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ABSTRACT
Batching heuristics are used in multiple layers of the TCP/IP

stack, aiming to improve performance by amortizing over-

heads. When performance is defined as average latency and

throughput, optimal batching decisions can be infeasible if

application-perceived end-to-end performance is unknown,

which is commonly the case in general-purpose setups. We

address this problem by occasionally adding a few easily

maintained counters to TCP metadata exchanges and using

them to estimate end-to-end performance via Little’s law. We

experimentally show that these estimates are accurate when

application requests can be identified by the kernel (corre-

sponding, for example, to send system calls, packets, or some

fixed number of bytes). Had these estimates been used to dy-

namically toggle Nagle batching, they could have extended

Redis’s range of sustainable throughput at tolerable latencies

by nearly 2x and improved latency within this range by as

much as nearly 3x. When the kernel cannot identify requests

on its own, we propose that applications use a simple new

interface to enlighten it, thereby ensuring accuracy.
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1 INTRODUCTION
General-purpose network stacks use heuristics to batch mul-

tiple operations with the goal of improving performance

by reducing overheads through amortization. For example,

upon transmission, at the top of the kernel’s TCP/IP stack,

we can find such heuristics as Nagle’s algorithm [37] and

auto-corking [16], which may delay bytes transmission to

form bigger packets. Deeper in the stack, towards the NIC
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driver, bytes may be combined into packets larger than the

maximum transmission unit (MTU [39]) to make use of the

NIC’s TCP segmentation offload capability [11, 18]. Drivers

may likewise delay informing NICs that there are packets to

send, to amortize the cost of ringing the doorbell [3, 12, 17].

The problem we aim to alleviate is that batching decisions

might inadvertently degrade end-to-end latency, throughput,

or both. This problem is compounded by the fact that the

effect of batching at the sendermay entirely depend on timing

information at the receiver of which the sender is unaware.

In §2, we exemplify this problem and propose that a solu-

tion is to make both sides aware of end-to-end performance

through a lightweight exchange of TCP metadata. We hy-

pothesize that this information can enable better batching

decisions and facilitate informed tradeoffs between through-

put and latency. We explain why existing TCP information

(round-trip time etc.) is insufficient and briefly survey the

relevant state of the art, highlighting that existing batching

approaches disregard end-to-end performance.

In §3, we describe our idea to readily estimate end-to-end

latency using Little’s law [33], by monitoring three kernel

queues within the two communicating parties and maintain-

ing three easily-calculated counters per queue. By Little’s

law, the average queuing delay of a given queue is𝑄/𝜆, such
that 𝑄 and 𝜆 are the average queue size and the rate of el-

ements that enter the queue, respectively. The three TCP

queues we monitor are (1) sent, unacknowledged messages;

(2) received, unread messages; and (3) delayed acknowledg-

ments. We show that average end-to-end latency can be

trivially derived from the queuing delay estimates associated

with these three queues. The three per-queue counters are

two accumulators and a timestamp used to deduce 𝑄 and 𝜆.

(Average throughput is computed from 𝜆.)

Applications experience end-to-end performance at a gran-

ularity of “request” and “response” units, such that latency

is the time between the two and throughput is the number

or responses per time unit. The kernel is typically unaware

of these units, and so we should bridge this semantic gap to

be able to accurately measure end-to-end performance.

Based on past storage-related experience [46], we hypoth-

esize that client and server invocations of the send system

call (or equivalent) may reasonably approximate requests

and responses, respectively, for some workloads. We later

show that even packets or bytes may sometimes achieve

this goal. For other workloads, we propose using a simple

interface that eliminates the semantic gap (and obviates the

https://doi.org/10.1145/3713082.3730372
https://doi.org/10.1145/3713082.3730372
https://doi.org/10.1145/3713082.3730372


HOTOS 25, May 14–16, 2025, Banff, AB, Canada Avidan Borisov, Nadav Amit, and Dan Tsafrir

per-request cost (server)

per-batch cost (server)

𝛼

𝛽

batching improves latency

and throughput (𝑐=1)

(a)

per-response cost (client)

latency done

𝑐

batching degrades latency

and throughput (𝑐=5)

(b)

average latency (time)

average throughput (req/time)

batching degrades latency and

improves throughput (𝑐=3)

(c)
b
a
t
c
h
i
n
g

n
o

b
a
t
c
h
i
n
g

=3/14
client

server
time

0 5 10 15 20

=3/20

=3/26

0 5 10 15 20 25

=3/24

=3/20

0 5 10 15 20

=3/22

Figure 1: Without the client’s help, any server on/off batching decision can result in a suboptimal outcome, depending on c (the client’s processing
cost), even in an idealized scenario where message processing is never explicitly delayed and per-request and per-batch costs are fixed (𝛼=2, 𝛽=4).

need to monitor network queues): the application invokes

“create” and “complete” routines when issuing a request and

receiving a response, respectively. Applying Little’s law as

described above to the associated counters would then yield

accurate application-perceived end-to-end performance.

We demonstrate the potential benefit of our proposal in §4
by running the Redis [42] key-value store twice—with and

without Nagle batching—under various load conditions, log-

ging the aforementioned queue counters, and conducting an

offline analysis that shows: (1) that our estimates are accu-

rate; (2) that, had they been used to dynamically toggle Nagle

batching, they could have increased the maximal load that

Redis may serve by nearly 2x while meeting a commonly

used latency SLO of under 500 µs [4, 40]; and (3) that they

would have improved this latency by as much as nearly 3x.

We discuss the challenges of fully implementing our pro-

posal and integrating it into a live system in §5.

2 MOTIVATION
The Problem. Network stacks commonly batch multiple

operations, processing them as a single unit rather than in-

dividually. Some perceive this optimization as trading off

latency for throughput, amortizing processing costs by wait-

ing for operations to accumulate and then handling them en

masse. But the effects of batching are more nuanced.

Consider, for example, a simple scenario where batching

never intentionally delays message processing. Instead, mes-

sages may accumulate due to system congestion, and the

batching scheme need only decide whether to process them

individually or as a group [4]. Even in such a straightforward

case, batching may improve or degrade average throughput,

latency, or both, depending on subtle timing differences.

Figure 1 illustrates such a scenario, where 𝑛 = 3 client re-

quests are waiting for server processing at time 0. We assume

a fixed cost 𝛼 + 𝛽 for serving one request and generating a

response, such that 𝛼 and 𝛽 are the per-request and per-batch

(amortizable) cost, respectively. Overall processing time is

therefore 𝑛 · 𝛼 + 𝛽 with batching or 𝑛 · (𝛼 + 𝛽) without.
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Figure 2: When running the Redis client inside a VM, it uses signif-
icantly more CPU (a), whereas the server’s CPU usage remains about
the same because it experiences the same workload (b). The client
change flips the outcome of Nagle batching (c), thus providing a real
example analogous to the artificial one shown in Figure 1.

We likewise assume a fixed processing time 𝑐 per response

at the client. As 𝑐 increases from 1 to 5, batching shifts from

improving latency and throughput averages (Figure 1a) to

degrading them (Figure 1b). Setting 𝑐 to 3 yields a mixed

result: improved throughput but degraded latency (Figure 1c).

Throughout these different end-to-end outcomes, the activity

from the server’s perspective remains identical. Client-side

batching would expose the client to the same problem.

We have repeatedly encountered and been frustrated by

variants of the above problem when attempting to improve

batching policies across the kernel TCP/IP network stack.

Figure 2 exemplifies this problem in a real setup resembling

the artificial scenario just described. We run a single Redis

client (as detailed in §4) on bare metal and within a virtual

machine (VM). The client generates a fixed load of 20,000

requests per second handled by a bare metal Redis server.

Unsurprisingly, the VM configuration consumes much more

CPU than its baremetal counterpart (Figure 2a),whichmeans

𝑐 (client-side processing cost) is significantly increased. In

contrast, the server’s behavior remains similar under this

fixed load, as evident by the similar CPU usage (Figure 2b). As

in Figure 1, we see that different 𝑐 values can lead to different

batching outcomes (Figure 2c): Nagle is advantageous for

the bare metal client but not for the VM client.
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Goal. We hypothesize that the problem can be alleviated by

making the stack aware of end-to-end throughput and la-

tency, and by adopting batching decisions accordingly. Since

TCP/IP communicating parties already exchange metadata,

it seems both reasonable and straightforward to enrich this

information with a few end-to-end performance counters

to enhance batching quality. We further hypothesize that

the availability of such information will allow systems to

deploy policies like “maximize throughput as long as latency

remains below a specified threshold.” We focus on average

performance in this work and defer metrics like tail latency

to future studies.

Latency Background. We are by no means the first to es-

timate end-to-end latency. We would have preferred to use

some readily available mechanism that provides this func-

tionality to guide batching decisions, which serves as our

primary motivation. We resorted to developing a new mech-

anism because we were unable to identify a suitable preex-

isting approach that we can use.

The first alternative we explored and ruled out was using

TCP-maintained metrics that are related to latency. Notably,

we found that round trip time (RTT) [27] performs poorly, as

it does not account for application read delays (encapsulated

in 𝑐 in Figure 1), which are responsible for a substantial

portion of end-to-end latency [41]. It is also significantly

inflated due to delayed acks [6].

Subsequently, we considered and ruled out relevant state-

of-the-art alternatives. For example, Swift [31] and Fathom

[15, 41] are unsuitable because they are unavailable for pub-

lic use. (Also, they rely on NIC timestamping or NTP clock

synchronization, which are not necessarily available to arbi-

trary clients outside the server’s organization—clients which

we would like to support.)

Batching Background. We are unaware of existing batch-

ing approaches that use end-to-end performance to guide

their decisions. We hypothesize that this implies that they

are susceptible to the problem highlighted in Figure 1. Con-

sidering the state of the practice, we systematically reviewed

the batching mechanisms of the Linux TCP/IP stack. They

are ad-hoc and statically make assumptions that may or may

not hold. For example, Nagle’s algorithm [37] is enabled by

default in the TCP/IP stack. It delays the transmission of

small packets and buffers data until a TCP ack is received or

enough bytes accumulate to fill the MTU (or 200ms elapse).

Many argue that it hampers performance and recommend

to disable it [7, 44] due to undesirable interactions with de-

layed acks [9] or other reasons [35, 36]. Auto-corking [16] is

likewise enabled by default, buffering bytes until previous

packets are freed from the NIC’s transmit ring after a com-

pletion interrupt. Being always on, it too introduces latency

issues [20]. TSO [11] has a more sophisticated set of rules

that it employs while accumulating bytes beyond MTU. But

like its simpler counterparts, it can degrade performance as

well [47]. Other mechanisms exist [8, 12] and they too suffer

from similar problems [29].

Many previous studies explored approaches to improve

batching [4, 23, 26, 34, 38, 40, 43, 49]. We do not have space

to survey them here except saying none utilize end-to-end

performance to guide their actions. Of these studies, IX [4]

should be mentioned because it employs “adaptive batch-

ing” of requests in response to receive-side “congestion,” and

these two quoted terms correspond directly to our motivat-

ing example: In Figure 1 (top), the server handles multiple

in-flight requests (“congestion”) by processing them together

(“adaptive batching”), refraining from attempting to increase

the batch size by means of waiting for additional requests

to accumulate. The IX authors say that “when applied adap-

tively, batching also decreases latency because [it reduces]

head-of-line blocking,” which we showed is not always the

case (as some of them subsequently noticed [40]). In our

terminology, IX’s adaptive batching is static, as it is a prede-

termined policy oblivious to end-to-end performance.

3 END-TO-END ESTIMATION
Our goal is to estimate application-perceived end-to-end

throughput and latency, which we contend will help make

better batching decisions. Next, we describe the queuing the-

ory that we use to achieve this goal (§3.1), how we apply the

theory to the kernel’s TCP/IP stack (§3.2), how we propose

to bridge the semantic gap between the stack and the appli-

cations that use it (§3.3), and our prototype implementation

used to evaluate the idea (§3.4).

3.1 Utilizing Little’s Law
Assume an average of 𝜆 travelers check into a hotel each day.

If they stay for an average of 𝐷 days, Little’s law states that

the average number of hotel guests is 𝑄 = 𝐷 × 𝜆 [33]. The

same principle applies to packets in a queue. Restating the

theorem by switching sides in the equation,𝐷 = 𝑄/𝜆, namely,

the queuing delay (𝐷) is the ratio of the queue’s average

occupancy (𝑄) and packet arrival rate (𝜆), both of which are

easy to maintain on the fly. (Little’s law is commonly used in

this way; also in contexts other than networking [13, 22, 48].)

When considering only packets admitted to the queue (i.e.,

excluding dropped packets), queuing theory implies that the

arrival rate equals the departure rate, namely, 𝜆 is also the

throughput of the queue. Additionally, when disregarding

the time packets spend in the network external to the two

communicating machines, latency can be expressed as the

sum of queuing delays like 𝐷 .

Accordingly, given a queue q, we track the information

we need to calculate 𝑄 and 𝜆 using a 4-tuple queue state
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Algorithm 1 Update the given queue state qs with nitemes, which

can be positive (items added) or negative (removed).

1: Initialize qs = (time: now, size: 0, total: 0, integral: 0)

2: procedure Track(qs, nitems)

3: t← now; dt← (t - qs.time); qs.time← t

4: qs.integral← qs.integral + qs.size · dt
5: qs.size← qs.size + nitems

6: if nitems < 0 then
7: qs.total← qs.total + (-nitems)

Algorithm 2 Given two successive states, compute the average

latency and throughput during the time between them.

1: procedure GetAvgs(qprev, qnow)
2: Δq← qnow − qprev

3: return (𝑄 :
Δq.integral
Δq.time

, tput (=𝜆):
Δq.total
Δq.time

, latency: 𝑄/𝜆)

(qs) defined in the first line of Algorithm 1. Whenever the

size of q changes, the network stack updates the state by

calling the Track procedure with the number of items that

are added (positive) or removed (negative). The state records

its time, the number of items in q at that time (“size”), the

cumulative number of items that left q until that time (“total”),

and a corresponding time-weighted accumulator (“integral”),

which is updated in Line 4 of Algorithm 1.

Subtracting successive state instances provides the data

needed to compute 𝑄 and 𝜆 (and hence latency and through-

put) with the GetAvgs procedure, as shown in Algorithm 2.

To illustrate, assume that initially q holds one item for 10 µs

and subsequently four items for 20 µs. The associated “inte-

gral” is therefore 1×10+4×20 = 90, such that when dividing

it by the elapsed time (as specified in Line 3 of GetAvgs),

it gives the average size of q (
90

10+20 = 3 items), which corre-

sponds to 𝑄 . Similarly, subtracting successive “total” values

and dividing them by the elapsed time gives the departure

rate 𝜆, which, as explained above, is the throughput.

GetAvgs does not use “size,” so each two 3-tuples (integral,

total, time) contain all the information needed to estimate a

queue’s average latency and throughput between the corre-

sponding times. Such tuples can be occasionally exchanged

between peers, providing GetAvgs with the information it

needs to compute remote queue performance estimations.

3.2 Combining Delays into Latency
Next, we identify the kernel TCP/IP stack queues contribut-

ing to the end-to-end latency 𝐿 and explain how the individ-

ual queuing delays are combined into 𝐿. For simplicity, for

now, we assume that each message (request or response) is

sent in a single packet. The 𝐿 we compute accounts for net-

work stack latency and excludes application processing time.

However, if such processing time delays subsequent mes-

sages (as in Figure 1), it will be captured as a queuing delay

and reflected in the measured latency of those messages.

app

unread unacked

unread

app app

(with app assistance)create() complete()

client

server
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ack

request latency

NIC sent packet
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TCP stack
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Figure 3: The request latency (1→5) begins with client send (1) and
ends with server recv (5). The response latency (6→10) begins with
server send (6) and ends with client recv (10). Their sum 𝐿 = (1→5) +
(6→10) is the end-to-end latency we aim to estimate. The events along
the way are detailed using the legend. Let𝐿0 = 𝐿𝑠𝑒𝑟𝑣𝑒𝑟

𝑢𝑛𝑎𝑐𝑘𝑒𝑑
−𝐿𝑐𝑙𝑖𝑒𝑛𝑡

𝑎𝑐𝑘𝑑𝑒𝑙𝑎𝑦
=

(6→14) - (9→11) = (6→9) + (11→14), and observe that, on average, the
left dashed journey (message from client to server between 1→4) can
be approximated by the right dashed journey (ack from client to server
between 11→14, especially when it is piggybacked on a future request).
Thus, 𝐿0 ≈ (6→9) + (1→4) and so 𝐿 ≈ 𝐿0 + (4→5) + (9→10) by its
above definition, giving 𝐿 ≈ 𝐿𝑠𝑒𝑟𝑣𝑒𝑟

𝑢𝑛𝑎𝑐𝑘𝑒𝑑
−𝐿𝑐𝑙𝑖𝑒𝑛𝑡

𝑎𝑐𝑘𝑑𝑒𝑙𝑎𝑦
+𝐿𝑠𝑒𝑟𝑣𝑒𝑟

𝑢𝑛𝑟𝑒𝑎𝑑
+𝐿𝑐𝑙𝑖𝑒𝑛𝑡

𝑢𝑛𝑟𝑒𝑎𝑑
,

as claimed. A more accurate estimate can be obtained more easily if
clients provide hints (top of figure; see §3.3).

We contend that 𝐿 can be accurately estimated by measur-

ing TCP/IP queuing delays of only three queues. Let 𝐿𝑢𝑛𝑎𝑐𝑘𝑒𝑑
be the delay of the queue of messages sent by the application

that are not yet acknowledged. Let 𝐿𝑢𝑛𝑟𝑒𝑎𝑑 be the delay of

the queue of messages received by the TCP/IP stack but not

yet read by the destination application. Let 𝐿𝑎𝑐𝑘𝑑𝑒𝑙𝑎𝑦 be the

delay of the queue of messages received by the TCP/IP stack

but not yet acknowledged to the peer. (Ack delays are not

typically queued, but treating them as such and deducing

their average delay with Little’s law greatly simplifies the

associated calculation in our implementation.)

Locally, both communicating parties maintain a queue

state for each of the above queues and occasionally share the

associated 3-tuples with their remote peer as explained in

§3.1. With this information available, we claim that

𝐿 ≈ 𝐿𝑙𝑜𝑐𝑎𝑙
𝑢𝑛𝑎𝑐𝑘𝑒𝑑

− 𝐿𝑟𝑒𝑚𝑜𝑡𝑒
𝑎𝑐𝑘𝑑𝑒𝑙𝑎𝑦

+ 𝐿𝑙𝑜𝑐𝑎𝑙
𝑢𝑛𝑟𝑒𝑎𝑑

+ 𝐿𝑟𝑒𝑚𝑜𝑡𝑒
𝑢𝑛𝑟𝑒𝑎𝑑

.

The explanation is provided in Figure 3. Both parties share

their three local queue states (unacked, ackdelay, and un-

read), so both can estimate the 𝐿 value of the other side; we

use the maximum between the two to account for possible

underestimations. Each party thus shares 36 bytes with its

peer per exchange (three 4-byte counters per queue).

The above provides per-connection estimates, which can

be averaged if a batching policy simultaneously affects mul-

tiple connections.



Batching with End-to-End Performance Estimation HOTOS 25, May 14–16, 2025, Banff, AB, Canada

3.3 Bridging the Semantic Gap
The network stack operates on packets and bytes, unaware

of application-level messages. This semantic gap makes it

difficult for network stacks to measure end-to-end latency as

perceived by applications. In our prototype (§3.4), we opted
to treat plain bytes as messages because the Linux kernel

already maintains the queue sizes for the for the aforemen-

tioned three queues (§3.2) in byte units. This decision limits

the effectiveness of our experimental evaluation to work-

loads with requests and responses of similar size.

Going forward, our next stepwill be to treat buffers handed

to the send system call (or equivalent) as an approximation

of application requests and responses. This approach will

require a larger and more intrusive kernel patch. But we hy-

pothesize that it may commonly provide the network stack

a reasonable view of end-to-end performance from the ap-

plication’s perspective, as others have successfully used it to

identify latency-sensitive I/O operations [46].

Still, bridging the semantic gap inherently requires appli-

cation assistance, as system calls do not always correspond

to application messages, e.g., when system calls are batched

to reduce overhead. We thus envision a hybrid approach:

end-to-end performance for uncooperative applications is

estimated by tracking system calls, while cooperative appli-

cations provide hints.

Hints are provided at the client side by passing a userspace-

maintained 4-tuple “queue state” structure (§3.1) to the send

system call using a pointer in send’s ancillary data [32]. Appli-

cationsmodify this structure via aminimalist API comprising

two functions – create(n) and complete(n) – invoked upon

creation and completion of 𝑛 requests and acting as light-

weight wrappers for a userspace implementation of Track

(Algorithm 1). The client’s stack shares this queue state with

the server (as explained in §3.2), allowing it to estimate end-

to-end performance using Little’s law applied to this single

(logical) queue; no additional queue monitoring is needed.

Moreover, because the client’s semantics determine the ob-

served end-to-end performance, the server needs notmonitor

and share its own queue states, further simplifying the im-

plementation (top of Figure 3).

The suggested API requires a minimal implementation

effort and can easily be integrated into C runtime libraries,

making little or no assumptions about application-specific

semantics. It therefore seems suitable for adoption by popular

request-response frameworks like gRPC [21] and Thrift [1].

3.4 Prototype
We conducted a minimal evaluation of our idea using Linux

v6.3, introducing the simplest change we could think of to

enable the experiment described in §4. As noted, the “mes-

sage” unit we use is byte because the queue sizes needed

for end-to-end estimation (§3.2) exist as socket-level vari-
ables,

1
effectively limiting our evaluation to workloads with

requests and responses of similar size. We additionally pro-

totyped using packets as units, and the results turned out

similarly limited. Beyond implementing the Track proce-

dure, we only added several lines of code to the TCP/IP stack

to invoke Track whenever the existing queue sizes change.

Our prototype exports the 3-tuple queue states as ethtool

counters, enabling a userspace GetAvgs implementation.

We do not exchange states between peers and instead rely on

offline analysis of counters collected from both ends. Notably,

our prototype does not dynamically toggle batching; it only

allows us to assess the accuracy of our estimates and their

potential to improve performance, had they been used.

4 EVALUATION
Methodology. We present experimental evidence support-

ing our idea using the Redis key-value store [42] and Nagle’s

algorithm [37] (explained in §2), which we use as a repre-

sentative batching policy. As noted, many argue that Nagle

batching should be disabled [7, 44], a practice adopted by Re-

dis. We demonstrate that this static policy is suboptimal and

that dynamic on/off batching guided by end-to-end perfor-

mance estimates would be preferable. We do so by comparing

Redis’s estimated and measured latency in two benchmark

runs: Nagle enabled and disabled. We disregard throughput

because it is trivial to measure when application requests

are identifiable, necessitating only monitoring of any local

queue through which the requests traverse.

Our setup consists of two Dell PowerEdge R730 servers

equipped with dual 28-core Intel Xeon E5-2660 CPUs and

128 GiB DRAM. The machines communicate via 100 Gbps

NVIDIA ConnectX-5 NICs. One machine runs Redis and the

other runs the Lancet load generator [30], which measures

latency across varying load rates. Both run Ubuntu with our

modified Linux kernel v6.3. Each party has two concurrent

execution contexts – application thread (Redis or Lancet)

and network stack routines handling incoming packets (IRQ

and softIRQ) – which we pin to dedicated cores to reduce

runtime variance.

Results. Figure 4a shows the results obtained when the

workload consists of a single client that sets 16 KiB values to

16B keys. We observe two key aspects. First,when comparing

measured performance, Nagle batching proves counterpro-

ductive at lower throughput levels. Thus, for such conditions,

the decision of Redis’s developers to disable it is justified.

1
Specifically, sk_wmem_queued and sk_rmem_alloc correspond to the

queue sizes associated with 𝐿𝑢𝑛𝑎𝑐𝑘𝑒𝑑 and 𝐿𝑢𝑛𝑟𝑒𝑎𝑑 , respectively. No in-

ternal queue is associated with 𝐿𝑎𝑐𝑘𝑑𝑒𝑙𝑎𝑦 , but its size is rcv_nxt minus

rcv_wup, namely, the difference between the next ack sequence number to

send (updated upon receiving packets) and the last sent.
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Figure 4: Nagle’s algorithm is disabled by Redis but proves benefi-
cial under high SET load, suggesting that dynamic on/off decisions
may be advantageous. Our estimates are accurate when messages
have similar sizes (a) but fall short when they do not (b) due to our
prototype’s limitations. Accordingly, cutoff lines (which show when
batching should be toggled) coincide on the left but not on the right.

But as the load increases beyond the vertical “cutoff” lines,

batching becomes advantageous, extending the sustainable

range of tolerable latencies (defined here as under a com-

monly used SLO value of 500 µs [4, 40]) by 1.93x, from 37.5 to

72.5 kRPS. Also, while both configurations meet the SLO at

37.5 kRPS, Nagle batching reduces latency by 2.80x compared

to the no-batching default, from 468 µs to 168 µs.

The second key aspect is observable when comparing mea-

sured performance to approximations from our prototype

(§3.4), which are accurate and, notably, correctly identify

the cutoff point where batching becomes worthwhile. These

findings support the hypothesis about the potential benefit

of dynamic on/off batching decisions guided by end-to-end

performance approximations.

Our prototype is accurate despite estimating byte latency

instead of request-response latency, as the workload solely

consists of fixed-size SET requests triggering fixed-size suc-

cess responses, tightly correlating with bytes. The difference

is simply a matter of scaling by a constant.

Our prototype is less effective with heterogeneous work-

loads as shown in Figure 4b, which shows what happens if

the SET-GET ratio changes from 100:0 to 95:5 percent. Now,

5% of the responses are large (16 KiB) and thus unharmed by

Nagle batching under low load. And since the size of each

GET response is roughly 34x larger than the combined size of

95 SET responses, our byte-based approximation incorrectly

estimates that the latency of most “requests” is unaffected by

Nagle batching in low load. Tracking system calls or getting

hints from applications is therefore preferable (§3.3).

5 CHALLENGES AND FUTUREWORK
Metadata Exchange. As opposed to our offline prototype,

our future implementation will exchange metadata between

peers via TCP options (standard header extension). We expect

the overhead to be small as states are small (§3.2) andwe need
only copy the state upon arrival. We maintain two states per

connection: previous and current. Still, fast-path parsing of

headers speculates no header extensions [14, 25]. We will

thus reduce the frequency of the exchange as needed—Little’s

law estimates remain accurate regardless. In fact, instead of

using some fixed exchange interval, we can do it on-demand.

Dynamic Toggling. The effect of enabling or disabling

batching is unknown until tried, creating a classic exploration-

exploitation tradeoff [5, 28], and so the system must occa-

sionally try the other mode to decide which is better. We

speculate a light method like 𝜖-greedy [45] will suffice; an

overly heavy approach might nullify the benefit of batching.

Orthogonally, because we simultaneously optimize poten-

tially conflicting metrics—throughput and latency—toggling

should ideally follow some system- or user-defined policy

that balances between them, such as preferring latency, or

maximizing throughput provided some latency SLO is met.

Toggling Granularity. The decision to turn batching on or

off inevitably occurs at some granularity. Finer granularities

offer faster reaction. Coarser granularities are less sensitive

to noise. Exponentially weighted moving averages have been

used to smooth such noise in dynamic environments [2, 50]

and can be computed online with low overhead [19]. Our

initial results suggest that a granularity of a kernel tick may

be suitable, but this must be evaluated experimentally, like

all other aspects discussed in this section.

BetterBatchingHeuristics. We theorize that knowing end-

to-end performance can be used not just to enable/disable

existing ad-hoc policies (§2) but also to replace them with

a more principled approach that gradually adjusts batching

limits based on observed performance, using algorithms such

as AIMD, which has been successfully utilized in the past to

adapt to changing network conditions [10, 24].

6 CONCLUSIONS
The success of batching depends on end-to-end performance.

We contend that it may be feasible to enlighten batching

with a reasonable approximation of this information and

thus achieve a better outcome.
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