the granularity of cache lines, whereas the
guest should group such PTEs at the granularity of pages.
With such granularities, a host PTE that maps (part of)
the guest’s hashed page table can be utilized to access a

page-worth of guest PTEs associated with virtually-adjacent
guest pages. This design is thus compatible with the locality
of reference often observed in real workloads.

Our newly proposed 2D hashed page table design reduces
benchmark runtimes by 6%–32% as compared to the 2D
radix page table design of existing x86-64 hardware (which
employs PWCs that support 2D table walks).

Our third contribution is a qualitative assessment of the
scalability of the two competing page table designs. Radix
page tables rely on PWCs, whose size is physically limited—
equivalently to other level-one caches whose speed must be
on par with that of the processor (L1, TLB-L1). As emerging
workloads access larger memory regions with lower locality,
their radix page tables grow larger and harder to cache. We
demonstrate the performance consequences of the PWC size
limit by simulating unrealistically perfect PWCs (infinite,
always hit) and showing that the resulting performance im-
provement can approach 19% and 35% in bare-metal and
virtualized setups, for some workloads. Hashed page tables,
in contrast, are insensitive to the application’s memory foot-
print or access pattern, approaching their optimal perfor-
mance whenever their load factor is low enough to curb hash
collisions. They are also practical and viable, whereas opti-
mal, unlimited-size PWCs are not. Although hashed page
tables are not without their drawbacks—these will be enu-
merated and discussed—we nonetheless conclude that the
hashed page table design is more scalable than the radix
page table design.

2. RADIX PAGE TABLES

2.1 Bare-Metal Address Translation
Modern computer systems typically utilize virtual memory

to make application programming easier. Each process exists
in its own contiguous virtual address space, so applications do
not need to be aware of each other. Other benefits of virtual
memory include improved security due to memory isolation,
and the ability to use more memory than physically available
by swapping data to/from secondary storage. Virtual memory
is supported by both software and hardware. The operating
system (OS) is responsible for assigning physical memory to
virtual memory, and the memory management unit (MMU)
carries out the address translation upon each memory access.
The commonly used page size in x86 and other architectures
is (212 =) 4KB. Therefore, the 12 least significant bits of
each address (virtual or physical) serve as the offset within
the page, and the remaining bits serve as the page number.
The virtual memory subsystem maps virtual page numbers
(VPNs) to physical page numbers (PPNs). Per-process VPN
to PPN mappings are stored in the page table of the process
and are cached by the TLB.

The x86 architecture uses radix page tables, which are
also called multilevel, hierarchical, and forward-mapped. As
their name suggests, radix page tables store VPN to PPN
mappings in a radix tree data structure. On current 64-bit
architectures, the tree consists of a four-level hierarchy when
standard 4KB pages are used [5, 26]. Accordingly, walking
the page table in order to perform a VPN to PPN translation
requires four memory references. Page sizes larger than 4KB
are also supported so as to increase the memory coverage of
the TLB [36]. When larger pages are used, the table walk is
shortened to three or two steps, depending on the page size.

338

63 48 47 39 38 30 29 21 20 12 11 0

sign ext. idx 4 idx 3 idx 2 idx 1 offset

PTE

CR3

PTE
PTE

PTE

Figure 1: Bare-metal radix page table walk.

63 52 51 12 11 0
0’s padding PPN attributes

Table 1: Radix PTE structure.

Figure 1 depicts the radix page table structure and page
walk process. Current x86-64 processors utilize 48-bit virtual
addresses and no more than 52 bits for the physical addresses.
With 4KB pages, the 48-bit virtual address decomposes into
a 36-bit VPN and a 12-bit page offset. The 36-bit VPN
further decomposes into four 9-bit indexes, such that each
index selects a PTE from its corresponding level in the tree.
Each PTE contains the physical address of a table in the
next level. The topmost, root level table is pointed to by the
CR3 register. PTEs in the lowest level contain the PPNs of
the actual program pages. Since the page indexes consist of
9 bits, there are 29 = 512 PTEs in each tree node, and since
the tree nodes reside in 4KB pages (= 212 bytes), each PTE
consists of 212/29 = 8 bytes. PTEs encode more information
than just the next PPN, in the format shown in Table 1.

Notably, PTEs are stored in the regular L1, L2 and L3
caches to accelerate the page walks [7]. In modern x86-64
processors, these caches consist of 64-byte cache lines. Radix
page tables arrange the PTEs contiguously, one after the
other, so each cache line encapsulates exactly eight PTEs.
Lowest level PTEs that are co-located within a cache line
correspond to eight consecutive pages that are contiguous in
the virtual memory space. Thus, whenever the MMU accesses
a PTE, its seven same-line neighboring PTEs are implicitly
prefetched to the data cache hierarchy, and there is a non-
negligible chance that these seven will be accessed soon due
to spatial locality.

2.2 Two-Dimensional Address Translation
Machine virtualization technology allows multiple guest

OSes to run on the same physical host system encapsulated
within virtual machines (VMs). Guests do not control the
physical host resources, and what they consider to be phys-
ical memory addresses are in fact guest physical addresses.
The host creates this abstraction by introducing another
dimension of address translation, called the nested dimen-
sion. In the past, this abstraction was created using “shadow
page tables,” a software-only technique that involves write-
protecting the memory pages that the guest is using as page
tables [2]. Each update of these pages triggers an exit to
the host, which is thus made aware of the guest’s view of its

idx 4 idx 3 idx 2 idx 1 offset

5

2

1

3

4

10

7

6

8

9

15

12

11

13

14

20

17

16

18

19

gCR3 data
page

22

21

23

24

nCR3

= guest PTE = host PTE

Figure 2: 2D radix page table walk.

memory. The host in fact maintains another set of pages—the
shadow pages—that serve as the real page table hierarchy of
the guest.

Shadow page tables are difficult to implement and in-
duce substantial overheads caused by the repeated guest-host
switches upon modifications of write-protected pages [12,13].
These drawbacks motivated chip vendors to provide hard-
ware constructs that directly support the host in its efforts to
efficiently maintain the illusion that guest OSes control the
physical memory. Both AMD and Intel have implemented
nested paging [4, 28], which supports two levels of address
translation. The guest maintains a set of page tables that map
between guest virtual addresses (GVAs) to guest physical
addresses (GPAs). The host maintains a different set of page
tables that map GPAs to host physical addresses (HPAs). The
hardware is responsible for seamlessly “concatenating” the
two layers of translation, by performing a two-dimensional
page walk (as opposed to the one-dimensional page walk in
bare-metal setups). Nested paging lets the guest manage its
own page tables and eliminates the need for host intervention.
The downside is that nested paging squares the number of
memory references required to obtain a translation.

Figure 2 outlines a 2D page walk in the x86-64 architecture.
The MMU references the memory hierarchy 24 times in the
order given by the numbered shapes. The squares (numbered
5, 10, 15, and 20) denote the guest PTEs, and the circles
(numbered 1–4, 6–9, 11–14, 16–19, and 21–24) denote the
host PTEs. The four references to guest PTEs are analogous
to the four references in the 1D page walk. Bare-metal page
walks access PTEs by their physical addresses, whereas guests
access PTEs by their GPAs. Each of these four GPAs is
translated with a nested page walk to produce the HPA of
the corresponding PTE. The guest page walk outcome is a
fifth GPA that points to the requested data page. It requires
an additional nested page walk before the page walk process
is complete (numbered 21–24). Note that 2D page walks
make use of two separate CR3 registers for the guest and the
nested dimensions. The guest CR3 register and the virtual
page number combine to start the guest page table walk. The
nested CR3 register is used five times to initialize each of the
five nested page table walks.

339

(a)

1 2 3 4
data
page

(b)

1

2

3

4

5 10 15 20 data
page

6

7

8

9

11

12

13

14

16

17

18

19

21

22

23

24

20 data
page

19

(c)

24

cached in host PSCcached in guest PSC

Figure 3: Page walk caches.

3. PAGE WALK CACHES
Radix page table walks require expensive memory ref-

erences, and 2D page walks all the more. This motivated
hardware vendors to present MMU caches, which accelerate
address translation by caching parts of the page walk process.
However, as with every cache, their performance degrades
when the working set of partial translations is too large. In
this section, we survey the existing implementations of MMU
caches in bare-metal and virtualized hardware. To the best
of our knowledge, Intel has not published detailed informa-
tion on the x86-64 hardware that speeds up 2D page walks.
We therefore introduce a simple yet not previously reported
MMU cache design, which we set as the Intel baseline design
for our evaluation in section 5.

3.1 Caching One-Dimensional Page Walks
MMU caches accelerate bare-metal page walks [9] by stor-

ing PTEs from the higher levels of the radix tree in small
low-latency caches. Higher level PTEs are good cache can-
didates because they map large regions of virtual memory,

so many workloads use only a small set of them with con-
siderable reuse. PTEs from the lowest level are harder to
cache; indeed, TLBs utilize hundreds of entries to effectively
cache the lowest level PTEs, whereas MMU caches typically
contain dozens of entries.

AMD and Intel provide different implementations of MMU
caches. AMD’s page walk caches (PWCs) tag the PTEs with
their physical addresses in memory, so the PWC serves as
a dedicated “L1D cache” for page walks.1 When the MMU
finds a PTE in the page walk cache, it immediately reads
it and saves a reference to the memory hierarchy. Intel’s
paging-structure caches (PSCs) tag the PTEs with prefixes
of the virtual page number corresponding to their location
in the radix tree. That is, PTEs from the topmost level are
tagged by the uppermost 9-bit index from the VPN, PTEs
from the next level are tagged by two 9-bit indexes, and
PTEs from the third level are tagged by three 9-bit indexes.
If the MMU finds a PTE in the paging-structure cache, the
page walk process can begin from that PTE. Therefore, the
MMU searches for an entry with the longest matching tag,
to shorten the page walk as much as possible. Figure 3(a)
illustrates a radix page walk process that utilizes a paging
structure cache. In the best-case scenario, when a third level
PTE is found in the MMU cache, the page walk process skips
over three levels in the tree and directly accesses the lowest
level PTE.

3.2 Caching Two-Dimensional Page Walks
As stated earlier, 2D radix page tables lengthen the page

walk to 24 memory references. Thus, extending MMU caches
to speed up 2D page walks is crucial. AMD’s page walk caches
are physically tagged, so they can be extended to hold guest
and host PTEs in the same cache according to their host
physical addresses. Indeed, AMD researchers showed that
caching PTEs from the guest and host dimension in the PWC
brings a 15%–38% improvement in guest performance [11].

Our performance measurements on an Intel platform indi-
cate that Intel’s microarchitectures also implement hardware
that accelerates 2D page walks. Alas, we do not know the
exact implementation details of that hardware. We there-
fore offer a new, readily-implementable extension of Intel’s
PSCs, which boosts 2D page walks. Because Intel’s paging
structure caches tag PTEs with their guest virtual addresses,
they can only keep guest PTEs. We propose to add another,
separate PSC that stores host PTEs tagged by their host
virtual addresses. Figure 3(b) depicts a 2D page walk process
in a processor that utilizes two PSCs for the guest and host.
The two PSCs operate in the guest and host dimensions
independently and decrease the overall page walk latency. In
the best-case scenario, depicted in Figure 3(c), we hit both
PSCs, and the 2D page walk shortens to only three memory
references. Since our proposed design is a straightforward
generalization of Intel’s microarchitecture, we will further
assume it is the nominal Intel design.

Previous works [9,14] explored the different types of MMU
caches and showed that they achieve similar performance
gains. Our simulation results corroborate this finding; thus
we examine only PSCs in our experiments and assume the
same analysis can be applied to other kinds of MMU caches.
For simplicity, we will use the terms “MMU caches,”“page
walk caches,” and “paging structure caches” interchangeably.

1We remark that AMD microarchitectures caches PTEs in
the L2 and L3 caches only [11].

340

4. HASHED PAGE TABLES
Hashed page tables [22], as their name suggests, store map-

pings from virtual to physical pages in a hash table. When as-
suming no hash collisions, only one memory access is required
for address translation, regardless of the workload’s memory
consumption or access pattern. As radix page walks involve
four memory references, hashed page tables should perform
better than radix page tables, without requiring PWCs. But
recent results by Barr et al. [9] surprisingly found that PWC-
aided radix page tables are superior to hashed page tables,
“increas[ing] the number of DRAM accesses per walk by over
400%.”2 The authors identified three drawbacks of hashed
page tables underlying this poor performance: (1) hashing
scatters the mappings of consecutive pages in different cache
lines, so hashed page tables are unable to leverage the spa-
tial locality seen in many workloads; (2) hashed PTEs are
bigger than radix PTEs, leading to higher memory usage;
and (3) hash collisions occur frequently, resulting in more
memory references per page walk.

We contend that these drawbacks are specific to the Itanium
design that Barr et al. used for their evaluation [19,25]. We
demonstrate that these drawbacks do not apply to hashed
paging in general, and that hashed page tables can be op-
timized through a series of improvements that make them
better performing than PWC-aided radix page tables. In this
section, we first describe the basic Itanium design assessed
by Barr et al. [9] (§4.1). We then point out the problems in
this design (§4.2) and propose optimizations that address
them (§4.3). Last, we describe how hashed page tables can
be applied in virtual systems, and how they can shrink the
2D page walk cost (§4.4).

4.1 The Basic Design
The Itanium architecture utilizes a hashed page table when

its virtual hash page table (VHPT) is configured to use “long
format” PTEs [19, 25]. The VHPT resides in the virtual
memory space, which the OS pins to the physical memory.
The long format PTEs consist of 32 bytes that house full
translation information, including protection keys, page sizes,
and reserved bits for software use. The latter may store any
value, notably an address that points to a collision chain. The
Itanium architecture explicitly requires the OS’s involvement
on hash collisions. The hardware page walker hashes into a
single table slot, raising a TLB miss fault that invokes an OS
handler upon a hash collision. The OS can then resolve the
collision as it pleases, e.g., by searching for the translation
somewhere else in the hash table, or by using some auxiliary
OS-defined data structure.

Barr et al. chose the latter alternative. They utilized“chain
tables”, which hold PTEs whose hash slots were already
taken, resolving hash collisions with the closed addressing
method [15]. With this design, entries that hash to the same
table slot form a collision chain, which is a simple linked
list where each entry points to the next. The chain’s head is
stored directly in the table, and the other nodes are stored in
the aforementioned chain table data structure. Both the hash
table and the chain table are allocated upon startup. To avoid
dynamic resizing, the maximal number of PTEs should be
known. When assuming no sharing of physical pages between
processes, this number is bounded by the number of physical

2The primary focus of the paper by Barr et al. was, in fact,
on optimizing PWCs.

hash table

tag value

tag value

CR3

hash

63 48 47 12 11 0

sign ext. VPN offset

chain table

tag value

tag value

tag value
tag value

Figure 4: Hashed page table utilizing closed addressing.

VPN (tag) PTE (value)

VPN (tag) PTE (value)
VPN (tag) PTE (value)

CR3

collision?

63 48 47 12 11 0

sign ext. VPN offset

hash

Figure 5: Hashed page table utilizing open addressing.

pages [29]. Thus, if the chain table size is set to this maximal
number of PTEs, no dynamic resizing is needed.

Figure 4 depicts the Itanium hashed page table variant
that was used by Barr et al. Unlike the per-process radix
page tables, there is a single, big hashed page table shared
among all processes, pointed to by the CR3 register. Each slot
in the hash table consists of three fields: tag (VPN), value
(PTE), and a pointer to the next node in the collision chain.
When translating an address, the 36-bit VPN hashes to some
slot, and it is then compared to the tag stored in that slot to
detect if a hash collision has occurred. If the tag mismatches,
the next node in the collision chain is examined. The search
continues until a match is found or the chain ends, indicating
that the element is not in the table. Our simulation of the
basic Itanium design reproduces the methodology of Barr
et al., which does not account for the additional overheads
incurred due to chain table lookups being handled by software.
(Subsequent simulated versions implement the search entirely
in hardware, as will be later explained.)

4.2 Flaws of the Basic Design
The basic hashed design as implemented in the Itanium

architecture has several weaknesses. First, the hashed page
table does not cache the PTEs effectively since it scatters
the PTEs of virtually adjacent pages to non-adjacent table
slots that reside in distinct cache lines. Radix page tables,
on the other hand, keep the mappings of virtually adjacent
pages contiguously in the physical memory, tightly packing

341

 0

 0.2

 0.4

 0.6

 0.8

 1

re
la

ti
v
e
 w

a
lk

 l
a
te

n
cy

(a)

itanium

+ open addressing

+ cluster

+ compact

 1

 1.03

 1.06

 1.09

 1.12

 1.15

#
m

e
m

o
ry

 r
e
fs

 p
e
r

w
a
lk

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

#
D

R
A

M
 r

e
fs

 p
e
r

w
a
lk

(c)

Figure 6: Optimizing the hashed page table gradually cuts down the walk latency and the number of references to the memory
and DRAM. (Showing results for the 433.milc benchmark in bare-metal setup.)

their PTEs in cache lines. When one page is referenced, it is
often the case that its virtually neighboring pages will soon
be accessed as well, because many workloads exhibit locality
of reference. Correspondingly, when one PTE is referenced,
there is a greater chance that the PTEs of virtually adjacent
pages will be referenced soon. Consequently, when the page
walker references a radix PTE and inserts it into the cache,
it also inserts the PTEs of neighboring pages, which reside
in the same cache line, thereby eliminating cache misses in
future page walks. Hashed designs, on the other hand, are less
likely to prefetch PTEs of neighboring pages into the cache.
They thus increase the number of costly DRAM references
due to cache misses.

Hashed page tables also require additional memory since
they must keep the tags and chain pointers to resolve po-
tential hash collisions. In the Itanium design, the 32-bytes
long PTE houses the “short” 8-byte PTE version along with
its matching 36-bit VPN and an 8-byte chain pointer. A
64-byte cache line thus contains exactly two long PTE slots,
in contrast to the radix page table design whereby each cache
line contains eight PTEs. Hashed performance therefore de-
grades because the caches can hold four times fewer hashed
PTEs than radix PTEs. Hashed page tables reference a larger
working set of cache lines than do radix designs, so they may
cause more cache misses during page walks.

The rate of hash table collisions is mainly determined
by the ratio of occupied slots to the total number of slots,
also called the load factor [15]. The hash table performance
degrades as the load factor grows, since more occupied slots
increase the likelihood that different elements will hash to the
same slot. Importantly, for a fixed load factor, the rate of hash
collisions is not affected by the workload memory footprint or
access pattern, if uniform hashing is assumed [15]. The basic
design sets the maximum load factor to 1/2 by allocating a
hash table with twice the number of slots required to map
the resident physical pages. That is, two 32-byte slots are
allocated for each 4KB page in the physical memory. The
hash table thus consumes 1.6% of the physical memory.

Another drawback of the Itanium hashed page table is
that it requires an additional data structure—the chain table.
Ideally, without hash collisions, the chain table is unnecessary
since the hash table has enough space to contain all the PTEs.
But hash collisions cannot be completely eliminated, so some
memory must be allocated to the chain table. Radix designs
are thus more space efficient, because they do not require
additional data structures.

4.3 Optimizations
We now describe three optimizations aimed at remedying

the flaws of the basic Itanium design. Figure 6 shows that
the improvements reduce the page walk latency, as well as
the number of references to the memory and the DRAM,
for a specific SPEC CPU2006 benchmark (433.milc). We
present the results for a single benchmark since the other
benchmarks exhibit the same qualitative behavior.

Open Addressing
Our first proposal is to get rid of the wasteful chain table by
switching to the open addressing method [15], which stores all
PTEs in the hash table slots. Figure 5 illustrates the hashed
page table structure and hashed page walk process in the
open addressing scheme. Each slot in the hash table consists
of three fields: tag (VPN), value (PTE), and an “empty” bit
to mark a free slot. The chain pointers are no longer used to
resolve hash collisions; when a tag mismatch occurs, the next
slot in the hash table is examined. The search ends when a
match is found or an empty slot is reached, indicating that
the element is not found in the table.

Besides saving the memory required by the chain table,
the open addressing scheme has another, more important
advantage: it discards the chain pointers that lie inside PTEs.
We can therefore shrink the table slots of the open addressing
design to 16 bytes, as each slot contains only a 36-bit VPN
and its matching 8-byte PTE. Consequently, the hashed page
table size is cut by half. We can turn this space we saved to
good use by lowering the load factor and shortening the hash
table lookup. The open addressing design in Figure 6 sets
the load factor to 1/4, without using additional memory over
the basic Itanium design. Decreasing the load factor indeed
lowers the average number of memory references per walk,
as can be seen in Figure 6(b).

PTE Clustering
Our second proposal is to utilize clustered page tables—a
hashed page tables variant that pack the mappings of consec-
utive pages in the same hash table slot [39], thereby making
the page table easier to cache for workloads with a high
degree of locality. The number of PTEs that occupy the same
slot is called the clustering factor. It is normally chosen to be
the largest possible such that each table slot fits into a single
cache line. If the table slots are smaller than a cache line,
the clustered page table does not exploit the spatial locality
to its maximum. And if the table slots are bigger than a

342

tag PTE0 PTE1 PTE2 PTE3

tag PTE0 PTE1 PTE2 PTE3
tag PTE0 PTE1 PTE2 PTE3

63 48 47 14 13 12 11 0

sign ext. block number block offset offset

CR3

hash

collision?

Figure 7: Clustered page table walk.

cache line, the tag (block number) and the value (PTE) may
reside in different lines, so probing a single slot may require
two memory references. Because hashed PTEs are 16 bytes
long, and since x86-64 processors use 64-byte cache lines, the
optimal clustering factor is four; radix designs still pack twice
more, that is, eight PTEs per cache line.

Figure 7 depicts the clustered page table structure and the
clustered page walk process. The hash table lookup follows
that of hashed page tables with minor changes. The 36-bit
VPN decomposes to a page block number (bits 14:47) and
page block offset (bits 12:13). The block number hashes to
a table slot, and the block offset indexes into the array of
PTEs stored in the slot. When a mismatch occurs between
the block number and the tag in the slot, the next slot in
the table is examined. Each hash table slot is 64 bytes long,
to hold a single tag (34-bit block number) and four values
(four PTEs, 8 bytes each).

Figure 6(c) provides the average number of DRAM ref-
erences per walk. We see that clustering the PTEs as was
just described takes advantage of the locality seen in this
workload and generates fewer DRAM references than the
basic design.

PTE Compaction
We propose a new technique that further improves hashed
page tables by compacting eight adjacent PTEs in a single
64-byte cache line, resulting in the spatial locality of hashed
page tables similar to that of the x86-64 radix page tables.
The clustered page tables, as were previously defined, cannot
pack eight PTEs and a tag in a single cache line, since PTEs
are 8 bytes long. But we can exploit the unused topmost
bits of each PTE and store the tag in this unused space.
Specifically, the x86-64 architecture reserves bits 52:63 of
the PTE as available for use by the system software in long
addressing mode [5]. If we group all the available bits from
the eight PTEs, we have more than enough space to store
the 33-bit page block number, which serves as the tag. Table
2 shows the possible layout of a hash table slot containing
eight PTEs. We use 8 bytes for the tag and 7 bytes for each
of the eight PTEs. This layout is valid even for architectures
with 56-bit physical addresses, i.e., 64 petabytes of physical
memory, which is more than enough for the foreseeable future.
Note that the compaction technique can only be applied in
tandem with clustered page tables, since they amortize the
space overhead of the tag over many PTEs.

8 B 7 B 7 B 7 B 7 B
tag PTE0 PTE1 . . . PTE6 PTE7

Table 2: Compact cluster of PTEs.

Compacting the PTEs cuts the number of hash table slots
by half, as each slot now holds eight PTEs instead of four. If
we fix the load factor, compaction thus saves half the memory
used by the hashed page table. Alternatively, we can decrease
the load factor and reduce the hash table lookup complexity.
The compact design in Figure 6 implements the compaction
of eight PTEs in a cache line and sets the load factor to 1/8,
bringing the average page walk cost close to a single memory
reference per walk, without using additional memory over
the previous designs. We see that it also exploits the spatial
locality and further reduces the number of DRAM references.

Note that radix paging hardware cannot easily implement a
compaction scheme that derives benefit from the unused bits
in the PTEs. Current radix hardware packs eight PTEs in a
cache line, and it can pack two additional PTEs if the unused
bits were utilized. That is, the radix hardware can pack a
maximum of 10 PTEs in a cache line and hence no more than
640 PTEs in a 4KB page. But trying to pack 640 PTEs in a
page will demand a more complex calculation of the radix tree
indexes, via a sequence of three divide and modulo operations,
which cannot be parallelized. Current radix paging hardware
exploits the fact that each page contains a power-of-two
number of PTEs to immediately extract the indexes to the
radix tables without having to calculate them. Specifically,
each 4KB page contains exactly 512 PTEs, and the 36-bit
virtual page number directly decomposes to the four 9-bit
radix tree indexes, as explained in section 2.

To summarize: Itanium hashed page tables can be im-
proved via three optimizations. First, utilizing an open,
rather than closed addressing scheme shrinks the table
slots and reduces the load factor. Second, clustering ad-
jacent PTEs leverages the spatial locality seen in many
workloads. Third, compacting the PTEs makes it possible
to pack eight PTEs per cache line, similarly to the x86-64
radix design, thereby (i) equalizing the number of cache
lines occupied by the two virtual memory implementa-
tions, as well as (ii) further decreasing the load factor and
eliminating almost all hash collisions.

In section 5, we show that our optimized hashed page tables
indeed reduce benchmark runtimes by 1%–27% compared to
x86-64 PWC-aided radix page tables.

4.4 Two-Dimensional Hashed Page Tables
Hashed page tables reduce the page walk cost in bare-metal

setups, so they may be able to shorten 2D page walks in
virtualized setups as well. We now design and optimize 2D
hashed page tables, which implement the guest and the host
page tables with hashed schemes. Figure 8 outlines a 2D
hashed page walk, which references the memory hierarchy
three times per TLB miss, assuming no hash collisions. The
36-bit VPN hashes to a slot in the guest page table. This
index combines with the guest CR3 register to generate the
GPA of the guest PTE. We perform a nested page walk (step 1
in the figure) to translate the GPA to a HPA. Only then can
we access the guest PTE (step 2 in the figure) and discover

343

= guest PTE = host PTE

VPN offset

gCR3

nCR3

2

1

hash
func

hash
func

data
page

3

hash
func

Figure 8: 2D hashed page table walk.

the GPA of the data page. We finish the page walk process
with a second nested page walk (step 3 in the figure), which
finds the HPA of the data page. The nested CR3 register is
used two times during the page walk to initialize each of the
two nested page table walks.

A 2D hashed page table is no more than two separate 1D
hashed page tables for the guest and the host. We applied the
three optimizations that we proposed for 1D hashed paging
to both the guest and the host page tables. We initially
believed that these two page tables should be tuned the same,
i.e., adopting the open addressing scheme, clustering and
compacting eight PTEs in a cache line, and thereby reducing
the load factor to 1/8. To validate our belief, we scanned
the design space of 2D hashed page tables. Surprisingly,
we discovered that the guest and host page tables should
be configured differently to realize the full potential of 2D
hashed page tables.

Our analysis helped us to spot a subtle difference between
the guest and the host page tables: the former maps the
application pages, whereas the latter also maps the pages
assigned to the guest page table. The host page table is able
to leverage the locality of reference to the guest page table
in the same way it benefits from locality in the application
data. When the guest page table is scattered over many
pages (in the host address space), the host page table keeps
that many translations to map these pages. To minimize the
number of required host translations, we should attempt to
minimize the number of pages used by the guest page table.
Therefore, we increase the clustering factor of the guest page
table from 8 to 512, such that the mappings of each group of
512 consecutive pages will condense into a single page instead
of lying in multiple pages. Figure 9 indicates that increasing
the clustering factor of the guest page table from 8 to 512
reduces the page walk latency (for a specific benchmark).

Furthermore, when the host page table clusters contiguous
translations in the same cache line, it can leverage locality at
granularity of several pages. Assuming the host page table
uses a clustering factor of 8, when the guest page table is
spread over many blocks of 8 pages, the host translations
consume more cache lines. To minimize the working set of
cache lines that hold host page table mappings, we should

 0.9

 0.95

 1

8 64 512 4096re
la

ti
v
e
 w

a
lk

 l
a
te

n
cy

guest clustering factor

Figure 9: The walk latency of 2D hashed page table decreases
as the guest clustering increases.

attempt to minimize the number of 8-page blocks used by
the guest page table. Therefore, we increase the clustering
factor of the guest page table even further, from 512 to 4096.
Figure 9 shows that increasing the guest clustering factor
even further to 4096 reduces the page walk latency.

To summarize: In virtualized setups, the hashed paging
scheme is more efficient than radix paging, because it
incurs a TLB miss penalty of only 3 (rather than 24)
memory references, assuming no hash collisions. To further
improve their performance, we find that 2D hashed page
tables should also cluster guest PTEs in granularity of
several pages.

In section 5, we show that our newly proposed 2D hashed
page tables reduce benchmark runtimes by 6%–32% as com-
pared to the current x86-64 hardware (which employs PWCs
that support 2D table walks).

5. HASHED VERSUS RADIX PAGING
In this section, we first describe the methodology we use

to evaluate page table designs. Next, we measure the per-
formance gap between present x86-64 hardware and perfect,
unrealistic PWCs. We then compare hashed paging to radix
paging; our results show that hashed page tables can bring
notable performance benefits in bare-metal and virtualized
setups. Finally, we enumerate the practical drawbacks and
problems of hashed paging.

5.1 Methodology
Our goal is to estimate the performance of nonexistent

hardware, such as the proposed hashed page tables or radix
paging with perfect PWCs. To this end, we apply the de facto
methodology of recent microarchitectural research concerning
virtual memory [10,14,18]. First, we develop an approximate
performance model, which assumes, for simplicity, that the
application runtime (measured in cycles) is a linear function
of the walk cycles, i.e., the cycles spent during page walks:

runtime = A ∗ walk cycles + B.

The model parameters A,B are benchmark specific, and we
find them by measuring a real system running each bench-
mark separately. Second, we calculate the walk cycles of new
page table designs from our memory simulator, which we
implemented and thoroughly tested. Last, we plug the simu-
lation results into the linear performance model to predict
the runtime of the benchmarks on these new designs.

344

The performance model is gauged for each benchmark in-
dividually with experiments conducted on a Linux server
equipped with an Intel processor, as outlined in Table 3.
Our Intel processor provides monitoring hardware that is
able to measure the cycles spent during page walks (events
0x0408, x0449 in the Sandy Bridge microarchitecture [27]).
The connection between the walk cycles and the application
runtime is not immediate, as the walk cycles overlap with
other processor activities in modern, pipelined, out-of-order
CPUs. But the walk cycles certainly hint at the application
performance; thus our assumption that the relationship is
linear. Finding the model parameters A,B is simple given
two points on the line. We obtain the first point from mea-
surement with the default 4KB pages used, and the second
point after configuring the system to use 2MB pages via the
Transparent Huge Pages feature [1].

Having the performance curve, we can now apply it to
evaluate several hardware designs. We develop a trace-based
simulator, and generate traces dynamically with Intel’s Pin
binary instrumentation tool [31, 32, 34]. For each memory
reference in the trace, the simulator initially consults the
TLB for address translation, walks the page table hierarchy
upon a TLB miss, and then performs the memory access.
The simulator outputs the number of references to all the
relevant hardware structures (L1/L2 TLB, L1 data cache,
L2/L3 caches, DRAM, and PWCs when available). The walk
cycles are then calculated via summing the access latencies to
each hardware component, weighted by the access frequency.
The microarchitecture parameters were taken from the closely
related studies by Bhattacharjee et al. [14] and Gandhi et
al. [18] as outlined in Table 3.

We note that memory simulators are able to produce ac-
curate estimations of the walk cycles, because the page walk
process is sequential, where each reference to the memory
hierarchy depends on the previous one. We sample a small,
representative subset of the full memory address trace fol-
lowing the statistical sampling technique by Wunderlich et
al. [40]; we verified that our sampling simulator is accurate,
yielding cycle estimates within ±5% of the full run outcome
with 95% confidence. The trace-based approach, together
with sampling, enables us to evaluate new architecture de-
signs relatively quickly. Average programs run 5x–50x slower
under the simulator, so we can inspect realistic workloads
with big memory footprints. As Pin is limited to instrumenta-
tion in user mode only, we measured the TLB misses and the
walk cycles invoked by the kernel via performance counters
and verified that they are negligible.

5.2 Radix Paging with PWCs Does Not Scale
Perfect PWCs, which theoretically eliminate all misses, cut

down bare-metal and virtualized page walks considerably, to
one and three memory references per walk, respectively. But
realistic PWCs have finite sizes that limit their performance.
Our analysis shows that the gap between the performance of
actual (x86-64) and ideal (infinite and always hit) PWCs can
be significant in memory intensive workloads, as depicted in
Figure 10 for three benchmark suites. The first suite is the
canonical SPEC CPU2006 [20], whose benchmarks typi-
cally exhibit negligible TLB miss rates and hence are largely
unaffected by PWCs. We therefore limit our analysis to only
those benchmarks that are sensitive to PWC misses, enjoying
a performance improvement of at least 1% when PWCs are
perfect—these are mcf, cactusADM, and xalancbmk. The per-

bare-metal system
processor dual-socket Intel Xeon E5-2420 (SandyBridge),

6 cores/socket, 2 threads/core, 1.90 GHz
memory component latency [cycles]
hierarchy 64 KB L1 data cache (per thread) 4

64 KB L1 inst. cache (per thread) not simulated
512 KB L2 cache (per core) 12
15 MB L3 cache (per chip) 30
96 GB DDR2 SDRAM 100

TLB 64 entries L1 data TLB
128 entries L1 instruction TLB (not simulated)
512 entries L2 TLB
all TLBs are 4-way associative

PSC 2 entries PML4 cache, 4 entries PDP cache
32 entries PDE cache, 4-way associative
all caches have 2 cycles access latency

operating Ubuntu 14.04.2 LTS, kernel version 3.13.0-55
system

fully virtualized system
host QEMU emulator version 2.0.0 with KVM support
PSCs separate PSCs for the guest and the host,

each of the same size as the bare-metal PSC
operating Ubuntu 14.04.2 LTS, kernel version 3.13.0-55
system for both the guest and the host

Table 3: Details of the experimental platform; the micro-
architectural parameters were also used in the simulator.

formance of the remaining 28 SPEC CPU2006 benchmarks
neither improves nor degrades when employing perfect PWCs
(or our optimized hashed design). The second benchmark
suite is Graph500 [8, 35], which ships with several imple-
mentations and a scalable input generator; we use the shared
memory (OpenMP) version with eight threads, and we test
three different input sizes: 4GB, 8GB, and 16GB. The third
suite is GUPS [30, 33], which likely approximates an upper
bound on the performance improvement that perfect PWCs
offer, randomly accessing a large in-memory table; we use
three table sizes: 2GB, 8GB, and 32GB.

Figure 10 shows that PWC misses degrade the performance
by up to 19% and 35% in bare-metal and virtualized setups.
When focusing on Graph500 and GUPS, we see that the effec-
tiveness of the PWCs monotonically drops due to (1) bigger
memory footprints (compare benchmarks in the same suite)
and (2) lower locality of reference (compare GUPS bench-
marks to Graph500 benchmarks with similar/smaller size).

Figure 10 further demonstrates that the gap between real
and ideal PWCs is larger in the virtualized case, because
2D radix page walks are longer and harder to cache. We
generalize this observation and qualitatively show that radix
paging scales poorly as more layers of virtualization are added.
Specifically, we prove that the page walk length (number of
memory references required to obtain a translation) grows
exponentially with the number of virtualization layers. For
a nested setup with d virtualization layers and a page walk
length of L in each layer, we show that the overall page
walk length is (L + 1)d − 1. Consequently, the overall page
walk length in a d-dimensional page table is 5d − 1 for radix
paging, whereas it is 2d − 1 for hashed paging, assuming no
hash collisions. Thus, 2D radix page walks are exponentially
longer, and the effectiveness of the PWC drops as it struggles
to cache these longer walks.

The formula for the d-dimensional overall page walk length
is proved by induction. The base case (d = 1) is trivial. The
inductive step assumes (1) a d-dimensional nested virtualiza-

345

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

mcf
cactusADM

xalancbmk

4GB
8GB

16GB
2GB

8GB
32GB

n
o
rm

a
liz

e
d

 r
u
n
ti

m
e

w
it

h
 p

e
rf

e
ct

 P
W

C
s

bare-metal

-4% -7% -1%

virtualized

-14% -7% -7%
-1% -2% -2%

-6% -8% -10%
-6% -11% -19%

-19% -30% -35%

gupsgraph500spec cpu2006

Figure 10: Simulating perfect PWCs (infinite and always hit) as compared to actual PWCs. Clearly, memory intensive workloads
could achieve notable improvement gains if all PWC misses were eliminated.

tion hierarchy, denoted g, with an overall page walk length
of Lg = (L+ 1)d − 1, and (2) a host h with page walk length
of Lh = L. With this notation, our formula trivially stems
from the following lemma.

Lemma 1. If we host g on top of h, then the overall page
walk length will become (Lg + 1) · (Lh + 1)− 1.

Proof. Before hosting g on top of h, our induction hy-
pothesis implies that a virtual memory reference by g induces
Lg + 1 physical memory references: Lg for the table walk,
plus one for the application data pointed to by the PTE at
the end of the walk. Likewise, a virtual memory reference by
h induces Lh + 1 physical memory references. When hosting
g’s nested hierarchy on top of h, each of the Lg + 1 guest
physical references must now be translated to host physical
addresses, so we end up with (Lg + 1) · (Lh + 1) references to
the physical memory, which includes the access to the appli-
cation data at the end of the table walk. We thus subtract
one memory reference from this result.

5.3 Hashed Paging Performs Better
Our two competing designs are hashed paging and radix

paging with PWCs. The comparison between them is not
“fair,” since the latter employs additional cache structures—
the PWCs—skewing the odds in its favor. Still, we find that
hashed page tables perform better than radix tables for the
workloads tested. (Recall that we focus on workloads that
stress the TLB and PWCs; for workloads that experience few
TLB and PWC misses, as do most SPEC CPU2006 bench-
marks, hashed paging and radix paging perform similarly.)
Figure 11 depicts the runtime improvement achieved by using
hashed paging rather than radix paging with PWCs. The
Graph500 and GUPS benchmarks show larger improvement
gains as the memory footprint grows, because the PWC effi-
ciency degrades, while hashed page tables require the same
number of memory references per walk. The figure also con-
firms that the improvement opportunity from using hashed
page tables is greater in the virtualized case, since hashed
paging is exponentially more efficient, as was discussed above.

We now provide an in-depth analysis of hashed paging
performance by comparing Figure 11 to Figure 10—the dif-
ferences are summarized in Table 4. We see that, for the
Graph500 and GUPS benchmarks, perfect PWCs reduce the
runtime more than hashed page tables. The reason for this
performance gap is the difference in the page walk length.
Radix paging with perfect PWCs require 1 and 3 memory ref-
erences per walk in bare-metal and virtualized setups, while

hashed page tables exhibit hash collisions and thus require
a few more, that is, 1.08 and 3.33 references on average.
Our results confirm that reducing the hash table load factor
and, hence, decreasing the hash collision rate closes the gap
between the two designs.

Interestingly, Table 4 shows that hashed paging outper-
forms perfect PWCs for the three SPEC CPU2006 bench-
marks that we examined. Radix paging with PWCs incurs
additional cycles to search the PWCs, whereas hashed paging
does not. Our analysis indicates that this PWC overhead,
albeit small, is noticeable in the mcf and xalancbmk bench-
marks. Table 4 also reveals that hashed paging cuts the
cactusADM bare-metal runtime by 27%, whereas the perfect
PWCs design reduces it by 7%. This significant performance
gap merits further discussion, as it cannot be attributed to
the PWC latency alone.
CactusADM solves a set of partial differential equations.

The main loop references, on each iteration, multiple array
elements whose virtual addresses are separated by a constant
stride [21]. Since radix page tables map virtual addresses
contiguously, the PTEs matching these virtual addresses also
reside in physical addresses separated by a constant stride.
And so, if the PTEs map to the same set in the data caches on
the first iteration, they will conflict again on each subsequent
iteration. Our analysis indicates that the lowest level PTEs,
which are left out of the PWCs, indeed conflict in the L1
data cache due to this access pattern. We experimentally
substantiated this finding by verifying that an (impractical)
fully associative L1 data cache almost completely eliminates
the L1 misses during page walks. Hashed page tables, on
the other hand, are less sensitive to such cache pathologies
because they randomly scatter the PTEs in the physical
memory allocated to the hash table, lowering the probability
for successive misses due to cache conflicts. The hashed paging
randomization reduces the likelihood of encountering a worst-
case input, similarly to the memory layout randomization
that is used in stabilizer to get predictable performance [16].

To summarize: The performance of radix page tables
depends on PWCs, so their effectiveness degrades when
workloads access larger and larger memory regions with
lower locality. In contrast, our optimized hashed page
tables cut the page walk overhead without resorting to
PWCs, as their performance is unaffected by the memory
footprint or the access pattern of the application.

346

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

mcf
cactusADM

xalancbmk

4GB
8GB

16GB
2GB

8GB
32GB

n
o
rm

a
liz

e
d

 r
u
n
ti

m
e

w
it

h
 h

a
sh

e
d

 p
a
g

in
g

bare-metal

-6% -27% -2%

virtualized

-17% -32% -9%
-1% -1% -2%

-6% -7% -8%
-5% -8% -15%

-17% -24% -29%

gupsgraph500spec cpu2006

Figure 11: Normalized benchmark runtimes of hashed paging relative to radix paging with (real) PWCs.

benchmark bare-metal virtualized
perfect hashed perfect hashed
PWCs paging PWCs paging

SPEC mcf -4% -6% -14% -17%
SPEC cactusADM -7% -27% -7% -32%
SPEC xalancbmk -1% -2% -7% -9%
graph500 4GB -1% -1% -6% -6%
graph500 8GB -2% -1% -8% -7%
graph500 16GB -2% -2% -10% -8%
GUPS 2GB -6% -5% -19% -17%
GUPS 8GB -11% -8% -30% -24%
GUPS 32GB -19% -15% -35% -29%

Table 4: The runtime improvement achieved when utilizing
(1) ideal PWCs and (2) hashed paging, as compared to radix
paging with real PWCs. The improvement provided by hashed
paging is comparable to that of ideal PWCs. The exception
is cactusADM, for which hashed paging offers a much greater
improvement due to radix caching pathologies.

5.4 Drawbacks of Hashed Paging
Practical implementation of hashed page tables is hindered

by several obstacles [17]. First, hashed page tables are de-
signed to avoid dynamic resizing, so they are allocated once
and spread over a large memory area. This necessitates shar-
ing the page table between all processes, contrary to the
per-process page table employed with radix paging. Using
a single page table for all processes has some advantages,
e.g., saving the overhead of allocating and deallocating page
tables as processes are created and terminated. One of the
drawbacks is that killing a process requires a linear scan of
the hash table to find and delete the associated PTEs, though
this can be carried out lazily. Deleting a slot from an open
addressed hash table is another challenge. Just marking the
deleted slot as “empty” might truncate search chains that
probed this slot, found it occupied and moved on to the next
probe. Therefore, deleted slots should be distinguished with
a special “deleted” value. But marking deleted slots has the
undesirable side effect of a longer hash table lookup, because
it no longer depends solely on the load factor.

Page tables should also support several features besides
mapping virtual to physical addresses. Such features include
sharing memory between processes and multiple page sizes. A
feasible solution for both requirements is to add another level
of translation, as implemented in the Power architecture [23,
37]. The Power architecture defines three types of addresses:

effective, virtual, and physical. Each process owns a separate
effective memory space, but the virtual address space is
shared by all processes. This way, applications can share
data by translating different effective segments to the same
virtual segment. The effective and virtual address spaces are
divided to 256MB segments, whereas the virtual and physical
address spaces are divided to 4KB pages by default. Recent
versions of Power allow different segments to be configured
with different virtual memory page sizes: 4KB, 64KB, 16MB,
or 16GB [24]. Multiple page sizes may boost performance with
fewer virtual to physical translations, at the cost of potential
waste of memory that was allocated but never used.

The Power architecture requires a two-level translation
procedure for each memory reference: the first stage translates
effective to virtual addresses, and the second stage translates
virtual to physical addresses via hashed page tables. The
Power architecture employs a closed addressing scheme, where
each hash table slot contains a group of 8 PTEs, which form
a constant size list. The hardware page walker uses two
different hash functions to obtain two such groups of PTEs.
If the VPN is not found in one of the 16 PTEs, the hardware
triggers a page-fault interrupt that the OS must resolve.

This study investigates page table design with respect to
their performance. In real environments that employ hashed
page tables, we acknowledge that the aforementioned diffi-
culties are likely to have an adverse affect on performance.
Quantifying the precise implications is a nontrivial task; we
leave this study for future work.

6. RELATED WORK

6.1 Optimizing MMU Caches
Several studies proposed optimizations to make MMU

caches more efficient. Barr et al. [9] offered three new designs
that, along with the existing designs by Intel and AMD,
encompass the whole design space of MMU caches. They
found that the optimal design is the“unified translation cache”
with a modified insertion policy. This design caches entries
from the different levels of the radix tree in the same structure,
as AMD’s page walk cache does. This makes it a flexible
design, unlike Intel’s Paging Structure Cache, which allocates
a fixed portion of the cache to each tree level. But unified
caches are not able to adapt well to workloads of varying sizes,
because lower-levels PTEs, which have low reuse, may evict
higher-levels PTEs, which show greater reuse. Therefore, the
authors proposed the novel “variable insertion-point LRU
replacement policy,” and showed that it performs better than

347

the LRU algorithm. Their scheme favors higher-level PTEs
by inserting entries from the second level into a recency
position below the most recently used position. Employing
this scheme raises the hit rates for the third and fourth level
PTEs, but the hit rates for the second level remain very low,
so page walks require two memory references on average. In
other words, the proposed design still suffers from misses
caused by the limited capacity of PWCs and is not able to
close the performance gap to obtain the results of perfect
PWCs or hashed page tables.

Bhattacharjee et al. [14] suggested two techniques to im-
prove the performance and coverage of MMU caches. The
first modifies the operating system to allocate pages for the
radix page table in a way that encourages coalescing, i.e., in a
way that is likely to place the page table pages in consecutive
physical addresses. Coalescing can save valuable PWC entries
with modest hardware changes, by detecting coalescing pages
and unifying the corresponding PTEs into a single PWC
entry. The authors focused on coalescing page table data
from the lowest level in the radix tree, and they showed that
on average dozens of pages can be coalesced.

The second technique proposed by Bhattacharjee et al.
replaces the per-core PWCs with a single PWC with the
same total capacity, which is shared between the cores. The
shared PWC has higher access latency because it is a large
structure that resides outside the core. But the authors
proved that it yields higher hit rates that compensate for
the longer access time and boost the performance of parallel
and multiprogrammed workloads. The two techniques are
orthogonal and, when applied together, achieve performance
close to perfect PWCs. However, the study examined small to
medium-sized applications, with memory footprints smaller
than 8GB, so future studies will have to check that these
results hold for big memory workloads as well. Assessing
the performance of the proposed methods for virtualized
systems with 2D page walks was not included in the study
and certainly deserves examination.

6.2 Speculative Inverted Shadow Page Tables
Ahn et al. [3] studied the hardware support for 2D page

walks in x86 architectures. First, they suggested shrinking the
nested page walk by using a linear page table in the nested
dimension. This design cuts the 2D page walk from 24 to 9
memory references, but is impractical for guests with 64-bit
virtual address space, since linear page tables allocate a PTE
for each page in the guest virtual space. Virtual machines
with a 64-bit must use a hashed page table instead, because
they can efficiently map addresses from a wide range to values
in a fixed small range.

The authors also introduced the “speculative inverted
shadow page table” (SISPT) to reduce the cost of 2D page
walks. SISPT is a variant of shadow page tables and hashed
page tables, which acts as a third-level TLB that resides in the
physical memory. When the hardware finds the translation
in the SISPT, it obtains it with a single memory reference;
otherwise, it invokes a page fault to be handled by the oper-
ating system. Not all translations are stored in the SISPT, so
the guest and nested page tables are maintained to provide
a complete memory mapping. Given the large size of the
SISPT, it is shared between all virtual machines and the
processes inside them. Synchronization between the SISPT
and the full page table requires hypervisor intervention at
context switches and other page table updates. This is the

primary overhead associated with shadow paging (and with
every software managed TLB). To eliminate the overhead of
hypervisor interventions, the SISPT does not try to remain
consistent with guest page table updates. On a TLB miss, the
processor speculatively executes with the mapping found at
the SISPT while simultaneously performing a full 2D walk. If
the processor finds the speculated translation to be incorrect,
the processor pipeline is flushed and the SISPT is updated.
The SISPT mechanism presents a trade-off between decreased
page walk latency and increased complexity of hardware (the
added page walker and the speculative execution engine).

Choosing which guest and nested page tables are used to
keep the full mapping is independent of the SISPT design
choice. The different alternatives have little effect on the
overall performance, because the speculative walks hide most
of the non-speculative walk latencies. But quick 2D page
walks are still essential; without them, the core will be stalled
waiting for the correct translation. Thus, our 2D hashed page
tables may be used as the backing page tables to shorten the
non-speculative page walks.

6.3 Direct Segments
Basu et al. [10] analyzed big-memory server workloads such

as databases, in-memory caches, and graph analytics. They
found that these workloads pay a high price for page-based
virtual memory but often do not need the benefits that virtual
memory offers: they rarely use swapping, allocate most of
their memory on startup, and grant read-write permissions
to nearly all their memory. The authors therefore suggested
that such applications may benefit from using paging only
in a small portion of their address space, while translating
the rest of the address space via segmentation. Their idea,
“direct segments,” requires modest hardware and software
changes. Each core is equipped with three registers, base,
limit and offset, which map a large, contiguous portion of
the process’s virtual address space. The hardware translates
the virtual addresses lying in the range [base, limit) to
physical addresses by simply adding the constant offset,
without resorting to the TLB. The OS is responsible for
allocating the required physical memory and setting these
registers accordingly. While direct segments eliminate the
majority of the TLB misses in big-memory workloads, they
are less suitable for compute workloads with unpredictable
memory usage and for environments where many processes
execute for short periods.

The authors also extended direct segments to reduce the
address translation overhead in virtualized setups [18]. They
offered three modes of operation: direct segments in the guest
dimension (guest direct), in the host dimension (VMM direct),
or in both (dual direct). The modes present different trade-
offs between performance and restrictions on other virtual
memory features. The guest and the VMM modes achieve
near bare-metal performance with modifications confined to
the guest and the hypervisor, respectively, whereas the third
mode achieves almost zero translation overhead. However,
the dual direct mode requires changes in the guest and the
hypervisor, and it provides limited support for memory over-
commitment and sharing pages between virtual machines.
The VMM mode allows swapping in the guest, whereas the
guest mode supports page sharing and live migration of vir-
tual machines. Fragmentation can prevent the creation of
direct segments and can be removed via compaction.

348

7. CONCLUSIONS
Virtual memory offers many advantages and plays a vital

role in computer systems, but it comes at the price of perfor-
mance degradation. The commonly used x86-64 radix page
tables require 4 and 24 memory references per walk in bare-
metal and virtualized systems. Current radix designs attempt
to hide these expensive accesses to the memory hierarchy
with PWCs. But this approach is suboptimal, as emerging
big-data workloads reference vast amounts of memory with
low locality. In contrast, the number of required memory
references along a hashed page walk does not depend on the
application memory footprint or access locality. We show that
carefully designing hashed page tables shrinks bare-metal and
virtualized page walks to just above one and three memory
reference per walk, respectively, without resorting to PWCs.
The disadvantage of hashed page tables is that they make it
more challenging to efficiently provide such functionalities
as superpages and page sharing.

8. ACKNOWLEDGMENTS
We thank Thomas Barr, Alan Cox, and Scott Rixner for

providing valuable feedback and sharing with us their memory
simulator, which allowed us to reproduce and compare against
their results [9]. We thank the anonymous reviewers and
our shepherd, Alex Liu, for their feedback. This project has
received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement
No. 688386 (OPERA).

9. REFERENCES
[1] Transparent hugepage support. https://www.kernel.

org/doc/Documentation/vm/transhuge.txt, 2016.
Linux documentation page (Accessed: Apr 2016).

[2] Keith Adams and Ole Agesen. A comparison of
software and hardware techniques for x86 virtualization.
In ACM Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages
2–13, 2006.
http://dx.doi.org/10.1145/1168857.1168860.

[3] Jeongseob Ahn, Seongwook Jin, and Jaehyuk Huh.
Revisiting hardware-assisted page walks for virtualized
systems. In ACM/IEEE International Symposium on
Computer Architecture (ISCA), pages 476–487, 2012.
http://dx.doi.org/10.1145/2366231.2337214.

[4] AMD, Inc. AMD-V Nested Paging, 2008. White Paper
available at: http://developer.amd.com/wordpress/
media/2012/10/NPT-WP-11-final-TM.pdf. (Accessed:
Apr 2016).

[5] AMD, Inc. AMD64 Architecture Programmer’s Manual,
Volume 2, 2013.
http://amd-dev.wpengine.netdna-cdn.com/

wordpress/media/2012/10/24593_APM_v21.pdf.
(Accessed: Apr 2016).

[6] ARM Holdings. ARM Cortex-A53 MPCore Processor,
Technical Reference Manual, 2014.
http://infocenter.arm.com/help/topic/com.arm.

doc.ddi0500d/DDI0500D_cortex_a53_r0p2_trm.pdf.
(Accessed: Apr 2016).

[7] Vlastimil Babka and Petr Tůma. Investigating cache
parameters of x86 family processors. In SPEC
Benchmark Workshop on Comput. Performance

Evaluation and Benchmarking, pages 77–96, 2009.
http://dx.doi.org/10.1007/978-3-540-93799-9_5.

[8] David A. Bader, Jonathan Berry, Simon Kahan,
Richard Murphy, E. Jason Riedy, and Jeremiah
Willcock. Graph 500 benchmark.
http://www.graph500.org/specifications, 2011.
Version 1.2 (Accessed: Apr 2016).

[9] Thomas W. Barr, Alan L. Cox, and Scott Rixner.
Translation caching: Skip don’t walk (the page table).
In ACM/IEEE International Symposium on Computer
Architecture (ISCA), pages 48–59, 2010.
http://dx.doi.org/10.1145/1815961.1815970.

[10] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang,
Mark D. Hill, and Michael M. Swift. Efficient virtual
memory for big memory servers. In ACM/IEEE
International Symposium on Computer Architecture
(ISCA), pages 237–248, 2013.
http://dx.doi.org/10.1145/2485922.2485943.

[11] Ravi Bhargava, Benjamin Serebrin, Francesco Spadini,
and Srilatha Manne. Accelerating two-dimensional page
walks for virtualized systems. In ACM Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), pages 26–35, 2008.
http://dx.doi.org/10.1145/1346281.1346286.

[12] Nikhil Bhatia. Performance evaluation of AMD RVI
hardware assist. Technical report, VMware, Inc., 2009.
http://www.cse.iitd.ernet.in/~sbansal/

csl862-virt/2010/readings/RVI_performance.pdf.
(Accessed: Apr 2016).

[13] Nikhil Bhatia. Performance evaluation of Intel EPT
hardware assist. Technical report, VMware, Inc., 2009.
http://www.vmware.com/pdf/Perf_ESX_

Intel-EPT-eval.pdf. (Accessed: Apr 2016).

[14] Abhishek Bhattacharjee. Large-reach memory
management unit caches. In IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages
383–394, 2013.
http://dx.doi.org/10.1145/2540708.2540741.

[15] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to Algorithms.
The MIT Press, 3rd edition, 2009.

[16] Charlie Curtsinger and Emery D Berger. STABILIZER:
Statistically sound performance evaluation. In ACM
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 219–228, 2013.
http://dx.doi.org/10.1145/2451116.2451141.

[17] Cort Dougan, Paul Mackerras, and Victor Yodaiken.
Optimizing the idle task and other MMU tricks. In
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 229–237, 1999.
http://citeseerx.ist.psu.edu/viewdoc/summary?

doi=10.1.1.68.1609.

[18] Jayneel Gandhi, Arkaprava Basu, Mark D. Hill, and
Michael M. Swift. Efficient memory virtualization:
Reducing dimensionality of nested page walks. In
IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 178–189, 2014.
http://dx.doi.org/10.1109/MICRO.2014.37.

[19] Charles Gray, Matthew Chapman, Peter Chubb, David
Mosberger-Tang, and Gernot Heiser. Itanium: A
system implementor’s tale. In USENIX Annual
Technical Conference (ATC), pages 264–278, 2005.

349

https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://www.kernel.org/doc/Documentation/vm/transhuge.txt
http://dx.doi.org/10.1145/1168857.1168860
http://dx.doi.org/10.1145/2366231.2337214
http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1 1-final-TM.pdf
http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1 1-final-TM.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/24593_APM_v21.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/24593_APM_v21.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0500d/DDI0500D_cortex_a53_r0p2_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0500d/DDI0500D_cortex_a53_r0p2_trm.pdf
http://dx.doi.org/10.1007/978-3-540-93799-9_5
http://www.graph500.org/specifications
http://dx.doi.org/10.1145/1815961.1815970
http://dx.doi.org/10.1145/2485922.2485943
http://dx.doi.org/10.1145/1346281.1346286
http://www.cse.iitd.ernet.in/~sbansal/csl862-virt/2010/readings/RVI_performance.pdf
http://www.cse.iitd.ernet.in/~sbansal/csl862-virt/2010/readings/RVI_performance.pdf
http://www.vmware.com/pdf/Perf_ESX_Intel-EPT-eval.pdf
http://www.vmware.com/pdf/Perf_ESX_Intel-EPT-eval.pdf
http://dx.doi.org/10.1145/2540708.2540741
http://dx.doi.org/10.1145/2451116.2451141
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.68.1609
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.68.1609
http://dx.doi.org/10.1109/MICRO.2014.37

http://citeseerx.ist.psu.edu/viewdoc/summary?

doi=10.1.1.104.3059.

[20] John L. Henning. SPEC CPU2006 benchmark
descriptions. ACM SIGARCH Computer Architecture
News (CAN), 34(4):1–17, sep 2006.
http://dx.doi.org/10.1145/1186736.1186737.

[21] John L. Henning. SPEC CPU2006 memory footprint.
ACM SIGARCH Computer Architecture News (CAN),
35(1):84–89, mar 2007.
http://doi.acm.org/10.1145/1241601.1241618.

[22] Jerry Huck and Jim Hays. Architectural support for
translation table management in large address space
machines. In ACM/IEEE International Symposium on
Computer Architecture (ISCA), pages 39–50, 1993.
http://dx.doi.org/10.1145/165123.165128.

[23] IBM Corporation. PowerPC Microprocessor Family:
The Programming Environments Manual for 32 and
64-bit Microprocessors, 2005. https:
//wiki.alcf.anl.gov/images/f/fb/PowerPC_-_

Assembly_-_IBM_Programming_Environment_2.3.pdf.
(Accessed: Apr 2016).

[24] IBM Corporation. AIX Version 6.1 Performance
Management, first edition, 2007. http://ps-2.kev009.
com/basil.holloway/ALLPDF/sc23525300.pdf.
(Accessed: Apr 2016).

[25] Intel Corporation. Intel Itanium Architecture Software
Developer’s Manual, Volume 2, 2010.
http://tinyurl.com/itanium2. (Accessed: Apr 2016).

[26] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A, 2015.
http://tinyurl.com/intel-x86-3a. (Accessed: Apr
2016).

[27] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3B, 2015.
http://tinyurl.com/intel-x86-3b. (Accessed: Apr
2016).

[28] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3C, 2015.
http://tinyurl.com/intel-x86-3c. (Accessed: Apr
2016).

[29] Bruce L. Jacob and Trevor N. Mudge. A look at several
memory management units, TLB-refill mechanisms,
and page table organizations. In ACM Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), pages 295–306, 1998.
http://dx.doi.org/10.1145/291069.291065.

[30] David Koester and Bob Lucas. RandomAccess – GUPS
(Giga updates per second). http://icl.cs.utk.edu/
projectsfiles/hpcc/RandomAccess/. (Accessed: Apr
2016).

[31] Jun Min Lin, Yu Chen, Wenlong Li, Zhao Tang, and
Aamer Jaleel. Memory characterization of SPEC
CPU2006 benchmark suite. In Workshop for Computer
Architecture Evaluation using Commercial Workloads
(CAECW), 2008. http://www.jaleels.org/ajaleel/
publications/SPECanalysis.pdf. (Accessed: Apr
2016).

[32] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish
Patil, Artur Klauser, Geoff Lowney, Steven Wallace,

Vijay Janapa Reddi, and Kim Hazelwood. Pin:
Building customized program analysis tools with
dynamic instrumentation. In ACM International
Conference on Programming Languages Design and
Implementation (PLDI), pages 190–200, 2005.
http://dx.doi.org/10.1145/1065010.1065034.

[33] Piotr R Luszczek, David H Bailey, Jack J Dongarra,
Jeremy Kepner, Robert F Lucas, Rolf Rabenseifner,
and Daisuke Takahashi. The HPC challenge (HPCC)
benchmark suite. In ACM/IEEE International
Conference on High Performance Computing,
Networking, Storage and Analysis (SC), 2006.
http://dx.doi.org/10.1145/1188455.1188677. An
SC tutorial, available via http://icl.cs.utk.edu/

projectsfiles/hpcc/pubs/sc06_hpcc.pdf. (Accessed:
Apr 2016).

[34] Collin McCurdy, Alan L. Cox, and Jeffrey Vetter.
Investigating the TLB behavior of high-end scientific
applications on commodity microprocessors. In IEEE
International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 95–104, 2008.
http://dx.doi.org/10.1109/ISPASS.2008.4510742.

[35] Richard C. Murphy, Kyle B. Wheeler, and Brian W.
Barrett. Introducing the Graph 500. In Cray User
Group Conference (CUG), 2010.
https://cug.org/5-publications/proceedings_

attendee_lists/CUG10CD/pages/1-program/final_

program/CUG10_Proceedings/pages/authors/

11-15Wednesday/14C-Murphy-paper.pdf. (Accessed:
Apr 2016).

[36] Juan Navarro, Sitaram Iyer, Peter Druschel, and Alan
Cox. Practical, transparent operating system support
for superpages. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages
89–104, 2002.
http://dx.doi.org/10.1145/844128.844138.

[37] C. Ray Peng, Thomas A. Petersen, and Ron Clark. The
PowerPC architecture: 64-bit Power with 32-bit
compatibility. In IEEE Computer Society International
Computer Conference (COMPCON), pages 300–307,
1995.
http://dx.doi.org/10.1109/CMPCON.1995.512400.

[38] Cristan Szmajda and Gernot Heiser. Variable radix
page table: A page table for modern architectures. In
Advances in Computer Systems Architecture,
Asia-Pacific Conference (ACSAC), pages 290–304,
2003. http:
//dx.doi.org/10.1007/978-3-540-39864-6_24.

[39] M. Talluri, M. D. Hill, and Y. A. Khalidi. A new page
table for 64-bit address spaces. In ACM Symposium on
Operating Systems Principles (SOSP), pages 184–200,
1995. http://dx.doi.org/10.1145/224056.224071.

[40] Roland E. Wunderlich, Thomas F. Wenisch, Babak
Falsafi, and James C. Hoe. SMARTS: Accelerating
microarchitecture simulation via rigorous statistical
sampling. In ACM/IEEE International Symposium on
Computer Architecture (ISCA), pages 84–97, 2003.
http://dx.doi.org/10.1145/859618.859629.

350

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.104.3059
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.104.3059
http://dx.doi.org/10.1145/1186736.1186737
http://doi.acm.org/10.1145/1241601.1241618
http://dx.doi.org/10.1145/165123.165128
https://wiki.alcf.anl.gov/images/f/fb/PowerPC_-_Assembly_-_IBM_Programming_Environment_2.3.pdf
https://wiki.alcf.anl.gov/images/f/fb/PowerPC_-_Assembly_-_IBM_Programming_Environment_2.3.pdf
https://wiki.alcf.anl.gov/images/f/fb/PowerPC_-_Assembly_-_IBM_Programming_Environment_2.3.pdf
http://ps-2.kev009.com/basil.holloway/ALL PDF/sc23525300.pdf
http://ps-2.kev009.com/basil.holloway/ALL PDF/sc23525300.pdf
http://tinyurl.com/itanium2
http://tinyurl.com/intel-x86-3a
http://tinyurl.com/intel-x86-3b
http://tinyurl.com/intel-x86-3c
http://dx.doi.org/10.1145/291069.291065
http://icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess/
http://icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess/
http://www.jaleels.org/ajaleel/publications/SPECanalysis.pdf
http://www.jaleels.org/ajaleel/publications/SPECanalysis.pdf
http://dx.doi.org/10.1145/1065010.1065034
http://dx.doi.org/10.1145/1188455.1188677
http://icl.cs.utk.edu/projectsfiles/hpcc/pubs/sc06_hpcc.pdf
http://icl.cs.utk.edu/projectsfiles/hpcc/pubs/sc06_hpcc.pdf
http://dx.doi.org/10.1109/ISPASS.2008.4510742
https://cug.org/5-publications/proceedings_attendee_lists/CUG10CD/pages/1-program/final_program/CUG10_Proceedings/pages/authors/11-15Wednesday/14C-Murphy-paper.pdf
https://cug.org/5-publications/proceedings_attendee_lists/CUG10CD/pages/1-program/final_program/CUG10_Proceedings/pages/authors/11-15Wednesday/14C-Murphy-paper.pdf
https://cug.org/5-publications/proceedings_attendee_lists/CUG10CD/pages/1-program/final_program/CUG10_Proceedings/pages/authors/11-15Wednesday/14C-Murphy-paper.pdf
https://cug.org/5-publications/proceedings_attendee_lists/CUG10CD/pages/1-program/final_program/CUG10_Proceedings/pages/authors/11-15Wednesday/14C-Murphy-paper.pdf
http://dx.doi.org/10.1145/844128.844138
http://dx.doi.org/10.1109/CMPCON.1995.512400
http://dx.doi.org/10.1007/978-3-540-39864-6_24
http://dx.doi.org/10.1007/978-3-540-39864-6_24
http://dx.doi.org/10.1145/224056.224071
http://dx.doi.org/10.1145/859618.859629

