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Abstract
Even on modern SSDs, I/O scheduling is a first-order perfor-
mance concern. However, it is unclear how best to optimize
I/O patterns for SSDs, because a complex layer of proprietary
firmware hides many principal aspects of performance, as
well as SSD lifetime. Losing this information leads to re-
search papers drawing incorrect conclusions about prototype
systems, as well as real-world systems realizing sub-optimal
performance and lifetime. It is our position that a useful per-
formance model of a foundational system component is es-
sential, and the community should support efforts to construct
models of SSD performance. We show examples from the
literature and our own measurements that illustrate serious
limitations of current SSD modeling tools and disk statis-
tics. We observe an opportunity to resolve this problem by
reverse engineering SSDs, leveraging recent trends toward
component standardization within SSDs. This paper presents
a feasibility study and initial results to reverse engineer a
commercial SSD’s firmware, and discusses limitations and
open problems.

CCS Concepts • Hardware → External storage; • Soft-
ware and its engineering → Operating systems;
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1 Introduction
System designers need effective performance models for the
underlying persistent storage devices; there is a long history
of optimizations in file system and database design that try to
minimize seeks on tape [1–4] and on mechanical disks [5–7].
On tape or rotating disks, the performance model is largely
dictated by the mechanical components of the device, and
relatively easy to infer [8, 9]. Although HDDs have some
onboard firmware that can optimize requests, research has
shown repeatedly that the OS can further improve perfor-
mance by reordering requests before they are presented to the
underlying device, to better match the performance model of
the device [10, 11].

A number of papers have also demonstrated performance
improvements through better I/O scheduling on newer, flash-
based SSDs [12–15], despite the fact that SSDs are much
faster and have a narrower gap between sequential and ran-
dom I/O performance [16, 17]. For backward-compatibility
and faster adoption, SSDs present a logical block address
(LBA) interface comparable to an HDD, hiding performance-
relevant device internals.

Thus, system designers struggle to optimize performance
on SSDs without a good performance model. Worse, SSD ven-
dors have strong incentives to hide the performance, as well
as the wear-out rate of their devices. Although there are some
well-understood, hardware-level performance issues—such
as larger I/Os performing better than smaller ones [16, 18]
and bank-level parallelism [19, 20]—a complex flash transla-
tion layer (FTL) in device firmware can also create significant
performance and lifetime artifacts that are hard to optimize
for. In particular, this firmware can create artifacts that affect
the variance of writes. Such variance can be particularly irri-
tating in a system where a write can go to a different device
or location to avoid an FTL-internal delay [21, 22]. Similarly,
embedded and safety-critical systems often use flash, and
care more about predictability and real-time deadlines than
best-case performance; unpredictable, FTL-induced variance
leads to otherwise needless pessimism in the analysis and
over-provisioning of hardware [23, 24]. From the vendors’
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perspective, there is little incentive to disclose FTL details
to researchers outside of a strict non-disclosure agreement
(NDA), as the FTL is a primary value-add over competitors
and typically a trade secret. As a result, a number of papers
have reported performance artifacts that they cannot explain
without device internals [18, 25–27]. In short, we have a sit-
uation where system designers routinely face performance
issues they cannot understand without better visibility into
FTL behavior.

Consequently, researchers and storage practitioners often
resort to various heuristics and conclusions based on observa-
tions [16, 27–31] rather than making well-informed decisions.
Section 2 illustrates this issue with examples from recent lit-
erature. We further discuss the limitations of SSD modeling
and show that, even with advanced statistics, it is difficult to
accurately predict basic SSD behaviors, such as write amplifi-
cation.

It is our position that we should not have such a foun-
dational part of modern computer systems be so poorly un-
derstood by the community. To be clear, our position is not
necessarily against closed-source implementations of device
firmware, but that such firmware must provide enough per-
formance transparency to enable designers to optimize the
system’s I/O behavior. For example, recently proposed open-
channel SSDs [32, 33] expose the FTL logic to the host, yield-
ing highly predictable I/O performance with perfect schedul-
ing decisions, presenting an upper bound on the improvement
potential for SSD transparency. Although understandable, the
performance opacity of most SSDs forces system designers
to leave performance on the table. We argue that vendors
must find a middle ground between protecting the intellectual
property of their devices and users’ need for performance
transparency. If vendors will not provide this information, the
community should support efforts to derive it by methods
such as measurement and reverse engineering.

This paper further argues that there are new opportunities
for reverse engineering SSD behavior, which we discuss in
Section 3. The first opportunity lies in the industry-wide stan-
dardization of flash package interfacing [34]. We show how,
by tracking the electrical signal communication between the
SSD’s micro-controller and flash packages, we may be able
to indirectly infer the policies and mechanisms employed by
the device’s firmware.

Another, more direct path to understanding SSD inner
workings lies in recent work that exploits standardization of
component interfaces within the SSD; prior work has looked
at this as an avenue for security exploitation [35, 36]. These
projects cleverly exploited a combination of firmware binary
decompilation and common hardware debugging interfaces
to hack SSDs. This paper describes an initial application
of this method to a commercial SSD. Our findings uncover
basic details of the firmware’s translation layer and request
handling.
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Figure 1. File systems age variably for different SSD models.
Reproduced with permission from [25].

2 Motivation
Modern SSDs are a complex embedded hardware platform,
including a multi-core micro-controller that processes host
I/O requests, and drives multiple, physical flash packages.
SSDs employ large RAM caches and utilize hardware accel-
erators to reduce various computational overheads, such as
parity calculation.

SSD FTLs map logical addresses to physical flash pages [37].
Because physical flash pages can only be written once with-
out erasing a larger block, this logical-to-physical mapping
is needed to emulate overwriting a logical block by writ-
ing that logical block to a new physical location. FTLs are
also responsible for many important maintenance tasks, most
notably reclaiming space to make way for incoming write
requests [22, 38–43]. Furthermore, since flash memories are
increasingly constrained in the number of writes they can
endure [29, 30, 44, 45], FTLs employ a plethora of methods
to extend SSD lifetime [46].

The increasing complexity of SSDs has driven a large body
of research on SSD design optimizations to improve perfor-
mance, power efficiency, and lifetime. Despite these efforts,
we know precious little about where real-life devices fit in
this design space. Perfect knowledge of the SSD’s FTL has
the potential for significant improvements in various perfor-
mance and lifetime aspects, as demonstrated in open-channel
SSDs [32, 33]. For instance, by leveraging SSD internals
exposed by an open-channel SSD, Wang et al. improve Lev-
elDB performance by more than 4× [47]. Although tradi-
tional SSDs and FTLs are just as complex as their open-
channel counterparts, their internal scheduling decisions are
sub-optimal by design, as the FTL lacks context for likely
future accesses or relative priority among concurrent requests.

Not understanding how commercial SSDs work has long
frustrated researchers and led to inaccurate, inconsistent, or
inconclusive results. For example, the authors of F2FS [48]
explored data fragmentation and concluded that “F2FS main-
tained the performance improvement ratio of two or more over
EXT4 across the board” over aged and unaged file systems
and devices. However, more recently, Kadekodi et al. [25]
explored the performance variance in aging SSDs and con-
cluded that “since FTLs are proprietary, users typically have
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Figure 2. Intra-SSD compression schemes incur a variable
number of flash writes per OLTP transaction, normalized to
the re-bp32 scheme [49].

no insight into how well (or poorly) an FTL has aged”. Specif-
ically, Kadekodi et al. reproduced the simulated file server
experiment from the F2FS paper [48] using more devices
and aging profiles. Figure 1 (based on their Figure 7 [25])
illustrates their results for a 64GB and 120GB SSD, when
the system is unaged (U) and following two different aging
processes (A and M). This result indicates that, contrary to
the result in the F2FS paper [48], the performance ratio can
vary significantly for different SSD models as the system ages.
Similarly, Conway et al. [18] conclude that “the gap between
sequential and random I/O speeds [in SSDs] is hard to explain
conclusively without vendor support” when trying to explain
how file system fragmentation affects SSDs. Hao et al. [26]
also find that SSDs from some vendors display “much less
performance stability”.

Another illustration of the importance of understanding
FTL internals pertains to intra-SSD compression, a known
technique used in commercial SSDs [50, 51] to reduce physi-
cal writes [46, 49, 52]. Zuck et al. [49] explored the effective-
ness of different intra-SSD compression schemes under OLTP
workloads. For example, chunk4 compresses 16KB worth of
data together, while the compact method straightforwardly
compresses each incoming 4KB request separately and writes
it to the log’s head. Figure 2 illustrates that, for highly com-
pressible data, different schemes can result in up to 156%
more writes to flash than optimal for every OLTP transaction.
Consequently, this internal, implementation-specific, FTL fea-
ture can significantly affect device lifetime and performance.

2.1 SSD Models are Low Fidelity
Modeling is an important tool in predicting device behaviors
and understanding their internals. However, SSDs are difficult
to model accurately for several reasons. First, some mecha-
nisms are only used during periods of inactivity, making them
virtually “unpredictable background operations” [28]. Some
notable examples include idle-time garbage collection [53],
page refreshing [54, 55], and self-healing [56, 57] for which
the extent of use in commercial products is unknown.

Second, some modeling tools rely on speculation or propri-
etary knowledge, which may not necessarily apply to different
SSD models. For example, the recently proposed MQSim [58]

Figure 3. 99th percentile random write latencies for synthetic
random write workloads for different FTLs. Requests are
ordered in x-axis by latency.

tool verified its accuracy for several commercial SSDs by “en-
abling all of the advanced GC mechanisms”, and using prior
knowledge of the on-board DRAM as well as “the specifi-
cations of the flash chips used in two of the SSD devices”.
Unfortunately, knowledge on memory and flash specifications
is typically only available under strict NDAs. Furthermore, it
is not clear which garbage collection mechanisms are imple-
mented in a given SSD model.

Finally, and crucially, the increasingly proprietary and com-
plex nature of SSDs makes it difficult to correctly understand
their internal mechanisms. Consequently, the accuracy of
some tools is often rebutted by succeeding works [58, 59].
For example, VSSIM [60] claimed to model an existing SSD
with “3% performance offset” but is deemed highly inac-
curate by MQSim [58] and ”not scalable” by its direct suc-
cessor FEMU [59], which claims up to 38% performance
inaccuracy. Many tools self-validate on only one or no real
devices [28, 59–61]. Even tools that were self-validated on
several devices can have trouble achieving high fidelity. For
example, SSDCheck [14] reports poor tail-latency fidelity,
stating that “the lack of publicly available information along
with the complex SSD behaviors makes it extremely diffi-
cult to construct an accurate performance model for modern
SSDs”.

To illustrate, we repeated one of MQSim’s verification
experiments by measuring the response times for synthetic
random write workloads with increasing I/O request sizes.
We repeated the experiment while varying three basic, write-
related design features of the simulated FTL versus the base-
line configuration: namely, the garbage collection block se-
lection policy [62] (randomized-greedy algorithm or greedy),
write cache designation (data or mapping metadata), and the
page allocation scheme [63] (CWDP or PDWC). As a point
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of reference, the authors of MQSim consider up to an 18%
difference between the model and measured performance
to “accurately model the performance of real SSDs” [58].
Our tested configurations represent fundamentally different
FTLs and demonstrated performance differences only slightly
higher than the 18% threshold, indicating that many high-
order differences in FTL behavior are within the margin of
error for an SSD simulator.

The main take-away, as Figure 3 illustrates, is that the 99th
percentile latency response times are highly variable—up
to an order of magnitude difference, depending on the FTL
behavior. These results suggest that MQSim may also suffer
from poor fidelity in emulating the worst cases—precisely
what developers need the model for.

2.2 Black-Box Analysis is Error Prone
It is also difficult to accurately model SSDs solely through
observing external performance metrics, such as latency and
throughput, or even through advanced profiling information,
As an example, we investigate the write amplification on a
Crucial MX500 SSD. Unlike most drives [27, 64] the MX500
exposes fine-grained write behavior via S.M.A.R.T. statistics,
namely “Host Program Page Count” and “FTL Program Page
Count”, both measured in “NAND Pages,” according to the
drive’s documentation.

To understand the size of a NAND Page, we first ran a
simple, sequential write test of increasing sizes, and divided
the host-level write size by the number of NAND page writes
reported by the FTL. Figure 4a illustrates that the ratio of
host-level writes to NAND writes converges at about 30 KB
per NAND page, most likely due to RAIN redundancy [43].

Next we ran three different random write workloads on the
SSD in its priming stage using the fio benchmarking tool [65].
To reduce interference, each workload managed its own sepa-
rate section of the logical address space. The first workload
issued 4KB requests distributed uniformly and randomly over
the LBA space; the second issued 4KB requests using an
80-20 distribution (80% of writes directed to 20% of the LBA
space); and the third issued 16KB uniformly random requests.

Figure 5. Signal diagram of a flash chip command execution
extracted from an OCZ Vertex II SSD.

We ran these workloads separately in 5 minute runs. Finally,
we ran all workloads concurrently in a fourth run. We mon-
itored S.M.A.R.T statistics during all runs to measure their
resulting write amplification factor (WAF).

Figure 4b illustrates the WAF for each workload. We cal-
culate the expected WAF of the combined fourth run as an
average WAF: each sub-workload’s WAF is weighted by the
number of IOPS the sub-workload issues. This weighting is
based on the assumption that FTL metadata write operations
are similar for each type of request, regardless of any con-
current operations or the workload type. The results show
that, instead of an expected WAF of 0.56, we measure a WAF
factor of 0.9 in the mixed run.

Thus, even in this controlled, relatively simple setting, it
is unclear how to attribute this increase in WAF to each indi-
vidual workload. More generally, an attempt to extrapolate
expected behavior from black-box measurements was off by
nearly a factor of two. Without a better performance model,
it is hard to know whether a given set of SSD measurements
is representative.

3 Reverse Engineering SSDs
This section discusses two approaches to reverse engineer
SSDs. We describe a proof of concept for each proposed
method on a commercial SSD, discuss their limitations, and
provide initial results on the internals of a real-life SSD.

3.1 Hardware Probes
Flash packages are driven by a controller which issues com-
mands through electrical signals to package pinouts. Over
the years, the flash packages, pinouts, and command sets of
major flash vendors have consolidated onto similar forms. In
2006 the major flash vendors formed the Open NAND Flash
Interface [66] (ONFI) workgroup in order to create a “chip-
level standard interface for the attachment of NAND Flash
memory to host systems”.

This standardization can be utilized for reverse engineer-
ing SSDs. By attaching probes to the I/O pinouts of a flash
package we can track the high-frequency electrical signals
between the micro-controller and the package. Using care-
fully orchestrated workloads, we can monitor the ensuing
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command sequences to the flash packages, and from there,
potentially infer firmware polices and mechanisms from how
high-level operations map onto and low-level operations.

We demonstrate the applicability of this technique using
a single flash package from an OCZ Vertex II 55GB SSD
model [67]. We were able to attach probes to all relevant
pinouts, safely attach a hardware bridge and extend these
probes to a high-end logic analyzer [68]. Next, we verified
that the device continues to respond and service commands
without malfunctioning, while collecting traces of electrical
signals from its ONFI 2.1-compliant flash package pinouts.
To illustrate, we instructed the logic analyzer to collect data
while we format the SSD with an NTFS file system. Figure 5
shows a sample of the collected trace. At first the signals
are flat. Next, we see a short burst of activity, both on the
control and data lines, followed by a long burst of data-only
transfer in less than 1ms. This burst is most likely correlated
to a page write operation which includes an initial command
and address input stage, followed by a data transfer stage.

During our investigation, we concluded that there are sev-
eral technical constraints in applying our proposed technique.
Flash packages and SSDs continue to shrink in size. Many
modern flash module packages use ball-grid arrays (BGA)
whose pinouts are located on the bottom of the package. Elec-
trical delays inserted by the tracing setup may cause the device
to malfunction. Packages and pinouts may be coat-protected.
These technical obstacles can all be overcome with special
equipment and expertise, but may impede the wide-spread
use of this method.

Another obstacle is that modern, high-end SSDs can serve
hundreds of thousands of requests per second using chips
operating at frequencies of hundreds of MHz. Consequently,
the probing hardware must be able to handle high-rate tracing
and data collection. For example, a suitable logic analyzer
costs around $20,000. Finally, and crucially, this technique
does not apply to the on-board DRAM cache, which includes
data structures and other information that is essential to un-
derstanding SSD behavior.

3.2 SSD Hacking
Many embedded systems, including SSD hardware and firm-
ware, have a JTAG-compliant hardware debugging interface [69].
JTAG is an industry standard for testing circuit boards. Us-
ing JTAG, SSD developers can inspect and modify on-board
memory contents, as well as break and step through code
execution.

Post-production JTAG interfaces are often left on the SSD
board for possible future data recovery and failure analysis.
Several recent works demonstrated how to exploit these debug
ports as a security vulnerability [35, 36], for example, by
accessing the contents of on-board DRAM and firmware to
break device-level encryption.

These security vulnerabilities present new opportunities
for systems researchers for understanding SSD internals. We

SATA 

Controller 

RAM Flash

GND TD0 TDI TCK TMS

JTAG pinouts

Figure 6. Teardown of the Samsung EVO 840 SSD hardware
components and JTAG pinouts.

demonstrate the potential of this approach on a commercial
SSD, the Samsung 840 EVO 250GB [70]. The 840 EVO
board has a JTAG interface, whose pinout has been previously
reverse engineered [71], as illustrated in Figure 6. Given the
pinout, one can drive the on-board debug hardware from an
external computer, not unlike debugging through GDB on a
closed binary.

We drove the SSD from a Novena platform [72] with
Linux kernel 4.4 via Linux’s pin control subsystem [73],
which we attached to the SSD’s JTAG pins. Next, we down-
loaded firmware updates for our drive and used an existing
tool to de-obfuscate the retrieved image [74] and used the
OpenOCD [75] debugging tool to gain access to the device’s
memory and various program counters. Finally, through a
combination of the code memory map, disassembling and
decompiling the firmware binary, and carefully tracing single-
sector accesses, we were able to reverse engineer several key
features of the device’s FTL.

CPU and Flash controller. The controller CPU is an ARM
tri-core Cortex-R4. By tracing core activities we observed
that one core is dedicated for servicing SATA requests and
communication with the host. The remaining cores each man-
age four out of the device’s eight channels by dividing I/O
requests according to each 4KB LBA’s least significant bit.
A dedicated flash controller issues commands to the flash
packages, and, commensurate with state of the art literature
on SSD power efficiency [76], this controller is turned off
during idle times to save power.

Translation Map. The FTL’s translation map is composed of
eight large arrays dedicated to mapping LBAs to their corre-
sponding physical address. Each core manages four arrays.
An additional hashed index is used, presumably to map ad-
dresses in the device’s pseudo-SLC buffer. With a capacity of
250GB, the device’s logical address space is effectively com-
posed of 65M logical addresses. Since each translation entry
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only requires log2 65M = 26b, the translation map theoreti-
cally requires only 221MB of on-board memory. However, the
mapping table occupies 264MB out of the device’s 512MB of
on-board memory. We observed some effort to pack the map-
ping into smaller than 4B logical words, but it did not seem
to be as tight as 26b per word; at the time of submission, we
did not fully understand the mapping table format. The SSD
does not use DRAM to cache data; investigation is ongoing
into how the remaining memory is used.

The translation map is persistently stored on flash. The
map is divided into chunks, each mapping 117.5MB of the
logical address space. A mapping chunk is only loaded on
demand, presumably to reduce device boot time.

4 Related Work
A large body of work conjectures SSD internals using black-
box analysis and correlative observations. Jung et al. [16]
performed systematic tests on various SSDs in order to empir-
ically assert expected SSD behaviors for basic access patterns.
Bonetti et al. [77] performed black-box analysis, for foren-
sic analysis and to explore the effectiveness of data erasures.
Hao et al. [78] correlate many causal factors affecting the
performance of SSDs over time. He et al. [28] used a simi-
lar approach to create an “unwritten contract” between file
systems and SSDs. Most recently, SSDCheck [14] proposed
ways to extract some basic SSD features, such as write buffer
size and number of internal volumes, using carefully manipu-
lated access patterns.

There have several recent attempts to reverse engineer stor-
age systems. The Skylight project [79] reverse engineered
SMR disk internals by closely inspecting the drive’s head
movements during operation. Boboila et al. [80] reverse engi-
neered FTLs of several older generation USB sticks by tracing
communication from the micro-controller to flash chips. As
expected for these simple devices, their findings show triv-
ial garbage collection, mapping schemes, and wear leveling
policies.

History and Ethics of Reverse Engineering. Reverse engi-
neering computer software and hardware has a rich history.
Many have tried to reverse engineer embedded devices (other
than SSDs) of varying complexity to demonstrate security
vulnerabilities. Recent examples include hard drives [81],
smart light bulbs [82], fitness trackers [83], printers [84], and
more [85, 86]. These efforts demonstrate that one can gain
useful insights with reasonable effort.

The legality of reverse engineering varies according to each
country’s laws. Most notably, the US Digital Millennium
Copyright Act (DMCA) criminalizes reverse engineering or
circumventing software designed to protect copyrighted digi-
tal content, such as movies and music. A particularly relevant
case law is Lexmark v. Static Control Components, where
the court held that reverse engineering printer cartridge au-
thentication firmware did not violate the DMCA [87]. Other

precedents deem such efforts legal as long as they “improve
interoperability with other components” [90]. Patent protec-
tion is generally not applicable to protecting secrecy of a
technique, as obtaining a patent requires disclosing the key
techniques as part of the patent application, in exchange for a
limited monopoly on the technique.

In terms of ethics, a key open question is how to balance
the need to protect trade secrets of storage vendors, so that
they can continue to profitably build devices, with the need of
the research community and practitioners to understand and
improve upon the state of the art. We note that having well
grounded science, which is largely funded by taxpayers, is a
significant public interest. It is not clear whether the degree of
secrecy around SSD firmware is strictly needed to maintain
commercial viability, and a mutually beneficial “middle path”
could involve vendors disclosing more detailed performance
models. A related issue is responsible disclosure of vulnera-
bilities; in this case, we used already public information. In
cases where one discovers a new vulnerability, care should be
taken in how this information is publicized [91, 92].

5 Conclusions
Researchers and system designers are often left in the dark
when it comes to the proprietary mechanisms employed in
commercial SSDs. Our results indicate that many current
performance modeling techniques can be very inaccurate;
without more insight into firmware behavior, it is difficult to
know whether a sample of measurements is representative.
Until vendors commonly open flash internals, as with open-
channel SSDs, the next most promising option is to support
reverse engineering efforts. Our preliminary study, as well as
technology trends, indicate that exploiting the JTAG interface
is the most promising option.
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