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Abstract
Malicious I/O devices might compromise the OS using
DMAs. The OS therefore utilizes the IOMMU to map and
unmap every target buffer right before and after its DMA
is processed, thereby restricting DMAs to their designated
locations. This usage model, however, is not truly secure for
two reasons: (1) it provides protection at page granularity
only, whereas DMA buffers can reside on the same page as
other data; and (2) it delays DMA buffer unmaps due to per-
formance considerations, creating a vulnerability window in
which devices can access in-use memory.

We propose that OSes utilize the IOMMU differently,
in a manner that eliminates these two flaws. Our new us-
age model restricts device access to a set of shadow DMA
buffers that are never unmapped, and it copies DMAed data
to/from these buffers, thus providing sub-page protection
while eliminating the aforementioned vulnerability window.
Our key insight is that the cost of interacting with, and syn-
chronizing access to the slow IOMMU hardware—required
for zero-copy protection against devices—make copying
preferable to zero-copying.

We implement our model in Linux and evaluate it with
standard networking benchmarks utilizing a 40 Gb/s NIC.
We demonstrate that despite being more secure than the
safest preexisting usage model, our approach provides up to
5× higher throughput. Additionally, whereas it is inherently
less scalable than an IOMMU-less (unprotected) system, our
approach incurs only 0%–25% performance degradation in
comparison.

Categories and Subject Descriptors D.1.3 [Operating Sys-
tems]: Security and Protection
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1. Introduction
Computer systems face the threat of a DMA attack [8, 45]
in which a hardware device compromises the host system
using direct memory access (DMA) operations to arbitrary
physical memory locations. An attacker can mount a DMA
attack by (1) remotely taking over a device, e.g., by ex-
ploiting a network interface card (NIC) firmware vulnerabil-
ity [20, 21], or (2) physically introducing a malicious device,
e.g., by intercepting hardware shipments [3] or plugging in a
malicious iPod [8, 11, 12, 19]. The attacking device can then
use DMAs to gain access to the host OS [8, 11, 12, 19, 20],
install a backdoor [3, 16, 47], steal sensitive data [11, 12, 17,
19, 45], or crash the system [33, 46]. An errant device [33] or
buggy driver [9, 18, 23, 49] might also inadvertently mount
a DMA attack.

OSes leverage hardware I/O memory management units
(IOMMUs) [5, 7, 25, 30] to implement intra-OS protec-
tion [50] and prevent arbitrary DMAs. The IOMMU treats
the address in a DMA as an I/O virtual address (IOVA) [36]
and maps it to a physical address using OS-provided map-
pings, blocking the DMA if no mapping exists. OSes use
transient IOMMU mappings that restrict device DMAs only
to valid DMA targets [6, 14, 26, 39]. The OS maps a DMA
buffer when a driver requests a DMA. The device now
“owns” the buffer and OS code may not access it. When
the device notifies the OS that the DMA has completed,
the OS destroys the mapping—preventing further device
access—and OS code may access the buffer again. Sys-
tems that isolate drivers as untrusted out-of-kernel compo-
nents [15, 23, 35, 43] apply the same technique to protect
data in the trusted kernel.

In practice, unfortunately, implementations of the above
intra-OS protection design do not fully protect from DMA
attacks. They suffer from two problems: lack of sub-page
protection and providing only deferred protection.

No sub-page protection IOMMU protection works at the
granularity of pages [5, 7, 25, 30]. Mapped data—e.g., net-
work packets—is usually allocated with standard kernel
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Figure 1: IOMMU-based OS protection cost: Linux TCP through-
put (1500 B packets) over 40 Gb/s ethernet, measured with sin-
gle/multiple netperf instances. (copy is our intra-OS protection;
identity± is recent work [42] tackling another Linux bottleneck.)

malloc, which can satisfy multiple allocations from the
same page [13]. Thus, sensitive data that should not be ac-
cessible to the device may get co-located on a page IOMMU-
mapped for a device.

Deferred protection Unmapping an IOVA requires inval-
idating the IOTLB, a TLB that caches IOMMU mappings.
IOTLB invalidation is expensive, e.g., requiring ≈ 2000 cy-
cles on an Intel Sandy Bridge machine [37]. Worse, IOTLB
interaction is serialized with a lock, which becomes a bottle-
neck for concurrent IOTLB invalidations [42]. As a result,
OSes by default implement deferred protection, in which
IOTLB invalidations are batched to amortize their cost, in-
stead of strict protection that invalidates on each unmap. Fig-
ure 1 depicts the issue for Linux, our case study here, and
followup work [42] that attempted to address it; other OSes
make similar trade-offs [42].

Deferred protection weakens security by creating a win-
dow in which a device can access unmapped IOVAs that
have since been reused. While exploiting this window is
not in the scope of this paper, we remark that it is not
theoretical—we have been able to crash Linux using it.

True DMA attack protection We propose an alterna-
tive intra-OS protection design addressing the two flaws
above. We use the IOMMU to restrict device access to a
set of permanently-mapped shadow DMA buffers and copy
DMAed data to/from these buffers, thereby achieving byte-
granularity protection while never needing to invalidate the
IOTLB. Our key insight is that copying is typically cheaper
than invalidating the IOTLB, for two reasons. First, in many
I/O workloads DMA buffers are simply small enough that
copying them costs less than an IOTLB invalidation—e.g.,
1500-byte ethernet packets. Second, in multicore workloads,
the IOTLB-related lock contention under strict protection
significantly increases invalidation costs and makes even
larger copies, such as 64 KB, profitable.

Still, copying huge DMA buffers costs more than an
IOTLB invalidation. Huge buffers, however, occur in work-
loads such as GPU usage, whose DMA frequency is low

iommu sub- no single multi
protection page vulnerability core core
model protect window perf. perf.
strict Linux 7 3 7 7

FAST’15 [38] 7 3 3 7
ATC’15 [42] 7 3 3 7

defer Linux 7 7 @3 7
FAST’15 [38] 7 7 3 7
ATC’15 [42] 7 7 3 3

copy (shadow buffers) 3 3 3 3

Table 1: Our contribution relative to the state of the art.

enough that the standard zero-copy strict protection does not
incur much overhead. (Basically, most time is spent on data
transfer/processing.) In these cases, we copy only the sub-
page head/tail of the buffer (if any), and map/unmap the rest.

Performance We focus on 40 Gb/s networking, as it rep-
resents demanding I/O workloads that trigger millions of
DMAs per second. We evaluate our design in Linux using
standard networking benchmarks. Our protection scheme
achieves comparable throughput to state-of-the-art deferred
protection [42]—which is less secure—and provides through-
put 5× higher relative to strict protection—which is still less
secure—while reducing CPU consumption by up to 2.5×.

The maximal I/O throughput that our protection scheme
can scale to is inherently less than the throughput achiev-
able in a native execution without an IOMMU, due to the
CPU and memory traffic overhead incurred by copying. (For
example, if the native execution requires 100% CPU to sus-
tain the I/O throughput, our scheme’s overhead would lead
to reduced throughput.) We show, however, that on modern
hardware our scheme scales to the demanding 40 Gb/s rates:
it incurs only 0–25% throughput degradation and less than
20% increased CPU use.

Contributions To summarize, we make three contribu-
tions: (1) observing that copying DMA buffers is preferable
to IOTLB invalidation; (2) providing a truly secure, fast, and
scalable intra-OS protection scheme with strict sub-page
safety; and (3) implementing the new scheme in Linux and
evaluating it with networking workloads at 40 Gb/s. Table
1 highlights the differences between our newly proposed
scheme and the state-of-the-art (further deails provided be-
low).

2. Background: IOMMU-Based OS
Protection

IOMMUs prevent DMAs not authorized by the OS from
accessing main memory (see § 2.1). IOMMUs can provide
inter- and intra-OS protection [48, 50]. Inter-OS protection
is used by hypervisors to prevent a guest OS from directing
DMAs at the memory of another guest OS or of the hyper-
visor. This form of protection uses static IOMMU mappings
that reflect a guest’s physical-to-host address mappings [50].
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It thus does not frequently change IOMMU mappings and is
not our focus. We focus on intra-OS protection, in which
the OS protects itself from attacks by devices (§ 2.2).

2.1 IOMMU Operation
We describe the IOMMU operation in the Intel x86 archi-
tecture [30]; other architectures are similar [5, 7, 25]. The
IOMMU treats the target address of a DMA as an I/O virtual
address (IOVA) [36] and attempts to translate it to a physi-
cal address. Translations are done based on per-device IOVA
mappings that the OS creates, which also include the type
of access allowed to the mapped IOVA—read, write or both.
The DMA is then routed to the physical address to which its
IOVA maps; if no valid mapping exists, the DMA is blocked
and the OS is notified. IOVA mappings are at page granular-
ity; they are maintained in a per-device page table (similar
to a standard MMU page table).

The IOMMU has an IOTLB that caches IOVA mappings.
The OS must therefore invalidate any IOTLB entries asso-
ciated with an IOVA mapping after modifying or destroying
the mapping. The IOMMU supports both global invalida-
tions, which invalidate every cached mappings, and invalida-
tions of specific IOVA pages (i.e., at page granularity). The
OS invalidates the IOTLB by posting an invalidation com-
mand to the IOMMU’s invalidation queue, a cyclic buffer in
memory from which the IOMMU reads and asynchronously
processes IOMMU commands. The OS can arrange to be
notified when the invalidation completes. It does this by
posting an invalidation notification instructing the IOMMU
to update a memory location after invalidating the IOTLB,
which allows the OS to busy wait on this location.

2.2 Intra-OS Protection via the DMA API
OSes base IOMMU-based intra-OS protection on a DMA
API [6, 14, 26, 39] that a driver must use to authorize an
expected DMA. The basic idea is that, before programming
a device to issue a DMA to some buffer, the driver invokes a
dma map call to map the buffer in the IOMMU. Once the
DMA completes, the driver invokes a dma unmap call to
destroy the mapping.1 We describe the Linux DMA API [14,
36, 40] in detail; other OSes are similar [6, 26, 39].
• dma map: This operation receives a buffer’s address and
size, as well as desired device access rights (read, write or
both). It allocates a sufficiently large IOVA interval I from
the device’s IOVA space, creates a mapping from I to the
buffer in the device’s IOMMU page table, and returns I’s
starting IOVA. From this point, the device can access the
buffer and so the OS/driver are not allowed to modify the
buffer and should not expect to read valid data from it.
• dma unmap: This operation receives an IOVA that maps
to a DMA buffer. It unmaps the buffer in the IOMMU by
looking up the IOVA interval I containing the IOVA and then

1 The API also has map/unmap operations for non-consecutive scatter/gatter
lists, which work analogously.

removing the mappings of I from the device’s IOMMU page
table. I is deallocated, so that future dma map calls can reuse
it. From this point, the driver/OS can access the buffer again,
and the device should not attempt to access any IOVA in I.
• dma alloc coherent of shared buffers: DMA buffers
through which a driver posts commands and receives re-
sponses, such as DMA descriptor rings and “mailbox”
data structures, need to be accessed simultaneously by
both driver and device. The dma alloc coherent opera-
tion facilitates this—it allocates memory for such use and
maps it in the IOMMU. The driver/OS can access this
memory but must do so defensively, since the device can
also access it. dma alloc coherent allocates memory in
pages, and so the pages of a buffer it allocates are never
shared with any other allocation. Buffers allocated with
dma alloc coherent are freed using dma free coherent,
at which point they are unmapped as in dma unmap.

2.2.1 Strict vs. Deferred Protection
To prevent a device from accessing an unmapped buffer,
dma unmap must invalidate the IOTLB after removing an
IOVA mapping from the IOMMU page table. IOTLB inval-
idation is an expensive operation for two reasons: First, the
hardware is slow—invalidation can take ≈ 2000 cycles to
complete [37]. Second, the IOMMU invalidation queue is
protected by a lock, which becomes a bottleneck for concur-
rent IOTLB invalidations [42].

As a result, strict protection—in which an dma unmap in-
validates the IOTLB—adds prohibitive overheads for high-
throughput I/O workloads such as 10–40 Gb/s network-
ing (§ 6). These workloads generate millions of DMAs per
second, and often run on multiple cores because the desired
throughput cannot be achieved by a single core [34].

To avoid these overheads, OSes by default trade off
security for performance and use deferred protection, in
which the IOTLB is invalidated asynchronously after the
dma unmap returns. In Linux, for example, dma unmap

batches IOTLB invalidations by adding the unmapped IO-
VAs to a global list. The IOTLB is then invalidated af-
ter batching 250 invalidations or every 10 milliseconds,
whichever occurs first. The unmapped IOVAs are also deal-
located at this time, so that they can be reused later. Other
OSes make similar compromises [42].

Unfortunately, this approach still imposes unacceptable
overheads on multi-core workloads, because the global list
of pending invalidations is itself lock-protected and becomes
a bottleneck [42]. To address this, IOTLB invalidations must
be batched locally on each core instead of globally [42].
This, however, increases the vulnerability window in which
a device can access unmapped IOVAs [42].

3. Assumptions & Attacker Model
Assumptions Our focus is protecting the OS from unau-
thorized DMAs to targets not mapped with the DMA API
(see § 2.2). Attacks carried out with authorized DMAs—
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e.g., a malicious disk tampering with file contents—are out
of scope. Peer-to-peer attacks mounted by a device against
another device [53] are also out of scope, as peer-to-peer
traffic does not go through the IOMMU. 2 We do not con-
sider interrupt-based attacks [51], which are prevented with
low overhead using the IOMMU’s interrupt remapping fea-
ture [53].

We assume that the IOMMU is secure and trustworthy.
We also assume that it correctly identifies the device issu-
ing a DMA (i.e., DMAs cannot be spoofed)—this holds on
PCIe-only systems and systems that do not have multiple
devices behind PCI or PCI-to-PCIe bridges [44, 53]. Finally,
we assume that the IOMMU prevents DMAs from compro-
mising the OS during boot—this is true on platforms with a
secure boot process, e.g., Intel’s TXT feature [1, 28].

Attacker model The attacker controls a set of DMA-
capable hardware devices but cannot otherwise access the
OS. 3 We thus assume that device drivers are trusted—in
particular, to correctly use the DMA API—which is the case
in the commodity OSes we focus on. Note, however, that our
shadow buffers design can be implemented in systems that
isolate drivers as untrusted components [15, 23, 35, 43], in
which case this assumption is not needed.

4. Current Intra-OS Protection Weaknesses
The current Intra-OS protection deployed by commodity
OSes does not fully protect from DMA attacks, due to two
weaknesses: lack of sub-page protection and providing only
deferred protection by default.

No sub-page protection Because IOMMU protection works
at page-level granularity (§ 2.1), it cannot protect memory at
the byte-level granularity specified by the DMA API. Thus,
a device can access any data co-located on a page in which
a DMA buffer begins or ends. DMA buffers are typically al-
located with standard kernel malloc calls, which co-locate
multiple allocations on the same page [13]. This makes it
possible for data that should not be accessible to the device
to reside on a page that gets mapped in the IOMMU.

We argue that addressing this weakness by fixing the rel-
evant malloc callers to allocate DMA buffers in quantities
of pages will be hard and problematic. First, one would have
to reason about every malloc() call and determine if a sub-
set of the buffer could end up being used for DMA, because
DMA buffer allocations can occur outside of drivers (e.g., in
the socket or and storage layers). This requires significant ef-
fort, is error-prone, and adds maintenance overhead. In con-
trast, having the DMA API provide byte-level protection is
simpler and automatically benefits the entire kernel. More-
over, allocating DMA-able buffers in page quantities would

2 Peer-to-peer attacks can be prevented using PCIe Access Control Services
(ACS) [41, § 6.13], as explained by Zhou et al. [53].
3 For example, the attacker cannot exploit a kernel vulnerability from
userspace to reconfigure the IOMMU or authorize DMAs to arbitrary tar-
gets.

impose significant memory overhead, proportional to the al-
located data. In contrast, the memory overhead of shadow
buffers is proportional only to the DMAs in flight.

Deferred protection Due to performance reasons, OSes
by default implement deferred protection, which performs
IOTLB invalidations asynchronously instead of invalidating
the IOTLB on each dma unmap (§ 2.2.1). A DMA buffer may
thus remain accessible to the device after a dma unmap of the
buffer returns. Several attacks can be carried out in this win-
dow of vulnerability. For example, after an incoming packet
passes firewall inspection, a malicious NIC can modify the
packet into a malicious one [15]. Moreover, an unmapped
buffer may get reused by the OS, exposing the device to ar-
bitrary sensitive data.

Such attacks appear feasible. We have observed that
overwriting an unmapped DMA buffer within 10 µs of its
dma unmap4 can cause a Linux kernel crash—and with
deferred protection, buffers can remain mapped for up to
10 milliseconds. This indicates it may be practical to com-
promise the OS through such an attack vector. While we
leave exploiting deferred protection to future work, we con-
tend that OSes require strict protection for true security.

5. Intra-OS Protection via DMA Shadowing
Here we describe our secure intra-OS protection design,
which provides strict protection at sub-page (byte-level)
granularity and requires no changes to the DMA API. The
basic idea is simple: we restrict a device’s DMAs to a set
of shadow DMA buffers that are permanently mapped in the
IOMMU, and copy data to (or from) these buffers from (or
to) the OS-allocated DMA buffers. Our design thus obviates
the need for unmappings and IOTLB invalidations, but adds
the additional cost of copying. However, the insight driving
our design is that because of the slow IOMMU hardware
and the synchronization required to interact with it, copying
is typically preferable to an IOTLB invalidation (as shown
in § 6).

Realizing the DMA shadowing idea poses several chal-
lenges that we discuss in detail below: The design must care-
fully manage NUMA locality and synchronization issues to
minimize overheads (§ 5.3), and it must handle DMA buffers
whose size is such that copying would impose prohibitive
overheads (§ 5.5).

5.1 Design Goals
Apart from secure intra-OS protection, DMA shadowing sets
to achieve the following goals:
• Transparency: Implementing DMA shadowing must not
require changes to the DMA API, allowing the design to be
easily integrated into existing OSes. We discuss this when

4 The overwrite was caused by a bug in our copy-based intra-OS protection
mechanism (§ 5), whose effect—a DMA buffer being overwritten after
being unmapped—is similar to a DMA attack.
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iova t acquire shadow(bu f , size, rights) Acquires a shadow buffer and associates it with the OS buffer bu f . The acquired
shadow buffer is of at least size bytes, and device access to it is restricted as
specified in rights (read/write/both). Returns the IOVA of the shadow buffer.
The pool guarantees that if a page of the shadow buffer holds another shadow
buffer, then both shadow buffers have the same access rights.

void* find shadow(iova) Looks up the shadow buffer whose IOVA is iova and returns the OS buffer
associated with it.

void release shadow(shbu f ) Releases the shadow buffer shbu f back to the pool, disassociating it from its
OS buffer.

Table 2: API of shadow DMA buffer pool ( § 5.3).

presenting the design in § 5.2. We do, however, extend the
API to allow optional optimizations (§ 5.4).
• Scalability: The design must minimize synchronization,
particularly coarse-grained locks, so that it does not impose
bottlenecks on multi-core I/O workloads (see § 2.2.1). We
address this in § 5.3.
•Generality: While our focus is on the high-throughput I/O
workloads that are most sensitive to DMA API performance,
our design must support all workloads—providing intra-
OS protection only from some devices will not offer full
protection from DMA attacks. This boils down to supporting
huge DMA buffers efficiently, which we discuss in § 5.5.

5.2 DMA Shadowing Implementation of the DMA API
We implement the DMA API as a layer on top of a shadow
buffer pool that is associated with each device. This pool
manages buffers that are permanently mapped in the IOMMU
and accessible only to the associated device. The shadow
buffer pool interface is shown in Table 2; its implementation
is described in § 5.3.

The DMA API operations acquire a shadow buffer from
the pool, copy data to (or from) the OS buffer from (or to)
the shadow buffer, and finally release the shadow buffer, as
follows:
• dma map acquires a shadow buffer of the appropriate size
and access rights from the pool. The shadow buffer will
be associated with the mapped OS buffer until the shadow
buffer is released back to the pool. If the dma map is for
data meant to be read by the device, the dma map now copies
the OS buffer into the shadow buffer. Finally, it returns the
shadow buffer’s IOVA.
• dma unmap finds the shadow buffer associated with the OS
buffer, based on its IOVA argument. If the dma unmap is for
a buffer meant to be written to by the device, dma unmap

now copies the contents of the shadow buffer into the OS
buffer. (The dma unmap arguments include the size and ac-
cess rights of the buffer, so this is easy to do.) It then releases
the shadow buffer and returns.

The scatter/gather (SG) operations are implemented anal-
ogously, with each SG element copied to/from its own
shadow buffer.

• For dma alloc coherent and dma free coherent, we
use the standard DMA API implementation with strict pro-
tection. These are infrequent operations (typically invoked
at driver initialization and destruction) that are not perfor-
mance critical. Furthermore, the standard implementation
already provides byte-level protection by guaranteeing that
dma alloc coherent memory is allocated in page quanti-
ties.

Security DMA shadowing maintains the security seman-
tics of the DMA API, even though the device can always ac-
cess all the shadow buffers: The implementation reads from
an OS buffer at dma map time and writes at dma unmap time,
and the pool guarantees that every IOMMU-mapped page
holds only shadow buffers with the same access rights. Thus,
bytes a device reads can only come from data previously
copied from an OS buffer mapped for read or read/write ac-
cess. Similarly, bytes a device writes are either overwritten
by some later copy and never observed by the OS, or are
copied out on dma unmap, implying that the target OS buffer
was mapped for write access.

DMA shadowing allows a device compromised at some
point in time to read data from buffers used at earlier points
in time. This does not constitute a security violation, since
our attacker model (§ 3) assumes that a device is always
controlled by the attacker, which implies that the OS never
places sensitive data in a shadow buffer.

5.3 Shadow Buffer Pool
Each device is associated with a unique shadow buffer
pool. The shadow buffer pool is essentially a fast and scal-
able multi-threaded segregated free list memory alloca-
tor [31] that provides the DMA API with shadow DMA
buffers (Table 2). It carefully manages NUMA locality
and uses lightweight fine-grained synchronization, enabling
multiple pool (and hence DMA API) operations to run con-
currently. The pool assigns shadow buffers with IOVAs that
encode information about the shadow buffer and its free list.
It leverages this information to implement find shadow in
O(1) time.

Pool design A pool maintains a unique set of free lists
from which shadow buffers are acquired. Each list holds free
shadow buffers of a particular size and device access rights.
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That is, for each shadow buffer size class, the pool maintains
three free lists—read, write or both. Acquisitions of shadow
buffers whose size exceeds the maximum free list size class
are described in § 5.5.

Each core maintains its own set of free lists, to allow
fast concurrent free list operations (we describe how this
is implemented later on). Both shadow buffers and free list
metadata are allocated from the core’s NUMA domain.

Shadow buffers are sticky, in the sense that a shadow
buffer acquired from some free list always returns to the
same list upon release, even if it is released by a different
core. This prevents shadow buffers allocated on one NUMA
domain from being acquired later on another NUMA do-
main, where they would be more expensive to access. In ad-
dition, keeping a shadow buffer in the same free list means
that its IOMMU mapping never changes. Otherwise, we
would have to modify the mapping and invalidate the IOTLB
when a shadow buffer moves between free lists with incom-
patible access rights.

Shadow buffer metadata Each NUMA domain maintains
an array of shadow buffer metadata structures for each size-
class. (Using an array allows looking up a metadata struc-
ture based on its index, which is encoded in the IOVA, as
explained later on.) The metadata of free shadow buffers—
those not currently acquired by the DMA API—doubles as
nodes in a singly linked list from which shadow buffers are
acquired/released (Figure 2). When a shadow buffer is ac-
quired, its metadata is updated to point to the OS buffer be-
ing shadowed. This allows finding the OS buffer when the
DMA API needs it (i.e., the find shadow operation). The
metadata is not mapped in the IOMMU and is not accessible
to the device.

Free list synchronization The free list supports concurrent
acquires and releases of shadow buffers with minimal syn-
chronization and cross-core cache coherence traffic. Shadow
buffers are acquired from the free list only by the core that
owns the list. However, they may be released back to the free
list by other cores.

To support these operations efficiently, the free list main-
tains pointers to the head and tail of the list on distinct cache
lines (Figure 2). Shadow buffers are acquired from the head
and released to the tail. Acquires are lockless, with the owner
core simply removing the head node from the list. Shadow
buffer releases are done under a lock that is co-located on
the tail pointer’s cache line. The released shadow buffer’s
metadata node is appended to the linked list. If the list was
previously empty, the head pointer is updated as well. This
is safe to do because when an acquire operation finds the list
empty, it allocates a new shadow buffer and returns it, rely-
ing on a later release to add the shadow buffer to the free
list.

In addition, to avoid false sharing, the free list contains
a second read-only pointer to the shadow buffer metadata

48-bit IOVA format

47             40         38      37                            0

metadata index offsetsizer/w/
rw

cpu1

void *os_buf

void *shadow

metadata ptr
head ptr

tail ptr

free lists

metadata ptr

Figure 2: Shadow buffer IOVA and free list structures. Bits 37–
46 of a shadow buffer’s IOVA encode its free list, and bits 0–36
encode its metadata structure. For free shadow buffers, the os buf

metadata field points to the next node in the free list.

array, which resides on a separate cache line and from which
non-owner cores read.

Shadow buffer allocation Free lists are initially empty. A
shadow buffer is allocated when a core tries to acquire a
shadow buffer from an empty free list. The core then:
• allocates a new shadow buffer from its NUMA domain,
• stores its address in the next unused metadata node in the

domain’s metadata array,5
• obtains an IOVA for the buffer by encoding the list and

metadata node (as described below),
• maps the IOVA to the new shadow buffer in the device’s

IOMMU page table, and returns.
To provide byte-level protection, the pool guarantees that

if several shadow buffers are co-located on the same page,
the device has the same access rights to all of them. It
achieves this by allocating memory for shadow buffers in
page (4 KB) quantities. For small shadow buffers, the pool
breaks up allocated pages into multiple shadow buffers. One
of these shadow buffers is then returned as usual, and the rest
are placed in a private cache to satisfy future allocations. (We
do not want to insert them into the free list, to avoid having
to synchronize with shadow buffer releases.)

IOVA encodings A shadow buffer’s IOVA uniquely iden-
tifies its metadata structure. The IOVA encodes the shadow
buffer’s free list—identified by the owner core id, size class,
and access rights—and the index of the metadata structure
in the metadata array of the owner core’s NUMA domain.

x86 IOVAs are presently 48 bits wide [30]. We reserve
the MSB to signify that the IOVA encodes shadow buffer
metadata. The remainder bits can be divided in numerous
ways. Figure 2 shows the encoding used in our prototype

5 This next-unused index is lock-protected. Shadow buffer allocation is an
infrequent operation, so this lock does not pose a contention problem.
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implementation, which supports shadow buffers of two size-
classes, 4 KB and 64 KB: 7 bits for core id, 2 bits for access
rights (read/write/both), 1 bit for size class, and 37 bits to en-
code the metadata structure index. Notice that for a size class
C, the least significant dlog2 Ce bits are not used in the index
encoding, as they are used for addressing within the shadow
buffer. Thus, when decoding an IOVA we first identify the
appropriate size class and then extract the metadata index.
We remark that one can have more size classes by using less
bits for the index and/or core id fields.

The half of the IOVA space with MSB clear serves as a
fallback, in case a NUMA domain exhausts a shadow buffer
metadata array. In such a case, we allocate the metadata
using kernel malloc and the IOVA with an external scal-
able IOVA allocator [42]. The IOVA-to-metadata mapping
in these fallback cases is maintained in an external hash ta-
ble.

Memory consumption Shadow DMA buffer use corre-
sponds to in flight DMAs. Because shadow buffers are not
used for huge DMA operations (§ 5.5), typical shadow buffer
memory consumption should be modest—for example, we
observe < 256 MB consumed by shadow buffers in our ex-
periments (§ 6). Moreover, the OS can impose a limit on
the memory allocated to shadow buffers and/or free unused
shadow buffers under memory pressure. (When a shadow
buffer is freed, it must be unmapped from the IOMMU, in-
cluding an IOTLB invalidation. This should not adversely
affect performance as long as memory pressure-related free-
ing does not happen frequently.)

5.4 Copying Optimizations
The main overhead of DMA shadowing is in the copying
to/from the OS buffers—the shadow pool operations are fast
and scalable. We have explored several options for optimiz-
ing copying:

Copying hints: DMA buffers often end up not full—for
example, a networking driver maps MTU-sized buffers for
incoming packets, but the arriving packets can be much
smaller. To avoid copying useless data, we let drivers reg-
ister an optional copying hint, which is a function that is
given a DMA buffer as input and returns the amount of data
that should be copied. For example, our prototype imple-
mentation uses a copying hint that returns the length of the
IP packet in the buffer. It is the driver writer’s responsibility
to ensure that the copying hint is fast and secure, since its
input is untrusted.

Smart memcpy: We have attempted to use optimized memcpy
implementations that use SIMD instructions and/or stream-
ing (non-temporal) stores [29]. However, we have found that
on our machines, these do not provide an overall benefit over
the standard memcpy implementation based on the x86 REP

MOVSB/STOSB instruction. We suspect the reason is that this
instruction is optimized in our processors, which have an
enhanced REP MOVSB/STOSB (ERMS) feature.

5.5 Handling Huge DMA Buffers
Copying is not always preferable to an IOTLB invalidation—
copying a large enough buffer can greatly exceed invali-
dation cost, even after factoring in the lock contention in-
volved. We observe, however, that huge DMA buffers have
infrequent DMA map/unmaps. This is because the rate of
IO operations decreases, as more time is spent on trans-
ferring the data to/from the device and processing it after-
wards. For example, while a 40 Gb/s NIC can DMA incom-
ing 1500-byte packets at a rate of 1.7 M packets/sec, Intel’s
solid-state drive (SSD)—whose DMA buffers are at least
4 KB—provides up to 850 K IOPS for reads and up to 150 K
IOPS for writes [27]. When DMA map/unmap rate is low,
the overhead of IOMMU unmapping becomes insignificant,
which makes it possible to reuse the standard zero-copy
DMA mapping technique.

To maintain byte-level protection, we propose using a hy-
brid approach that copies only the sub-page head/tail of the
OS DMA buffer, and maps the remainder in the IOMMU.
One can use an external scalable IOVA allocator [42] to ob-
tain a range of IOVAs for mapping the head/tail shadows
with the remainder between them. On dma unmap, this map-
ping is destroyed, including invalidating the IOTLB.

6. Evaluation
We implement DMA shadowing in Linux 3.19. Our imple-
mentation consists of ≈ 1000 LOC. We focus our evalua-
tion on 40 Gb/s networking, as it represents demanding I/O
workloads that trigger millions of DMAs per second. Our
evaluation seeks to answer the following questions:
• How does the overhead imposed by copying DMA

buffers compare to the overhead of existing IOMMU-based
protection?
•What is the performance effect of DMA shadowing on

I/O intensive workloads?
To this end, our DMA shadowing implementation focuses

on the copying-related parts of the design. Moreover, we
enable DMA shadowing only for the device being tested. We
thus do not implement fallbacks to standard IOVA allocation
and handling of huge DMA buffers, both of which do not
occur in our benchmarks.

Evaluated systems We compare DMA shadowing (de-
noted copy) to Linux 3.19 with the IOMMU disabled (no
iommu), i.e., with no DMA attack protection. We also com-
pare to a Linux 3.19 variant that uses identity mappings
for IOVAs [42], with both strict (identity+) and deferred
(identity-) protection. We use this variant instead of the base-
line Linux because it significantly outperforms Linux under
both modes, as it resolves a Linux bottleneck in IOVA as-
signment during dma map [42].

Experimental setup Our setup consists of two Dell Pow-
erEdge R430 machines. Each machine has dual 2.40 GHz
Intel Xeon E5-2630 v3 (Haswell) CPUs, each with 8 cores,
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Figure 3: Single-core TCP receive (RX) throughput and CPU utilization (netperf TCP STREAM)

for a total of 16 cores (hyperthreading is disabled). Each
machine has two 16 GB 1867 MHz DDR4 DIMMs (one
per socket), for a total of 32 GB of memory. One machine
runs the evaluated kernel and the other serves as the traf-
fic generator. The traffic generator runs with its IOMMU
disabled. The machines are connected back-to-back with
40 Gb/s NICs: an Intel Fortville LX710 on the evaluated ma-
chine and a Mellanox ConnectX3 on the traffic generator.
The machines are configured for maximum performance,
with dynamic control of the clock rate (Turbo Boost) dis-
abled.

Methodology We configure the NIC drivers to use one re-
ceive ring per core, to avoid measurement noise from uneven
load balancing between the cores. We configure even inter-
rupt distribution between the cores for the same reason. We
run measurements on idle systems. Each benchmark runs for
60 seconds, to amortize any sporadic noise. We report aver-
ages of 10 runs.

Benchmarks We evaluate TCP/IP throughput and latency
using netperf [32], a standard network benchmarking tool.
We evaluate both receive (RX) and transmit (TX) through-
put, by performing separate experiments in which the eval-
uation machine is a netperf receiver/transmitter. (We further
detail each experiment below, as we present it.) We addition-
ally study an application workload using memcached [22], a
popular high-performance key-value store used by web ap-
plications for object caching. We run a memcached instance
per core, to avoid lock contention in multi-threaded mem-
cached, and measure aggregated throughput under a mem-
slap [4] workload. We use the default memslap configura-
tion of 64-byte keys, 1 KB values, and 90%/10% GET/SET
operations.

Single-core TCP throughput We measure the throughput
obtained in netperf’s TCP STREAM test, varying its mes-
sage size—the amount of data that the sending machine re-
peatedly writes to the TCP socket. We first evaluate single-

core throughput: Figure 3 shows throughput and CPU uti-
lization in the RX test, in which the evaluation system is the
receiver. For small message sizes (up to 512 B), the evaluated
systems are not the bottleneck—as evidenced by the CPU
utilization—and they all obtain the same throughput.6 Thus,
overheads translate into different CPU utilization: copy has
CPU overhead of 1.1×–1.2× compared to no iommu, and
identity+ has CPU overhead of 1.3×–1.7×. With larger
messages, the bottleneck shifts to the receiver and over-
heads translate into throughput. Interestingly, copy is the
best performer after no iommu—outperforming identity- by
10% despite providing stronger protection, and obtaining
0.76× the throughput of no iommu. The overhead of strict
protection in identity+ is much larger, and copy obtains 2×
its throughput.

To understand the source of these overheads, Figure 5a
breaks down the average packet processing time. IOMMU-
related map/unmap overhead dominates both zero-copy
schemes. IOMMU page table management costs both identity-
and identity+ 0.17 µs, and identity+ additionally spends
0.61 µs on IOTLB invalidation. In contrast, copy spends
0.02 µs on shadow buffer management and 0.11 µs on copy-
ing from the shadow buffer (memcpy)—that is, copying a
1500 B ethernet packet is 5.5× faster than invalidating the
IOTLB.

Figure 4 shows transmit (TX) throughput7 and CPU uti-
lization. For messages sizes < 512 B, copy performs com-
parably to identity+ and identity-, while providing better se-
curity. Unlike the RX case, however, with larger messages
copy obtains the worst throughput—10% to 20% worse than
the other designs. In addition, copy is the only design that

6 The limiting factor is the sender’s system call execution rate.
7 Notice that peak no iommu TX throughput differs from peak RX
throughput. The reason is that the RX test measures true single-core RX
throughput—running netperf and handling interrupts on the same core—
whereas in the TX test the receiver does not limit networking in this way.
We do this to guarantee that the receiver is not the bottleneck in the TX test.
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Figure 4: Single-core TCP transmit (TX) throughput and CPU utilization (netperf TCP STREAM)
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Figure 5: Average packet processing time breakdown in single-core TCP throughput tests (64 KB message size).

keeps the CPU 100% busy with 64 KB messages, a 1.4×
CPU overhead over no iommu. The reason for copy’s be-
havior is the TCP segmentation offload (TSO) feature of the
evaluated machine’s NIC. With TSO, the driver can pass
the NIC a packet of up 64 KB, and the NIC breaks it in-
ternally and transmits MTU-sized packets on the wire. Con-
sequently, copy needs to copy 64 KB DMA buffers, as op-
posed to the RX case, in which the buffers are bounded by
the 1500 B MTU. Figure 5b depicts the effect of this larger
copy operation. First, the memcpy time for copy increases to
4.65 µs. (This is 40× that of the RX case.) Second, copy
spends ≈ 2 µs on “other” tasks. We attribute this increase
to cache pollution: A 64 KB buffer copy evicts all data from
the core’s 32 KB L1 cache, replacing it with data that the
core will not later use (as opposed to the RX case). Inter-
estingly, IOMMU-related overhead of identity+ is 4.58 µs,
roughly the same as the memcpy time in copy. It is the cache
pollution that tips the scale slightly in favor of identity+.

Multi-core TCP throughput As a single core cannot sus-
tain the 40 Gb/s wire throughput even without an IOMMU,
we explore multi-core TCP throughput. We run 16 netperf
client/server instances (one per core) on each machine. We
report aggregated TCP throughput and CPU utilization, for
RX in Figure 6 and for TX in Figure 7. (Here CPU utiliza-
tion is over all cores, i.e., eight 100% busy cores translate to
a 50% utilization.)

We observe a striking difference between identity+ and
the other designs. For RX, identity+ obtains 5× worse
throughput than the other designs (which obtain compara-
ble throughput among each other) across all message sizes.
For TX, identity+ is 5× worse for small message sizes, but
closes the gap as message size increases. Moreover, iden-
tity+ is the only design that always has 100% CPU utiliza-
tion, both for RX and TX. The reason for this is a dramatic
increase in overhead compared to the single-core case. The
average packet processing time breakdown in Figure 8 de-
picts this: First, IOTLB invalidation time in identity+ in-
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Figure 6: 16-core TCP receive (RX) throughput and CPU utilization (netperf TCP STREAM).
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Figure 7: 16-core TCP transmit (TX) throughput and CPU utilization (netperf TCP STREAM).

creases to 2.7 µs (however, it remains unchanged for TX).
More significantly, identity+ now suffers from contention on
the IOTLB lock (§ 2.2.1). In RX, which requires more MTU-
sized packets/second to sustain line rate, this contention is
more severe—≈ 70 µs per packet—than in TX, where TSO
causes packet rate to decrease as message size increases.
This is why on TX, identity+ eventually manages to drive
40 Gb/s, whereas for RX its throughput remains constant. In
short, Figure 8b shows that IOTLB invalidation lock over-
head is even more expensive than the 64 KB buffer memcpy
done by copy in TX, including the resulting cache pollution.

The copy design achieves comparable throughput to no
iommu, with up to 60% CPU overhead, for both RX and TX.
While identity- also achieves this throughput, with lower
CPU overheads of up to 20%, it trades off strict OS pro-
tection in order to do so.

TCP latency We measure TCP latency with a single-core
netperf request/response benchmark. This benchmark mea-
sures the latency of sending a TCP message of a certain size
(which we vary) and receiving a response of the same size.

Figure 9 shows the resulting latency and CPU utilization. In
this benchmark, per-byte costs are not the dominating factor:
observe that although the message size increases by 1024×
from 64 B to 64 KB, the latency only increases by ≈ 4×.
Indeed, the protection-related overheads in the copy and the
identity designs do not make a noticeable impact on the over-
all latency, and all designs obtain comparable latency to no
iommu. The overheads are more observable through the CPU
utilization, which is broken down (for 64 KB messages) in
Figure 10. We find that identity+ spends almost half its time
on IOMMU-related tasks, whereas the copy overheads of
shadow buffer management and copying constitute 20% of
its time, and less than 10% of the overall CPU time.

memcached Our memcached benchmark consists of mul-
tiple memslap instances generating load on 16 memcached
instances running on the evaluation machine. The results, de-
picted in Figure ??, exhibit a similar trend to the multi-core
TCP throughput benchmark. Except for identity+, all de-
signs obtain comparable memcached transactional through-
put, which is 6.6× that of the throughput identity+ ob-
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Figure 8: Average packet processing time breakdown in 16-core TCP throughput tests (64 KB message size).
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Figure 9: TCP latency (single-core netperf TCP request/response).

tains. We thus see that for a realistic demanding workload,
copy provides full DMA attack protection at essentially the
same throughput and CPU utilization (< 2% overhead) as no
iommu.

Memory consumption Our prototype implementation of
copy supports shadow buffers of two size classes, 4 KB and
64 KB. Although a size class of C bytes can have at most
237−dlog2 Ce shadow buffers (§ 5.3), we use a more practical
bound of 16 K buffers. Thus, in the worst case, copy could
consume about 2.1 GB (4KB×16K = 64MB plus 64KB×
16K = 1GB, for each of the two NUMA domains).

In practice, however, we expect memory consumption to
be dramatically less. This is because shadow DMA buffer
allocations correspond to in flight DMAs. To test this, we
measured shadow DMA buffer memory consumption during
our benchmarks. We observe 64 MB of shadow buffers being
allocated to shadow TX buffers, and 96 MB to shadow RX
buffers—i.e., ≈ 13× less than the worst case bound.
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Summary Our results show that copy provides full pro-
tection from DMA attacks with comparable or better per-
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Figure 11: memcached: aggregated throughput (16 instances).

formance than the existing, less secure designs. Compared
to identity+, which does not provide byte-level protec-
tion, copy provides comparable (< 10% less) or far bet-
ter throughput (2×–5×), comparable latency, and better or
comparable CPU utilization. Compared to identity-, which
lacks byte-level protection and may allow devices to access
unmapped memory, copy obtains comparable throughput
and latency with 1×–1.4× CPU overhead. Finally, copy ob-
tains 0.76×–1× the throughput of no iommu, which is de-
fenseless against DMA attacks, with a 20% increase in CPU
utilization (which translates to an overhead of 1.8×).

7. Related work
IOMMU-based OS protection Willmann et al. [50] de-
scribe five IOMMU-based protection strategies, each of
which lacks one or more of the properties provided by our
design—strict intra-OS protection (§ 2.2.1) at byte gran-
ularity with efficiency and scalability that support high-
throughput I/O such as 10–40 Gb/s networking. EiovaR [38]
provides strict protection but at page granularity, and it
shares the scalability bottlenecks of Linux. Peleg et al. [42]
describe scalable protection schemes, but these require de-
ferred protection for high-throughput and are at page gran-
ularity. In SUD [15], usermode drivers communicate with
the OS through shared IOMMU-mapped buffers, which act
similarly to our shadow buffers. While SUD also protects
from malicious drivers, it does not appear compatible with
high-throughput I/O requirements. Even for 1 Gb/s network-
ing, SUD incurs up to 2× CPU overhead due to context
switches, and must use batching—hurting latency—to ob-
tain acceptable throughput [15]. Arrakis [43] provides di-
rect application-level access to devices for efficient I/O. To
protect themselves from DMA attacks, Arrakis applications
must thus use a DMA API-like scheme, making our shadow
buffers relevant there.

Copying-based protection Linux supports an SWIOTLB
mode [2] in which the DMA API is implemented by copying
DMA buffers to/from dedicated bounce buffers. This mode
makes no use of the hardware IOMMU and thus provides no

protection from DMA attacks. Instead, its goal is to allow
systems without an IOMMU to work with devices, such as
32-bit devices, that cannot address the entire physical ad-
dress space. Horovitz et al. describe a protection scheme
similar to shadow DMA buffers [24] in the context of a soft-
ware cryptoprocessor. However, they do not discuss imple-
mentation details and do not provide a performance evalua-
tion.

Hardware solutions Basu et al. [10] propose a hardware
IOMMU design in which mappings self-destruct after a
threshold of time or DMAs, thereby obviating the need to
destroy the mapping in software. However, this hardware is
not currently available.

8. Conclusion
Due to lack of byte-granularity protection and trading off
security to obtain acceptable performance when using IOM-
MUs, OSes remain vulnerable to DMA attacks. We propose
a new way of using IOMMUs, which fully defends against
DMA attacks. Our new usage model restricts device access
to a set of shadow DMA buffers that are never unmapped,
and copies DMAed data to/from these buffers. It thus pro-
vides sub-page byte-granularity protection while closing the
current vulnerability window in which devices can access in-
use memory. Our key insight is that the gains of zero-copy
for IOMMU protection are negated by the cost of interacting
with the slow IOMMU hardware and the synchronization it
entails, making copying preferable to zero-copying in many
cases.

We show that, despite being more secure than the safest
preexisting usage model, our DMA shadowing approach
provides up to 5× higher throughput. Moreover, while DMA
shadowing cannot indefinitely scale with I/O throughput due
to the overhead of copying, we show that it does scale to
40 Gb/s rates and incurs only 0%–25% throughput degrada-
tion as compared to when the IOMMU is disabled.

With malicious devices being used in the wild [3, 52],
defending against DMA attacks becomes an increasingly
pressing problem. DMA shadowing provides full protection
from DMA attacks at reasonable overheads, and we hope to
see it deployed in practice.
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