
Modeling, Evaluating, and Improving the
Performance of Supercomputer Scheduling

Thesis submitted for the degree of
“Doctor of Philosophy”

by

Dan Tsafrir

Submitted to the Senate of the Hebrew University
September 2006

ii

This work was carried out under the supervision of
Prof. Dror G. Feitelson

iii

Dedication

To the loves of my life, Zohar and little Yoavi

iv

Acknowledgments

First and foremost, I would like to thank my advisor Prof. Dror Feitelson. For his profound gen-
erosity. For his modest ways. For his quiet wisdom and brilliancy. For allowing me complete
freedom, always being patient with me, and staying cool and humorous throughout. For the very
many things that he taught me, and for being the role model that he is. I thank him from the bottom
of my heart. It has truly been an honor.

Many thanks are due to Yoav Etsion (a.k.a. etsman), my roommate, extraordinarily talented
partner, and friend. Aside from his significant contribution to my work, we have shared many of
those day to day little things that, in the end, amount to the overall experience. We are brothers in
arms. I was very fortunate to have such a companion.

I would like to thank the past and present members of the parallel systems lab: Ziv Balshai,
Anat Batat, Donny Citron, Dudi Er-El, Yoav Etsion, Eitan Frachtenberg, Maayan Geffet, Avi
Kavas, Uri Lublin, Avi Nissimov, Keren Ouaknine, Edi Shmueli, David Talby, and Yair Wise-
man. I had a lot of fun during the many hours we have spent together. I especially cherish the
(now mythological) basketball games we played using the lab’s trashcan. Likewise, I would like to
thank the system personnel, and notably Danny Braniss, Tomer Klainer, Eli Levy, Jorge Najenson,
Ephraim Silverberg, and Chana Slutzkin. One cannot hope fora better system group (maybe the
best on the planet). Their skills, expertise, and continuous willingness to provide immediate help
were very much appreciated.

I am thankful to Prof. Jeff Rosenschein (under whom I served as a teacher assistant) for taking
a chance on me. Teaching constituted a significant part of thePhD period and in this respect I feel
I had the privilege to learn from the best, and that this has led to a very positive experience.

Finally, my warmest and deepest thanks go to my parents for a lifetime of love and support.
There are no words to express how indebted and grateful I am toboth of you. Thank you.

v

Abstract

The most popular scheduling policy for parallel systems is FCFS with backfilling (a.k.a. “EASY”
scheduling), where short jobs are allowed to run ahead of their time provided they do not delay
previously queued jobs (or at least the first queued job). This mandates users to provide estimates
of how long jobs will run, and jobs that violate these estimates are killed so as not to violate sub-
sequent commitments. The de-facto standard of evaluating the impact of inaccurate estimates on
performance has been to use a “badness factor”f ≥ 0, such that given a runtimer, the associ-
ated estimate is uniformly distributed in[r, r · (f + 1)], or is simplyr · (f + 1). The underlying
assumption was that biggerfs imply worse information.

Surprisingly, inaccurate estimates (f > 0) yield better performance than accurate ones (f = 0),
a fact that has repeatedly produced statements like “inaccurate estimates actually improve perfor-
mance” or “what the scheduler doesn’t know won’t hurt it”, inmany independent studies. This has
promoted the perception that estimates are “unimportant”.At the same time, other studies noted
that real user estimates are inaccurate, and that system-generated predictions based on history can
do better. But predictions were never incorporated into production schedulers, partially due the
aforementioned perception that inaccuracy actually helps, partially because suggested predictors
were too complex, and partially because underprediction istechnically unacceptable, as users will
not tolerate jobs being killed just because system predictions were too short. All attempts to solve
the latter technicality yielded algorithms that are inappropriate for many supercomputing settings
(e.g. using preemption, assuming all jobs are restartable,etcetera).

This work has four major contributions.First , we show that the “inaccuracy helps” common
wisdom is merely an unwarranted artifact of the erroneous manner in which inaccurate estimates
have been modeled, and that increased accuracy actually improves performance. Specifically,
previously observed improvements turn out to be due to a “heel and toe” dynamics that, with
f > 0, cause backfilling to approximate shortest-job first scheduling. We show that multiplying
estimates by a factor translates to trading off fairness forperformance, and that this reasoning
works regardless of whether the values being multiplied areactual runtimes (“perfect estimates”)
or the flawed estimates that are supplied by users. We furthershow that the more accurate the
values we multiply, the better the resulting performance. Thus, better estimates actually improve
performance, and multiplying is in fact a schedulingpolicy that exercises the fairness/performance
tradeoff. Regardless, multiplying is anything but representative of real inaccuracy, as outlined next.

Our secondcontribution is developing a more representative model of estimates that, from
now on, will allow for a valid evaluation of the effect of inaccurate estimates. It is largely based
on noting that human users repeatedly use the same “round” values (ten minutes, one hour etc.)
and on the invariant that 90% of the jobs use the same 20 estimates. Importantly, the most popular
estimate is typically the maximal allowed. As a result, the jobs associated with this estimate cannot
be backfilled, and indeed, the more this value is used, the more EASY resembles plain FCFS.
Thus, to artificially increase the inaccuracy one should e.g. associate more jobs with the maximum
(a realistic manipulation),not multiply by a greater factor (a bogus boost of performance).

Our third contribution exploits the above understandings to devise anew scheduler that is able
to automatically improve the quality of estimates and put this into productive use in the context of
EASY, while preserving its attractive simple batch essenceand refraining from any unacceptable
assumptions. Specifically, the problem of underpredictionis solved by divorcing kill-time from

vi

the runtime prediction, and correcting predictions adaptively at runtime as needed, if they are
proved wrong. The result is a surprisingly simple scheduler, which requires minimal deviations
from current practices, and behaves exactly like EASY as faras users are concerned. Nevertheless,
it achieves significant improvements in performance, predictability, and accuracy. Notably, this
is based on a very simple runtime predictor that just averages the runtimes of the last two jobs
by the same user; counterintuitively, our results indicatethat using recent data is more important
than saving and mining the history for similar jobs, as was done by previous work. For further
performance enhancements, we propose to exploit the “heel and toe” understanding: explicitly
using a shortest jobbackfilledfirst (SJBF) backfilling order. This directly leads to a performance
improvements similar to those previously attributed to stunts like multiplying estimates. By still
preserving FCFS as the basis, we maintain EASY’s appeal and enjoy both worlds: a fair scheduler
that nevertheless backfills effectively.

Finally, ourfourth contribution has broader applicability, that transcends the supercomputing
domain. All of the above results are based on the standard methodology of modeling and simulat-
ing real activity logs of production systems, which is routinely practiced in system-related research.
The overwhelmingly accepted assumption underlying this methodology is that such real workloads
are representative and reliable. We show, however, that real workloads may also contain anomalies
that make them non-representative and unreliable. This is aspecial case of multi-class workloads,
where one class is the “real” workload which we wish to use in the evaluation, and the other class
contaminates the log with “bogus” data. We provide several examples of this situation, including
an anomaly we call “workload flurries”: surges of activity with a repetitive nature, caused by a
single user, that dominate the workload for a relatively short period. Using a workload with such
anomalies in effect emphasizes rare and unique events (e.g.occurring for a few days out of two
years of logged data), and risks optimizing the design decision for the anomalous workload at the
expense of the normal workload. Thus, we claim that such anomalies should be removed from
the workload before it is used in evaluations, and that ignoring them is actually an unjustifiable
approach.

Contents

Dedication .. iii
Acknowledgments .. . iv
Abstract .v

Contents vii
List of Publications x
Preface .xii

1 Introduction 1
1.1 Background .3

1.1.1 Job Scheduling . 3
1.1.2 Backfilling . 5

1.2 Motivation .. 9
1.2.1 The Unresolved Mystery of Inaccurate Estimates 9
1.2.2 The Failure to Model the “Badness” of User Estimates 11
1.2.3 The Failure to Improve the Quality of Estimates for Backfilling 13
1.2.4 The Problematic Nature of Raw Workload Data 16

1.3 Preview of Results .. . 18
1.3.1 Solving the Mystery of Why Inaccuracy May Help 18
1.3.2 Modeling Estimates .21
1.3.3 Incorporating System-Generated Predictions in Backfill Schedulers 24
1.3.4 Workload Flurries and Sanitization 28

2 Methodology 31
2.1 The Trace Files .. 31
2.2 The Simulator .. 32
2.3 Simulating EASY Backfilling 33
2.4 Performance Metrics 34
2.5 Artificially Varying the Load 35

3 Solving the Mystery of Why Increased Inaccuracy May Help 36
3.1 Introduction .. . 36
3.2 Performance as a Function of Badness 37
3.3 Backfilling as a Function of Badness 39
3.4 The Heel-and-Toe Dynamics 40
3.5 Countering the SJFness of Heel-and-Toe 42

viii CONTENTS

3.6 The Role of Burstiness 45
3.7 Unfairness as a Function of Badness 47
3.8 Making the Model More Realistic 48
3.9 Practical Implications 51
3.10 Non-FCFS Backfilling 55
3.11 Conclusions .. . 57

4 Backfilling With System-Generated Predictions 58
4.1 Introduction .. . 58
4.2 Incorporating Predictions into Backfilling Schedulers. 60

4.2.1 Separating the Dual Roles of Estimates 61
4.2.2 Prediction Correction 62
4.2.3 Shortest Job Backfilled First (SJBF) 64
4.2.4 Varying the Load . 65
4.2.5 Optimizations Summary .. 66

4.3 Predictability 66
4.4 Relationship With Other Algorithms 68
4.5 Does Better Accuracy Imply Better Performance/Predictability? 70
4.6 Tuning Parameters .. . 72
4.7 Conclusions .. 76

5 Modeling User Runtime Estimates 77
5.1 Introduction .. . 77
5.2 Existing Estimate Models and Their Shortcomings 79
5.3 Methodology and Roadmap 81
5.4 Input, Output, and Availability 82
5.5 Trace Files Manipulation 82
5.6 Mass Disparity of Estimates 83
5.7 Number of Estimates .. . 85
5.8 Time Values of Estimates 86
5.9 Popularity of Estimates 88
5.10 Mapping Time to Popularity 90

5.10.1 Mapping of Tail Estimates 90
5.10.2 Determining Head Times .. . 91
5.10.3 Mapping of Head Estimates .. . 93
5.10.4 Embedding User-Supplied Estimates 95

5.11 Overview of the Model 96
5.11.1 About the Complexity .. 97

5.12 Validating the Model 97
5.12.1 Validating the Distribution 97
5.12.2 Assigning Estimates to Jobs 99
5.12.3 Validating Performance Results 99
5.12.4 Repetitiveness is Missing 101

5.13 Conclusions .. . 102

CONTENTS ix

6 Workload Flurries and Data Sanitization 103
6.1 Introduction .. . 103
6.2 A Case Study of Instability 105

6.2.1 Example of a Butterfly Effect .. . 105
6.2.2 The Role of a Flurry in Causing the Effect 106
6.2.3 Explaining the Sensitivity 108

6.3 The Phenomenon of Workload Flurries 109
6.4 Impact of Flurries on System Evaluation 111
6.5 On Why the Removal of Flurries is the Right Thing to Do 112

6.5.1 How About Removing Entire Days? 113
6.5.2 Standard Alternatives are More Aggressive 113
6.5.3 How About Removing Just the Anomalous Part of the Days?. 114
6.5.4 How About Not Removing Anything and Separate AveragesInstead? . . . 115
6.5.5 How About Not Separating the Averages and Shake the Input Instead? . . . 117

6.6 Impact of Flurries on Modeling 117
6.7 Generalizing .. . 118
6.8 Conclusions .. 121

7 Discussion and Conclusions 122
7.1 Resolving the Misconception of Inaccurate Estimates 122
7.2 Accurately Modeling User Runtime Estimates 124
7.3 Leveraging System-Generated Predictions for Backfilling 125
7.4 Cleaning Workloads From Flurries and Other Anomalies 127

Bibliography 130

x CONTENTS

List of Publications

1. “Secretly monopolizing the CPU without superuser privileges”
Dan Tsafrir, Yoav Etsion, Dror G. Feitelson
USENIX Security Symposium
Aug 2007, Boston, Massachusetts (to appear)

2. “The context-switch overhead inflicted by hardware interrupts (and the enigma
of do-nothing loops)
Dan Tsafrir
ACM Workshop on Experimental Computer Science (ExpCS)
Jun 2007, San-Diego, California (to appear)

3. “Backfilling using system-generated predictions rather than user runtime estimates”
Dan Tsafrir, Yoav Etsion, Dror G. Feitelson
IEEE Transactions on Parallel and Distributed Systems (TPDS)
Jun 2007, pages 789–803, volume 18, number 6

4. “Fine grained kernel logging with KLogger: experience and insights”
Yoav Etsion, Dan Tsafrir, Scott Kirkpatrick, Dror G. Feitelson
ACM EuroSys
Mar 2007, Lisbon, Portugal

5. “Process prioritization using output production: scheduling for multimedia”
Yoav Etsion, Dan Tsafrir, Dror G. Feitelson
ACM Transactions on Multimedia Computing, Communicationsand Applications (TOMCCAP)
Nov 2006, pages 318–342, volume 2, number 4

6. “The dynamics of backfilling: solving the mystery of why increased inaccuracy may help”
Dan Tsafrir, Dror G. Feitelson
IEEE International Symposium on Workload Characterization (IISWC)
Oct 2006, San Jose, California, pages 131–141

7. “Instability in parallel job scheduling simulation: the role of workload flurries”
Dan Tsafrir, Dror G. Feitelson
IEEE International Parallel and Distributed Processing Symposium (IPDPS)
Apr 2006, Rhodes Island, Greece, page 10

8. “Workload sanitation for performance evaluation”
Dror G. Feitelson, Dan Tsafrir
IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)
Mar 2006, Austin, Texas, pages 221–230

9. “System noise, OS clock ticks, and fine-grained parallel applications”
Dan Tsafrir, Yoav Etsion, Dror G. Feitelson, Scott Kirkpatrick
ACM International Conference on Supercomputing (ICS)
Jun 2005, Cambridge, Massachusetts, pages 303–312

10. “Modeling user runtime estimates”
Dan Tsafrir, Yoav Etsion, Dror G. Feitelson

CONTENTS xi

Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP)
Jun 2005, Cambridge, Massachusetts, pages 1–35, Lecture Notes in Computer Science, volume 3834

11. “Desktop scheduling: how can we know what the user wants?”
Yoav Etsion, Dan Tsafrir, Dror G. Feitelson
ACM International Workshop on Network and Operating Systems Support for Digital Audio and
Video (NOSSDAV)
Jun 2004, Kinsale, Ireland, pages 110–115

12. “Effects of clock resolution on the scheduling of interactive and soft real-time processes”
Yoav Etsion, Dan Tsafrir, Dror G. Feitelson
ACM International Conf. on Measurement and Modeling of Computer Systems (SIGMETRICS)
Jun 2003, San Diego, California, pages 172–183

13. “Barrier synchronization on a loaded SMP using two-phase waiting algorithms”
Dan Tsafrir, Dror G. Feitelson
IEEE International Parallel and Distributed Processing Symposium (IPDPS)
Apr 2002, Fort Lauderdale, Florida, page 80

14. “Reducing performance evaluation sensitivity and variability by input shaking”
Dan Tsafrir, Keren Ouaknine, Dror G. Feitelson
Technical Report 2007-24, School of Computer Science and Engineering, the Hebrew University
May 2007

15. “Session-based, estimation-less, and information-less runtime prediction algorithms for parallel
and grid job scheduling”
David Talby, Dan Tsafrir, Zviki Goldberg, Dror G. Feitelson
Technical Report 2006-77, School of Computer Science and Engineering, the Hebrew University
Aug 2006

16. “A short survey of commercial cluster batch schedulers”
Yoav Etsion, Dan Tsafrir
Technical Report 2005-13, School of Computer Science and Engineering, the Hebrew University
May 2005

17. “General purpose timing: the failure of periodic timers”
Dan Tsafrir, Yoav Etsion, Dror G. Feitelson
Technical Report 2005-6, School of Computer Science and Engineering, the Hebrew University
Feb 2005

18. “Workload flurries”
Dan Tsafrir, Dror G. Feitelson
Technical Report 2003-85, School of Computer Science and Engineering, the Hebrew University
Nov 2003

xii CONTENTS

Preface

The research projects I have been involved in are related to systems of varying scale, ranging
from small personal desktops, through modest SMPs, to largescale supercomputers, and deal with
several different aspects of the studied systems (see publication list above). Aggregating all the
projects into a single document would have violated the space constraints of a PhD dissertation, and
therefore we have chosen to focus on only a few closely related papers that can enjoy a higher-level
collective presentation. The chosen theme concentrates onthe larger systems, and in particular, on
how to improve the performance of schedulers of supercomputers.

1

Chapter 1

Introduction

The most commonly used scheduling algorithm for supercomputers is FCFS (First-Come First-
Served) with backfilling, which requires users to provide runtime estimates of how long their jobs
will run. The estimates are used by the scheduler to better “pack” the jobs and therefore one
would naturally assume that accurate values would yield better packing and hence improve the
overall utilization and turnaround times. However, a decade-old mystery that repeatedly surfaces
suggests otherwise: it turns out many independent researchers have found time and again that
increasingly inaccurate estimates actually improve performance. Consequently, statements in the
spirit of “with respect to backfilling, what the scheduler doesn’t know won’t hurt it” [34] have
become widespread.

This dissertation makes four major contributions.First , we resolve the estimates mystery
and show it is merely the result of an unrealistic side effectof the manner by which increasingly
inaccurate estimates are artificially manufactured. Therefore, oursecondstep is developing an
alternative model that allows for a true evaluation. The results are in explicit disagreement with past
findings, and prove better accuracy does in fact translate tosuperior performance. This conclusion
motivates searching for a way to improve the quality of the (notoriously poor) user estimates, used
by backfill schedulers. All previous attempts to accomplishthis task have failed, due to technical
limitations inherent to backfilling. Ourthird contribution is overcoming these difficulties, while
leveraging the mechanics underlying the now-resolved mystery of why performance appeared to
improve. The suggested scheduling scheme (which utilizes system-generated runtime predictions
instead of user estimates) is remarkably similar to, and enjoys all the benefits of, plain FCFS
with backfilling. Nevertheless, it significantly improves accuracy, predictability, and performance
(which is up to doubled).

Our findings are based on the modeling, analysis, and simulation of real workload logs recorded
on real production systems. This methodology is standard and heavily used by numerous studies,
under the assumption that such logs are reliable and representative. Ourfourth and final ma-
jor contribution is discovering this assumption is actually often false, as logs might also contain
anomalies that make them non-representative and unreliable. One important recurring anomaly is
what we call “workload flurries” (very rare surges of activity with a repetitive nature, caused by
a single user). We show that basing an analysis on workloads including such anomalies can lead
to bogus evaluation results and eventually to bad system designs. Consequently, in contrast to the
common practice, we advocate that production logs be “sanitized” before being used, by deleting
these anomalies (similarly to the removal of outliers in statistical analysis).

2 Introduction

topic motivation preview chapter referred paper

of results

sect. page sect. page # page ref. venue

1 Solving the inaccuracy mystery 1.2.1 9 1.3.1 18 3 36 [159] IEEE Int’l Symp. on Workload Characteri-
zation (IISWC’06)

2 Modeling user runtime estimates 1.2.2 11 1.3.2 21 5 77 [157] LNCS Workshop on Job Scheduling Str-
ategies for Parallel Processing (JSSPP’05)

3 Backfilling with system predictions1.2.3 13 1.3.3 24 4 58 [156] IEEE Transactions on Parallel & Dis-
tributed Systems (TPDS’07)

4 Flurries and data sanitization 1.2.4 16 1.3.4 28 6 103 [160] IEEE Int’l Parallel & Distributed Process-
ing Symp. (IPDPS’06)

[54] IEEE Int’l Symp. on Performance Analysis
of Systems & Software (ISPASS’06)

Table 1.1:The four topics covered by this dissertation. Each topic is introduced in this chapter by two
subsections: “motivation” and “preview of results” (2-3 pages per subsections). Later, each topic is covered
by a dedicated chapter, which is largely based on the associated paper(s).

Dissertation Roadmap The layout of this dissertation revolves around the four aforementioned
topics, as shown in Tab. 1.1: each topic is associated with a separate chapter, which in turn is
associated with (and largely based on) one or two of the papers we have chosen to include in this
dissertation, as mentioned above. Other than these four chapters, the dissertation includes another
three: this one, which introduces the work, the next one, which presents our methodology, and the
last one, which contains our concluding remarks.

Introduction Chapter Roadmap Similarly to the higher level presentation approach, this chap-
ter’s structure is also largely based on the above division to four topics. It is composed of three
section: background (1.1), motivation (1.2), and preview-of-results (1.3). The background is di-
vided into two parts: it first provides a general survey on jobscheduling (Subsection 1.1.1), and
then zooms in on the issue of backfilling, which is the most popular scheduling scheme and the
immediate setting for this work (Subsection 1.1.2). The motivation section is divided into four
subsections, one per topic, each discusses in detail the various aspects and related work, which
motivated us to investigate that topic. Finally, the preview-of-results section is also subdivided into
four, such that each subsection presents our key findings in relation to the associated topic.

We note that a considerable effort has been put into making this chapter self-contained: the
“motivation” subsections fully introduce the four topics,and a real effort was made such that the
associated “preview-of-results” subsections would clearly explain the more important bottom-lines
and findings. (In contrast, the remaining chapters largely build on the material presented here.)

1.1 Background 3

1.1 Background

This chapter first presents a general overview on the topic ofjob scheduling (Sec. 1.1.1), and then
focuses on surveying backfill schemes (the immediate context of this work), and in particular, on
the EASY scheduler.

1.1.1 Job Scheduling

Supercomputers A parallel computer is “a collection of processing elementsthat communicate
and cooperate to solve large problems fast” [3]. The main motivation for developing and using such
computers is that whatever the performance of a single processor at a given time, higher perfor-
mance can, in principle, be achieved by utilizing many such processors. Parallel machines are often
referred to as “supercomputers”, if the number of processors composing them is relatively high.
Installations with tens to hundreds of processors are commonplace nowadays, and the “top-500
list” (which lists the 500 most powerful supercomputers in the world) is dominated by machines
with thousands or more processors and is lead by the 131,072 processors BlueGene/L [29]. It has
been established that the combined power of the top-500 almost doubles every year [43] and that
the combined number of processors is doubled every three years [42]. Thus, it is reasonable to
expect similar trends in lower-end supercomputers that arein common use, ever increasing the
supercomputing power.

Jobs Supercomputers are nowadays used to execute diverse tasks including weather forecasting
and climate research (e.g. about global warming), molecular modeling (e.g. of structures and prop-
erties of chemical compounds, biological macromolecules,polymers, crystals etc), various phys-
ical simulations (e.g. airplanes in wind tunnels, detonation of nuclear weapons, nuclear fusion),
cryptanalysis, data mining, and more. Parallel applications, called “jobs”, are usually composed
of a number of independent sequential processes that execute simultaneously, each on a different
processor. While they run, the processes communicate and exchange information from time to
time, in an effort to complete the task as soon as possible. Other types of parallel applications that
do not require communication between the computing partiesalso exist (e.g. workpile applications
like database transactions), but are not the focus of this work. Rather, we are interested in parallel
jobs in their “traditional” or “scientific” sense, where processes actually cooperate in order to solve
the problem.

Workload A supercomputer is a scarce and relatively expensive resource. At the same time
there are many potential users that can benefit from having access to supercomputing capabilities.
In an attempt to both accommodate users’ collective needs aswell as to maximize the utilization
of what is essentially an expensive machine, modern systemsallow multiple users (typically hun-
dreds [110]) to simultaneously use the same supercomputer.As a consequence, the workload of a
supercomputer generally consists of a sequence of jobs thatare submitted for execution by several
users at arbitrary times. This scenario is often referred toas being “on-line”, namely, that the sub-
mission times of jobs (also called their “arrival times”) are a-priori unknown [51]. Thus, each job
is characterized first and foremost by its arrival time.

Partitioning To support the execution of multiple jobs, most contemporary production systems
employ what is known as “space slicing” or “space sharing” [67, 164, 73, 44, 2, 108], meaning that
each job is allocated a “partition” of the machine (a subset of its processors) for its exclusive use.

4 Introduction

After allocation, the parallel job runs to completion, in batch mode, without being interrupted or
preempted. The exact size of the partition is not enforced bythe system. Rather, it is set according
to the user’s explicit request, a policy called “variable partitioning”. Thus, a second defining
attribute of a job (in addition to its arrival time) is its “size”, namely, the number of processors it
requires in order to run. This value is provided by the user upon the job submittal.

Note that there exist other partitioning strategies that, while an immense research effort has
been invested in them, are far less common. For example, eventhough the mainstream practice
is to allow only “rigid” jobs (for which users specify a single possible size), a recent survey [23]
revealed that 98% of the jobs are in fact “moldable” (fit more than one partition size). Such
information can certainly be used by the supercomputer to improve its utilization [16, 120, 167,
168, 121, 127, 134, 112, 23] and this ability was even incorporated in some research platforms
[45], however, we are unaware of any production system that makes use of it.

Rigid and moldable jobs are suitable for “static partitioning”, where the chosen size applies
throughout the entire execution of the job and is never changed. In contrast, “evolving” jobs
[116, 66] and “malleable” jobs [100, 14, 52, 80] must be supported by environments that employ
“dynamic partitioning”, which allows for a change in the size of the jobs during runtime [111, 32,
65, 102, 140, 107, 25]. (The difference between the two type is that for evolving jobs, changes are
application-initiated, whereas for malleable jobs the decision to change the number of processors is
made by an external job scheduler.) One variant of dynamic partitioning called “equipartitioning”
(strives for equal partition sizes for all jobs) was repeatedly shown to consistently produce good
results [103, 18, 28, 27, 113, 119]. Nevertheless, dynamic partitioning calls for a radical change
in the programming model, and we speculate that most users will not even consider structuring
their programs in a way that complies with this paradigm. To the best of our knowledge, the sole
implementation of dynamic partitioning on a production machine was done in research context
using the CM-5 Connection Machine [13].

Not only the space of the machine can be partitioned, but alsoits time. Environments that
support “time sharing” or “time slicing” allow sharing of processors between jobs by means of
context switching [109, 128, 104, 88, 119]. Under this title, the “gang scheduling” policy, which
insures all the processes of a job are executed simultaneously (by preempting and rescheduling
them at the exact same time) has drawn a lot of attention [49, 7, 50, 69, 59, 126, 170]. In contrast
to the various dynamic partitioning alternatives that turned out to have mostly theoretical value,
gang scheduling (under the static partitioning discipline) has proved to be more practical: Firstly,
it has been implemented as an optional part of the schedulingalgorithm within a range of real
systems (SGI’s IRIX [8], Intel’s Paragon [165], IBM’s LoadLeveler resource manager [82], and
Cray’s XD1 [153]). Secondly, it has been utilized in experimental systems that were actually
deployed in several sites (LLNL’s BBN-Butterfly [63] and Cray-T3D [78]). And lastely, there is at
least one known, efficient, and widely deployed gang scheduling implementation — on the CM-5
Connection Machine [95, 108].

Despite this relative success, time slicing inevitably involves various nontrivial difficulties that
are absent from strict space-slicing/static-partitioning alternatives. A notable example is how to
avoid memory contention in the face of having more than one job simultaneously using the memory
[165, 9]. Such difficulties are probably the reason why production systems predominantly favor
the space-slicing/static-partitioning, as will be further discussed next.

1.1 Background 5

FCFS FCFS + Backfilling

P
ro

ce
ss

or
s

Future Time

4
3

2

1
3

4

2

1

Figure 1.1:A space/time Gantt chart displaying a FCFS schedule without(left) and with (right) backfill-
ing. Each rectangle represents a job, such that the rectangle’s width and height are the job’s runtime and
size, respectively. The job numbers indicate arrival order(not arrival time). Obviously, backfilling reduces
fragmentation and improves the utilization. Note, however, that it would have been impossible to backfill
job 4 had its length been more than 2 time units, as the reservation for job 3 would have been violated.

1.1.2 Backfilling

EASY Backfilling The default algorithms used by current job schedulers for parallel supercom-
puters are all rather simple and similar to each other [37], employing a straightforward version
of variable partitioning. (Recall that this means space-slicing with static-partitioning, where users
specify the number of processors required by their jobs uponsubmittal.) In essence, schedulers
select jobs for execution in first-come first-served (FCFS) order, and run each job to completion,
in batch mode. The problem with this simplistic approach is that it causes significant fragmenta-
tion, as jobs with arbitrary sizes/arrivals do not pack perfectly. Specifically, if the first queued job
requires many processors, it may have to wait a long time until enough are freed. During this time,
processors stand idle as they accumulate, despite the fact there may very well be enough of them
to accommodate the requirements of other, smaller, waitingjobs.

To solve the problem, most schedulers therefore employ the following algorithm. Whenever the
system status changes (job arrivals or terminations), the scheduler scans the queue of waiting jobs
in order of arrival (FCFS) and starts the traversed jobs if enough processors are available. Upon
reaching the first queued job that cannot be started immediately, the scheduler makes areservation
on its behalf for the earliest future-time at which enough free processors would accumulate to
allow it to run. This time is also called theshadow time. The scheduler then continues to scan the
queue for smaller jobs (require fewer processors) that havebeen waiting less, but can be started
immediately without interfering with the reservation. In other words, a job is started out of FCFS
order only if it terminates before the shadow time and therefore does not delay the first queued job,
or if it uses extra processes that would not be needed by the first queued job. The action of selecting
smaller jobs for execution before their time provided they do not violate the reservation constraint
is calledbackfilling, and is illustrated in Fig. 1.1 (see detailed description inSection 2.3).

This approach was initially developed for the IBM SP1 supercomputer installed at the Ar-
gonne National Laboratory as part ofEASY(Extensible Argonne Scheduling sYstem), which was
the first backfilling scheduler [98].1 The term “EASY” later became a synonym for FCFS with
backfilling against a reservation associated with the first queued job. (Other backfill variants are
described below.) While the basic concept is extremely simple, a comprehensive study involving
5 supercomputers over a period of 11 years has shown that consistent figures of 40–60% average
utilization have gone up to around 70%, once backfilling was introduced [79]. Further, in terms

1Backfilling has later been integrated with the IBM LoadLeveler scheduler for the SP2 system [60], and has been
supported ever since.

6 Introduction

of performance, backfilling was shown to be a close second to more sophisticated algorithms that
involve preemption (time slicing), migration, and dynamicpartitioning [19, 170].

User Runtime Estimates The down side of backfilling is that it requires the schedulerto know
in advance how long each job will run. This is needed for two reasons:

1. to compute the shadow time for the longest-waiting job (e.g. in the example given in Fig. 1.1,
we need to know the runtimes of job 1 and job 2 to determine whentheir processors will be
freed in favor of job 3), and

2. to know if smaller jobs positioned beyond the head of the wait-queue are short enough to be
backfilled (we need to make sure backfilling job 4 will not delay job 3, namely, that job 4
will terminate before the shadow time of job 3).

Therefore, EASY required users to provide a runtime estimate for all submitted jobs [98], and the
practice continues to this day. Importantly, jobs that exceed their estimates are killed, so as not to
violate subsequent commitments (the reservation). This strict policy has the additional benefit that
it supplies an inherent and clear motivation for users to provide high quality estimates , as short
enough values increase the chances for backfilling, but too-short values will get jobs prematurely
killed.2

Popularity of EASY The burden placed on users to provide estimates has not been detrimen-
tal. Rather, the combination of simplicity, effectiveness, and FCFS semantics (often perceived
as most fair [123]) has made EASY a very attractive and a very popular job scheduling strategy.
Nowadays, virtually all major commercial and open-source production schedulers support EASY
backfilling [37], including

• IBM’s LoadLeveler [60, 82],

• Cluster Resources’ commercial Moab [118] and open-source Maui [75] (which is probably
the most popular scheduler used within the academia),

• Platforms’ LSF (Load Sharing Facility) [172, 24],

• Altair’s PBS (Portable Batch System) [68] in its two flavors:commercial PBS-Pro [33] and
open-source OpenPBS [10], and

• Sun’s GridEngine [61, 106]

The default configuration of all these schedulers, except PBS, is either EASY or plain FCFS
(with FCFS, however, the schedulers’ behavior becomes EASYif backfilling is nevertheless en-
abled). The CTO of Cluster Resources has estimated that 90-95% of Maui/Moab installations do
not change their default (EASY) settings [74]. Being the exception that implies the rule, the PBS
variants use Shortest-Job First (SJF) as their basic default policy. However, even with PBS, when a
job is “starved” (a situation defined by PBS to occur if the jobis waiting for 24 hours or more) then
the scheduling reverts to EASY until this job is started. As atestament for its immense popularity,
a survey about the top 50 machines within the top-500 list revealed that, out of the 25 machines for
which relevant information was available, 15 (= 60%) were operating with backfilling enabled [36].

2Indeed, the administrator guide of e.g. LSF clearly states that “Since jobs with a shorter run limit have more
chance of being scheduled as backfill jobs, users who specifyappropriate run limits will be rewarded by improved
turnaround time.” [24]

1.1 Background 7

Variations on Backfilling Despite the simplicity of the concept, backfilling has nevertheless
been the focus of dozens of research papers attempting to evaluate and improve the basic idea.3

We do not list them all here, but rather, cite many of them (andmore) when appropriate, within
their respective contexts later on. The remainder of this section only briefly mentions some of the
various tunable knobs of backfilling algorithms.

One tunable parameter is thenumber of reservations. As mentioned above, in EASY, only
the first queued job receives a reservation. Thus, backfilling may cause delays in the execution of
other waiting jobs which are not the first and therefore do notget a reservation [47]. The obvious
alternative is to allocate reservation to all the jobs. Thisapproach has been named “conserva-
tive backfilling” as opposed to the “aggressive” approach taken by EASY [108]. However, it has
been shown that delaying other jobs is rarely a problem, and that conservative backfilling tends
to achieve reduced performance in comparison to the aggressive alternative. The MAUI scheduler
includes a parameter that allows system administrators to set up the number of reservations [75].
It has been suggested that allocating up to four reservations is a good compromise [15].

A second parameter is thelooseness of reservations. For example, an intriguing suggestion
is a “selective reservation” strategy depending on the extent different jobs have been delayed by
previous backfilling decisions. If some job is delayed by toomuch, a reservation is made for this
job [141]. This is somewhat similar to the “flexible backfilling” strategy, in which backfilling is
allowed to violate the reservation(s) up to a certain slack [150, 166]. (Setting the slack in the latter
strategy to be the threshold used for allocating selective reservations in the former strategy, is more
or less equivalent.)

A third parameter is theorder of queued jobs. EASY, as well as many other system designs,
use FCFS order [98]. A general alternative is to prioritize jobs in a certain way, and select jobs for
scheduling (including as candidates of backfilling) according to this priority order. For example,
flexible backfilling combines three types of priories: an administrative priority to favor certain
users or projects, a user priority used to differentiate between the jobs of the same user, and a
scheduler priority used to guarantee that no job is starved [150]. The Maui scheduler has a priority
function that includes even more components [75]. Another approach is to prioritize based on
various job characteristics. In particular, a set of criteria related to the current queueing time
and expected resource consumption of jobs has been proposed, which generalizes the well-known
SJF algorithm for improved performance [174, 115] as well ascombines it with fairness notions
[19, 15]. The queuing order and the timing of reservations can also be determined by economic
models [35] or various quality of service assurances [72].

A fourth parameter (related to the previous one) is thepartitioning of reservations. The pro-
cessors of a machine can be partitioned into several disjoint sets (free processors can dynamically
move around between them based on current needs). Each set isassociated with its own wait-queue
and reservation. Lawson and Smirni divided the machine suchthat different sets serve different
jobs classes, characterized by their estimated runtime (e.g. short, medium, and long) [90, 92]. A
backfilling candidate is chosen in a round-robin fashion, each time from a different set, and must
respect all reservations. By separating short from long jobs, this multiple queue policy reduces

3For example, searching the ACM digital library for papers with “backfill” appearing in their title or abstract results
in a (far from complete) list of more than 30 papers, most are directly dealing with the subject. The query “(backfill
OR backfilling) AND parallel AND scheduler” in Google’s Scholar retrieves more than 400 documents, of which the
overwhelming majority are related to job scheduling. The initial paper about EASY [98] is listed by Scholar as cited
158 times.

8 Introduction

the likelihood that a short job is overly delayed in the queuebehind a very long job, and therefore
improves average performance metrics.

A fifth parameter is theadaptiveness of backfilling. An adaptive backfill scheduler continu-
ously simulates the execution of recently submitted jobs under various scheduling disciplines, com-
pares the hypothetical resulting performance, and periodically switches the scheduling algorithm
to be the one that scored the highest. In the face of differentworkload conditions, this adaptiveness
has the effect of both improving and stabilizing the observed performance results [144, 149].

A sixth parameter is the amount oflookahead into the queue. Most backfilling algorithms
consider the queued jobs one at a time when trying to backfill them, which often leads to loss
of resources to fragmentation. The alternative is to consider the whole queue at once, and try to
find the set of jobs that together maximize the utilization while at the same time respecting the
allocated reservation(s). This appears to be a NP-hard problem, but due to the fact machine sizes
are relatively small, this can be done in polynomial time (inthe complexity of the machine size)
using dynamic programming, leading to optimal packing [132, 131].

A seventh and final parameter is related tospeculative backfilling, where the scheduler is al-
lowed to exploit gaps in the schedule for backfilling, even ifthe backfilled job interferes with the
reservation. By doing so, the scheduler speculates that thebackfilled job would terminate sooner
than its estimate suggests, and in any case before the shadowtime. Successful speculations ob-
viously improve performance and utilization, and have no negative side effects. But unsuccessful
speculations must somehow be dealt with. Unfortunately, all previously suggested solution re-
sulted in a scheduling algorithm that lies outside the attractive variable partitioning domain: The
simplest alternative is to kill the offending backfilled joband restart it later on [90]. A similar
idea is to employ “short test runs”, during which jobs eithermanage to terminate, or are reinserted
to the wait-queue with a tighter estimate deduced from the test [115, 15]. Unfortunately, both
ideas assume jobs are restartable, which is often not the case. A possible workaround is to em-
ploy preemption (time sharing), such that instead of killing and restarting the job, it is suspended
and kept in memory, only to be resumed later on from the point in which it was stopped [139].
However, if preemption comes into play, it may be preferableto instead combine backfilling with
a full fledged gang scheduler altogether [169]. This combination has even been further extended
by adding migration capabilities [85, 170]. A recent study suggested preemption is actually re-
dundant if migration or dynamic partitioning are available. The idea is to reduce the backfilled
job’s processor allocation by folding it over itself. This frees most of its processors, and limits the
performance degradation to the offending job [162].

Finally, a new direction in job scheduling research is to tryandminimize the electric power
demand, which is rapidly becoming a problem in the context of supercomputing [129]. It has been
suggested to integrate the concept of scheduling and power management within EASY [91]. The
proposed scheduler continuously monitors load in the system and selectively puts certain nodes in
“sleep mode” (makes them unavailable for execution), afterestimating the effect of fewer nodes
on the projected job slowdown. Using online simulation, thesystem adaptively selects the minimal
number of processors that are required to meet certain negotiated service level agreements.

Backfilling and Grid Computing We note in passing that the backfilling doctrine naturally fits
into grid settings were certain assurances are often neededregarding start times of waiting jobs.
(In fact, the “reservation” term is heavily used in gird context.) For example, this is needed for co-
allocation, where a job is simultaneously scheduled to run on multiple remote cites [83, 137, 96].

1.2 Motivation 9

SDSC

w
ai

t
[m

in
ut

es
]

280

320

360 real
realX2
perfect
perfectX2

CTC

17

20

23
KTH

85

100

115
BLUE

100

115

130
SDSC

bo
un

de
d

sl
ow

do
w

n

70

85

100
CTC

3

4

5
KTH

65

80

95
BLUE

25

30

35

Figure 1.2:The average wait time and slowdown of all jobs obtained when simulating four different work-
loads, both with real user estimates (“real”) and after replacing them with actual runtimes (“perfect”;f=0).
In both cases making estimates less accurate by doubling (“X2”) tends to help. (See the next chapter for a
detail description of both the simulator and the workloads.)

1.2 Motivation

This work focuses on backfill scheduling algorithms and in particular, due to its immense popu-
larity, on EASY as their representative. Recall that backfilling requires users to provide runtime
estimates, used by the scheduler to better pack the jobs. Attempts to assess the impact of inaccurate
estimate on performance have yielded a very surprising result: it appears that increased inaccuracy
improves the performance, as described next.

1.2.1 The Unresolved Mystery of Inaccurate Estimates

Modeling Inaccuracy In 1998, Feitelson and Mu’alem-Weil proposed the “f -model” in order
to study the sensitivity of backfilling to the quality of estimates [47]. Given a jobJ with runtimer,
the model postulates that its estimate is chosen at random from a uniform distribution in the range
[r, (f + 1) · r], wheref ≥ 0 is a predetermined constant.4 They termedf the “badness factor”
because estimates become increasingly inaccurate asf grows, withf = 0 indicating completely
accurate estimates. Thef -model has been used when simulating workloads that lacked estimates
data [169, 56, 58], but much more importantly, the model and its variants have been extensively
used to study the impact of inaccurate estimates on backfilling algorithms [146, 47, 174, 108, 15,
142, 170, 122, 34, 64]. One simple variant of interest is the “deterministicf -model”, in which there
is no random component and estimates are simply set to be(f + 1) · r, that is, a direct multiple of
the associated runtime and some factor [174, 15, 34].5

The Inaccuracy Mystery A very surprising result repeatedly reported by the aforementioned
papers was that, in terms of performance, inaccurate estimates are usually preferable over accurate
ones. This is illustrated in Fig. 1.2. Evidently, performance improves when deliberately making
estimates less accurate by doubling them. This is true both when doubling perfectly accurate
estimates and when doubling the original (inaccurate) userestimates.6

While there is a wide agreement that making estimates less accurate by multiplying them with
some factor is usually beneficial, the effect of the chosenf is less obvious. This is illustrated

4f is nonnegative because a job is killed by the system if it tries to run beyond its estimate, so the estimate is never
smaller than the runtime.

5The first known use of the deterministic model was by Suzuoka et al. [146] in 1995 (the same year in which the
first paper about EASY was published [98]), which utilized artificial estimates that are 50% bigger than real runtimes
(f = 1

2
in badness terminology) to evaluate the impact of inaccuracy.

6In 1999, Zotkin and Keleher conjectured that the improvement obtained when multiplyingperfectestimates by
some factor (as was reported in 1998 by Feitelson and Mu’alem-Weil [47]), might also be obtained if multiplyingreal
user estimates [174]. This was later verified to be true by Mu’alem and Feitelson in 2001 [108].

10 Introduction

 280

 300

 320

 340

 360

 0 2 4 6 8 10

SDSC

w
ai

t [
m

in
ut

es
]

 16

 18

 20

 22

 24

 0 2 4 6 8 10

CTC

w
ai

t [
m

in
ut

es
]

 90
 95

 100
 105
 110
 115

 0 2 4 6 8 10

KTH

w
ai

t [
m

in
ut

es
]

 90

 100

 110

 120

 130

 0 2 4 6 8 10

BLUE

w
ai

t [
m

in
ut

es
]

 70
 75
 80
 85
 90
 95

 0 2 4 6 8 10

f (badness factor)

b.
 s

lo
w

do
w

n

real
f=0

random
deterministic 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10

f (badness factor)

b.
 s

lo
w

do
w

n

 50

 60

 70

 80

 90

 0 2 4 6 8 10

f (badness factor)

b.
 s

lo
w

do
w

n

 20

 25

 30

 35

 40

 0 2 4 6 8 10

f (badness factor)

b.
 s

lo
w

do
w

n

Figure 1.3:Performance as a function off for the random and the deterministicf -model (“real” corre-
sponds to real user estimates). Excluding SDSC, most results associated with positivef values are better
(smaller) than the performance associated withf=0.

in Fig. 1.3. Faced with (usually a small subset of) such results, researchers claimed that the im-
provement in performance is largely “insensitive” tof [174, 169, 34, 64]. Further, England et
al. suggested a new “robustness” metric for evaluating the performance of computer systems and
claimed (in one case-study demonstrating the usefulness oftheir metric) that [34]:

ROBUSTNESS CLAIM

“Our results support those of a previous work and also indicate that backfilling is robust
to inaccurate run time estimates in general. It seems that, with respect to backfilling,
what the scheduler doesn’t know won’t hurt it.”

The Failure to Explain the Mystery The fact nonzero badness (f > 0) usually improves perfor-
mance was unanimously explained by what we call the“holes argument”[47, 174, 108, 15, 142],
as elegantly articulated by Chiang et al. [15]:

HOLES ARGUMENT

“We note that for largef (or when multiplying [real] estimates by two), jobs with long
runtimes can have very large runtime overestimation, whichleaves larger ’holes’ for
backfilling shorter jobs. As a result, average slowdown and wait may be lower”

At the same time, the observed “insensitivity” of performance to the exact badness value for
f > 0, was explained by what we call the“balance argument”[174, 169, 170, 64], as articulated
by Zhang et al. [169]:

BALANCE ARGUMENT

“We can understand why backfilling is not that sensitive to the estimated execution time
by the following reasoning. On average, overestimation impacts both the jobs that are
running and the jobs that are waiting. The scheduler computes a later finish time for the
running jobs, creating larger holes in the schedule. The larger holes can then be used to
accommodate waiting jobs that have overestimated execution times. The probability of
finding a backfilling candidate effectively does not change with the overestimation.”

1.2 Motivation 11

For example, doubling the lengths of all the jobs in Fig. 1.1 only means the X-axis is scaled
by a factor of two, but doesn’t change anything regarding thebackfilling decision: indeed, after
doubling, job 4 looks twice as long in the eyes of the scheduler, but the same applies to the 2-time-
units-hole opened by job 2, so job 4 can still backfill.

While both arguments seemingly make sense, one obvious problem with them is that they
are contradictory: If the balance-argument is correct, then there is no benefit in opening those
“larger holes” as suggested by the holes-argument, becausebackfilling candidates would become
proportionally larger and cancel the effect. On the other hand, the “holes argument” implies a
performance improvement that is proportional tof , in contrast to the balance-argument rationale.
Regardless of the contradiction, both arguments fail to explain the results shown in Fig. 1.3, for
example the noisiness of BLUE (performance is actually quite sensitive tof), or the opposite trends
observed in SDSC/wait vs. CTC/wait (CTC/wait supports the holes-argument while SDSC/wait
contradicts it; both contradict the balance-argument).

1.2.2 The Failure to Model the “Badness” of User Estimates

The Role of a Model The purpose of a model is to truthfully reflect reality, thereby allowing
a valid performance evaluation methodology. A successful model makes it possible to artificially
generate arepresentativeworkload, similar to the activity typically experienced bythe relevant
systems. The output of a model is then used as the input (benchmark) that drives the evaluated
system, which can be an actual existing system or a simulatedone. Simulations are especially
important for evaluating system designs, for which the chosen configuration is yet to be determined
(often based on simulation results). The main advantage of using a model in this context is its
flexibility: changing the configuration of a planned system is usually as easy as changing the
value of a parameter (e.g. memory size, number of processors, etc). This methodology allows, for
example, to decide upon the most cost-productive system configuration, before purchasing it.

There is another potentially significant benefit to developing a model that manages to success-
fully characterize the inherent nature of a representativeworkload: the understandings and insights
it exposes can often lead to the design of an improved system,which is better suited to efficiently
handle this type of a workload.

The Failure of the f -Model According to Fig. 1.3, the popularf -model fails to achieve its
objective, as it yields unrealistically improved performance results that are consistently better than
those obtained when real user estimates are utilized (the only exception is very smallf values in
CTC/wait). Recall that the purpose of a model is not to paint abright picture of reality, but rather,
an accurate one. Surprisingly, this deficiency has usually been brushed aside. And so, in contrast
to the other key parameters of parallel workloads (jobs’ runtimes, interarrival times, number of
processors) that receiveda lot of attention in terms of realistic modeling [46, 30, 77, 17, 20, 170,
99, 105], the dominant estimate model has been thef -model [146, 47, 174, 169, 108, 15, 142, 170,
122, 34, 64], or simply using actual runtimes instead of estimates (f=0) [84, 145, 163, 39, 133].
We conjecture that this can be partially attributed to the perception that estimates are unimportant
because “inaccuracy improves performance” and “what the scheduler doesn’t know won’t hurt
it”. (Paradoxically, these statements are largely based onresearch that utilizes thef -model itself.)
But the results associated with real estimates (Fig. 1.3) clearly demonstrate that reality is more
complex.

12 Introduction

The Failure of the Φ-Model Recall that backfill schedulers kill underestimated jobs toinsure
reservations are respected, and that this policy creates a clear motivation for users to supply accu-
rate estimates. This is true because (1) jobs would have a better chance to backfill if their estimates
are tight, but (2) would be killed if they are too short. The popularity of EASY and the fact it
is used in production systems owned by organizations that agree to share their scheduling logs,
have made it possible to evaluate whether this incentive manages to actually deliver high quality
estimates. The consistent conclusion was negative, namely, user estimates turned out to be rather
poor [47, 17, 108, 20, 38, 93, 157]. This is demonstrated in Fig. 1.4 using data from the four
different installations used earlier. The graphs are histograms of the estimationaccuracy: what
percentage of the “requested time” (as embodied in estimates) was actually used. The promising
peak at 100% regrettably reflects jobs that reached their allocated time and were then killed by the
system according to the backfilling rules. The hump near zeroreflect very short jobs (less than 90
seconds) that failed on startup. The rest of the jobs, that actually ran successfully, have a rather flat
uniform-like histogram, meaning that for such jobs, any level of accuracy is almost equally likely.

Noticing the failure of thef -model, Mu’alem and Feitelson attempted to develop a more suc-
cessful model by recreating the histograms shown in Fig. 1.4[108]. The histogram’s flat portion
implies thatr/e = u, i.e., that the ratio of the actual runtimer to the estimatee can be modeled as
a uniformly distributed random variable in the rangeu ∈ (0, 1]. By changing sides we gete = r/u,
so given a runtimer we can generate an estimatee that, while unrelated to the actual user estimate
for this particular job, is expected to lead to the same general statistics of all the estimates taken
together. To complete the model one just needs to note thatΦ percent of the jobs are underesti-
mated,7 and for short jobs the estimates are too large by a factor of about 10 (accuracy of 10% or
less). The final model is therefore

1. With probability ofΦ returnr (reconstructs the 100% peak).

2. Otherwise, create an estimate ofr/u, whereu is uniformly drawn from the range(0, 1]
(generates the uniform-like histogram).

3. If r < 90 seconds, multiply the estimate by 10 (recreates the hump near 0%).

4. If the estimate is “outrageous”, truncate it to some upperbound.

Fig. 1.5 shows that, unfortunately, despite the added information, theΦ-model is also unsuccessful
in capturing the “badness” of user estimates. In fact, one can always find a badness factorf that
yields performance results that are closer to the real thingthan when theΦ-model is employed.

Another model, similar to theΦ-model, was proposed by Cirne and Berman [20], which took
the opposite direction in comparison to the previous model and chose to produce runtimes as mul-
tiples of estimates and accuracies, while generating direct models to the latter two. This decision
was based on the argument that accuracies correlate with estimates less than they do with runtimes.
In their model, accuracies were claimed to be well-modeled by a gamma distribution (a result of
trying to model the uniform part of the histogram along with the hump at low accuracies, by using
one function for both). Estimates were successfully modeled by a log-uniform distribution. This
methodology suffers from the same problem as the previous model. In addition, it is not useful
when attempting to add estimates to existing logs that lack them, or to workloads that are generated
by other models which usually include runtimes and lack estimates [46, 30, 77, 99].

7Mu’alem and Feitelson did not use a parameter to denote the percent of killed jobs. Rather, they used a hard-coded
value of 10%. In a later paper, Zhang et al. parameterized this value, called itΦ, and named the model accordingly:
the “Φ-model”.

1.2 Motivation 13

SDSC

accuracy [%]

0 50 100

jo
bs

 [%
]

0

5

10

15
CTC

0

5

10

15

0 50 100

KTH

0

5

10

15

0 50 100

BLUE

0

5

10

15

0 50 100

OK jobs
killed jobs
<90sec jobs

Figure 1.4: The accuracy
(
= 100 · runtime

estimate

)
histograms are rather flat when ignoring jobs that reached

their estimate and were killed by the system (100% peak) of failed on start up (0–15% hump).

SDSC

f0 f1 f3 f1
0

f3
0

f1
00

f3
00 Φ

bo
un

de
d

sl
ow

do
w

n

70

80

90

100
CTC

f0 f1 f3 f1
0

f3
0

f1
00

f3
00 Φ

2

3

4

5
KTH

f0 f1 f3 f1
0

f3
0

f1
00

f3
00 Φ

60

70

80

90
BLUE

f0 f1 f3 f1
0

f3
0

f1
00

f3
00 Φ

25

30

35

40

model

f0 f1 f3 f1
0

f3
0

f1
00

f3
00 Φ

w
ai

t [
m

in
ut

es
]

280

320

360

400

original

f0 f1 f3 f1
0

f3
0

f1
00

f3
00 Φ

12

16

20

24

f0 f1 f3 f1
0

f3
0

f1
00

f3
00 Φ

90

100

110

120

f0 f1 f3 f1
0

f3
0

f1
00

f3
00 Φ

100

110

120

130

140

Figure 1.5: Comparing the performance obtained when using real user estimates (“original”) to those
obtained when replacing them with artificial ones as generated by thef -model(f = 0, 1, 3, 10, 30, 100, 300)
and theΦ-model.

1.2.3 The Failure to Improve the Quality of Estimates for Backfilling

Prediction Algorithms There have been quite a few research efforts that attempted to present a
higher quality alternative to user estimates. These have mainly focused on using historical data,
as it is well known that users of parallel machines tend to repeatedly do the same work [48, 173]
and therefore it is conceivable that historical data can be used to predict the future (Fig. 1.6). The
common practice has been to partition past jobs into disjoint “similarity classes” or “categories”
based on one or more of their attributes, including user and group ID, requested processors num-
ber, requested memory size, queue identifier, submit time, runtime estimate, executable name and
arguments, and any other attribute which is known upon submission. When two historical jobs

14 Introduction

105

103

101

 0 100 200 300 400 500 600 700 800

us
er

 2

tim
e

[s
ec

]

job of user
runtime

estimate

105

103

101

 0 50 100 150 200 250 300

us
er

 9
9

105

103

101

 0 50 100 150 200 250 300

us
er

 2
02

105

103

101

 0 100 200 300 400 500 600

us
er

 3
28

Figure 1.6:Runtime and estimate of jobs by four arbitrary SDSC users show remarkable repetitiveness.

agree on a predetermined subset of these attributes they arejudged “similar”.8

A chosen attribute subset, according to which jobs are partitioned into classes, is called a
“template”. When a new job arrives, the system checks whether its attributes, as listed in the
chosen template, coincide with one of the similarity classes. If this is the case, the system generates
a prediction based on the runtimes of the jobs that populate that class. The metrics used to generate
the prediction (listed in order of increasing complexity) are: simply using the median or mean [136,
156], adding to the mean 1.5 standard deviations [108], using the top 95% confidence interval [62],
using liner regression [135], using statistical models based on the (usually) log-uniform distribution
of runtimes [31], and employing instance-based learning [83].

Prediction schemes may employ multiple templates simultaneously, in which case historical
jobs may reside in more than one class. Consequently, new jobs may also match more than one
class. When such a situation arises, the scheme must somehowdetermine which class to use for
prediction. The canonical approach has been to use the one with the tightest statistical confidence
[62, 135, 136, 86].

A fundamental problem underlying the approach described here is how to choose the templates
according to which jobs are partitioned. The number of job attributes along with all their possible
transformations is potentially very big. The number of possible templates is therefore exponen-
tially bigger (recall that any subset of attributes and their derivatives can serve as a template), so
it is obviously impractical to use all conceivable configurations. The simplest solution is to decide
upon a static set of templates that seemed reasonable to the person that implemented the predic-
tion algorithm [62, 108]. A more sophisticated approach is to do it dynamically at runtime, in an
evolving manner. This is done based on the success that individual templates demonstrate in pre-
dicting future runtimes during execution, combined with some heuristic to periodically introduce
new templates to replace those that are less successful, in the hope of converging to a template-
collection that manages to produce robustly good results. This approach has been implemented
using statistical methods [97], genetic algorithms [135, 136], and rough set theory [86].

The Failure of Prediction Algorithms Despite all the work devoted to prediction algorithms
(denoted “predictors”), these have never found their way into production systems, and backfill
schedulers in actual use still employ raw user estimates rather than history-based system-generated
predictions. We identify three reasons underlying this failure:

8Agreement may be defined as simple equality, or if attribute values are equal only after undergoing some trans-
formation, e.g. jobs sizes may agree if they fall in the same “range”, submission times may agree if both are during
daytime vs. nighttime, etc.

1.2 Motivation 15

1. Misperception of Estimates as Unimportant As described above, many studies found
that increased inaccuracy either doesn’t degrade or even improves performance [146, 47,
169, 170, 34, 64]. This has led to the suggestion that estimates should bedoubled[174, 108]
or randomized[115], to make them even less accurate. These findings seemingly negate
the motivation to incorporate mechanisms for better predictions, deeming user estimates as
“unimportant”.

2. Complexity of Predictors All previously suggested prediction techniques assumed that an
important component in accurately predicting future runtimes is to identify the most similar
jobs in the history, and base the predictions on them. This mandates logging and mining the
history, often using very sophisticated algorithms. In addition, the metrics applied on the
chosen historical jobs to produce the predictions have often been nontrivial by themselves.
As described above, the end results has been relatively complex predictors employing var-
ious statistical methods [62, 31, 136, 97], genetic algorithms [136, 138], instance based
learning [83], and rough set theory [86]. Further, they require a training period which can be
significant. For example, Smith et al. [136, 138] used an entire trace to guide the selection
of templates before evaluating their algorithm (on the verysame trace, using the selected
templates), deeming their algorithm as off-line and significantly limiting its practical value.
Paradoxically, all this algorithmic and computational complexity is often much more compli-
cated than the entire EASY scheduler, making existing predictors an unattractive alternative.

3. Technical Barrier While the above two difficulties are certainly contributingfactors to
the failure of predictors to find their way into production systems, they are not detrimental.
The real problem is that it is simply impossible to naively replace estimates with system-
generated predictions, becauseestimates are part of the user contract. While this contract
clearly states that a job trying to exceed its estimate will be killed (con), it also guarantees
that this job will be allowed to run until that time (pro). Thedifficulty arises because ev-
ery reasonable prediction algorithm is bound to occasionally produce too-short predictions,
leading to premature killing of jobs according to the backfilling rules, thereby violating the
contract. Previous studies dealt with this difficulty usingone of the following alternatives:

• eliminating backfilling altogether, at the expense of fairness (using pure SJF) [62, 138]

• employing speculative backfilling or test runs (assumes jobs are restartable) [115, 15,
90]

• using preemption to e.g. suspend jobs exceeding their predictions and reinsert them to
the wait queue (augments space slicing with time slicing) [62, 19, 139, 170]

• considering only artificial estimates generated by thef - or Φ-models as multiples of
actual runtimes (assumes underprediction never occurs) [174, 115, 15, 141, 142].

None of these retain the appeal of plain EASY. Noting this problem, Mu’alem and Feitelson
checked whether underprediction does in fact occur when using a conservative predictor (av-
erage of previous jobs with the same user, size, and executable, plus11

2
times their standard

deviation).9 They found that∽20% of the jobs suffered from underprediction and would
have been killed prematurely by a backfill scheduler. They therefore concluded that [108]:

9In the terminology defined above, this is a template composedof the attributes{user, size, executable}.

16 Introduction

THE UNFEASIBILITY CLAIM

“Given the large fraction of jobs that are underestimated, it seems that using system-
generated predictions for backfilling is not a feasible approach”.

We will show that the above three difficulties can be either refuted, or dealt with in a simple and
straightforward manner. Specifically, we will prove the unfeasibility-claim wrong.

The Inability of Users to Improve their Estimates An orthogonal effort to exploiting history
has been recently conducted by Lee et al. [93], which explored whether users are able to improve
their estimates if given enough incentive. The study involved users of the Blue Horizon supercom-
puter at the San Diego Supercomputer Center (denoted here as“BLUE”). In the hope to alleviate
users’ concerns that their jobs will be prematurely killed,users were given the opportunity to pro-
vide an additional runtime estimation value upon submission, such that their job would not be
killed if this value is exceeded. Further, users were queried about their degree of certainty of the
estimate they provide. Finally, to encourage users to do their best, a competition was declared
where the most accurate user will win a prize. Results indicated that users rarely change their
original estimate, are actually quite sure of themselves, and most probably would not be able to
provide much better information.

1.2.4 The Problematic Nature of Raw Workload Data

The last issue we address in this dissertation is somewhat ofa “meta issue”. It is related to pro-
duction workload logs and the manner in which these are used for research. For example, in this
work we make heavy use of four such logs as the basis of most of our findings (SDSC, CTC,
KTH, BLUE; to be introduced in the next chapter). However, the issue is much more general, and
although its implications certainly have decisive consequences regarding the work presented here,
it transcends the supercomputer domain and is actually applicable to all computer systems.

Importance of Representative Workloads It is well established that the performance of a com-
puter system depends not only on its design and implementation, but also on the workload to which
it is subjected [40]. Different workloads may lead to different absolute performance numbers, and
in some cases to different relative ranking of systems or designs. Using representative workloads
is therefore crucial in order to obtain reliable performance evaluation results.

The canonical way to obtain representative workloads is to use real workloads from production
systems. One can record the workload on an existing system, and play back the recording to drive
a simulation of a new system. If the existing system has a similar functionality to the new system
being evaluated, one can assume that the same workload may apply. Likewise, if a new system de-
sign is shown to produce good results when applied to a wide range of such “recorded” workloads,
one can claim the results are truly general. Indeed, this work, as well as numerous other papers,
use this methodology and exploits the many workload logs that are freely available, for example,
in the Parallel Workload Archive (from which the aforementioned four logs are taken [110]).

An alternative methodology is to use the recorded workloadsas the basis for constructing
a workload model (like in [77, 20, 99]), later to be used to generate input for a simulator of a
new system. This has the benefit of allowing for more flexible usage, e.g. by modifying model
parameters so as to adapt it to different system configurations.

1.2 Motivation 17

sensitive to change

as is truncated

bo
un

de
d

sl
ow

do
w

n

80

82

84

86

88

90

88.2

81.4

−8%

-20

 0

 20

 40

 60

 80

 50 60 70 80 90 100

cannot decide which is better

bo
un

de
d

sl
ow

do
w

n
load [%]

EASY
conservative

difference

hard to model

interarrival time
1s 10s 1m 10m 1hr 10hr

nu
m

be
r

of
 jo

bs

0

2000

4000

6000

8000

24490 15124

Figure 1.7:Unwarranted implications of using raw data for performanceevaluation and modeling.

The Problem Using recorded workloads, however, has its problems. Consider modeling for ex-
ample. This activity is typically done by collecting workload traces, and creating a statistical model
based on fitting the distributions of workload attributes [89]. But such an approach is questionable
if the data is not stationary. For example, Chiang et al. analyze six non-consecutive months of
data from the NCSA Origin 2000 machine, and find that the workloads in different months may be
quite different from each other [17]. It is also well known that workloads at different installations
differ, and that workloads evolve with time as users learn tobetter use the system [70, 46].

In this context, we identify a different problem in basing anevaluation on production logs.
Despite the overwhelmingly accepted view that real production workloads are representative and
reliable, we claim that they may also contain anomalies that, while they do in fact occur, are
actually non-representativeof the general caseand are therefore unreliable. The “general case”
means the typical workload which is experienced by the relevant systems. We contend that one
should exclude from the workload activities that are uniqueto a specific system when trying to
evaluate the performance of systems in the general case. Ourapproach unfortunately contrasts
common practices that view production logs as “the absolutetruth”, a situation we aspire to change.

Examples As a motivation for this topic, we briefly describe three examples demonstrating the
types of problematic results we encountered while using rawdata for performance evaluation and
modeling. These are “real” examples in that we actually encountered them during the process of
system evaluation. At the time, we were unaware these occur due to the aforementioned anomalies,
and our perception was that we must learn how to live with suchresults, however undesirable.

The first example is depicted in the left of Fig. 1.7. It shows the average slowdown ofall the
simulated jobs under the EASY scheduler, when using two workloads. The first (“as is”) is simply
the SDSC raw log. The second (“truncated”) is the very same log, but after we inject it with a
negligible perturbation: we change the original runtime ofa single specific job from 18 hours and
30 seconds, to exactly 18 hours. The 8% change in theoverall average is overwhelming, as the
perturbation is merely a 30 seconds change in the runtime of only one jobfrom tens of thousands
of jobs that were submitted over a period of two years!This instability a very disturbing and
troublesome result, as it casts a serious shadow on the validity of what is maybe the most basic
and standard performance evaluation methodology. Namely,if such a minor modification in the
workload can trigger such a major change in the resulting average performance, who’s to say that
any relative ranking of systems and designs is not “bogus”? For example, if systemA turns out
to be better than systemB only because some job terminated 30 seconds later, but the outcome
would have otherwise been reversed, then this ranking is obviously completely meaningless. We
will later show that this sensitivity is not representativeof the general case.

18 Introduction

 100

 110

 120

 130

 0 2 4 6 8 10

BLUE: V-shape

f (badness factor)

w
ai

t [
m

in
ut

es
]

 16

 18

 20

 22

 24

 0 2 4 6 8 10

CTC: L-shape

Figure 1.8: Expressing performance
in confidence intervals exposes clearer
trends (compare with Fig. 1.3, page 10).

 24

 26

 28

 30

 0 2 4 6 8 10

ba
ck

fil
l r

at
e

[%
]

backfilling

f (badness factor)

real estimates
f=0

random’s mean
90% confidence

deterministic 0

 20

 40

 60

 0 2 4 6 8 10

de
la

y
[m

in
ut

es
]

delay

Figure 1.9:Simulating CTC, the percent of backfilled jobs,
as well as the average delay that non-backfilled jobs suffer
due to inaccuracy, are monotonically increasing withf .

Our second example is indeed along the lines of relative system ranking. Using the CTC
workload, we compare the performance of two systems under various load conditions.10 The
evaluated systems are the EASY scheduler (a single reservation allocated to the first queued job)
and the conservative scheduler (reservation allocated to all waiting jobs). Unfortunately, as shown
in the middle of Fig. 1.7, the results are inconclusive: the answer to the question of which scheduler
is preferable turns out to be dependent on the load. The bottom line is that the systems analyst is
unable to make a clear recommendation, even though (we will later show that) one system is
consistantly better than the other when stripping the workload form a non-representitive anomaly.

In addition to its impact on performance evaluation, using raw data has also negative impli-
cations on workload modeling. Demonstrating this, our third example deals with the distribution
of interarrival times (elapsed time between submissions ofconsecutive jobs). The associated his-
togram of the LANL CM-5 log is shown in Fig. 1.7 (right). We findthat the distribution is distinctly
abrupt and modal, with several values that are extremely common (note the broken Y-axis). Im-
portantly, this distribution cannot be fitted against (or modeled by) any standard distribution. We
will show below that this is the result of aggregating the baseline workload with an anomaly.

1.3 Preview of Results

1.3.1 Solving the Mystery of Why Inaccuracy May Help
Sec. 1.2.1 introduced the inaccuracy mystery that, based onthe popularf -model, prompted many
researchers to claim that deliberately making estimates less accurate either improves performance,
or has no real effect on it. These two observations were explained respectively by the contradictory
“holes” argument (improvement is due to increased overestimation of long jobs that opens up larger
holes for backfilling shorter jobs) and “balance” argument (no effect on performance because larger
holes are cancelled out by backfill candidates appearing proportionally longer).

Why Performance Improves Indeed, we find that the average performance is extremely sensi-
tive to minor changes inf and that the sample space is very noisy (Fig. 1.3). Thus, it ispossible to
conclude any of the two contradictory observations, if conducting only a small number of exper-
iments in a non systematic manner. However, utilizing the random component of thef -model to
perform repeated simulations and presenting the results interms of mean and confidence11 reveals
a clear trend: the effect of increasingf is actually V or L-shaped, as is exemplified with BLUE
and CTC in Fig. 1.8.

10The manner in which load is artificially varied is explained in the next chapter.
11Surprisingly, this was never done before.

1.3 Preview of Results 19

 23

 21

 19

 17
 0 2 4 6 8 10

 0

 1

 2

 3

w
ai

t [
m

in
ut

es
]

un
fa

irn
es

s
[m

in
ut

es
]

tradeoff

f (badness factor)

unfairness

wait

Figure 1.10:Increasingf means trad-
ing off fairness for performance. (Re-
sults from simulating CTC.)

 155

 160

 165

 170

 175

 0 2 4 6 8 10

backfilled

f (badness factor)

ru
nt

im
e

[m
in

ut
es

]

real
f=0

random
90% conf.

determ. 194
 195
 196
 197
 198
 199

 0 2 4 6 8 10

not backfilled

Figure 1.11:The biggerf gets, the more the scheduler favors
longer jobs for backfilling at the expense of shorter ones. (Results
from simulating CTC.)

We explain the descending part of the performance curves in this figure by reconciling the
seemingly contradictory “balance” and “holes” arguments.In accordance with the “holes” ar-
gument, increasedf does indeed mean more backfilling (Fig. 1.9, left). But the performance
improvement is not just the result of this, as backfill candidates do in fact appear proportionally
longer (in accordance to the “balance” argument). Rather, it is the result of what we call a “heel-
and-toe” dynamic: a distinctive sequence of backfilling decisions that manages, step by step, to
prevent the holes from closing up, leading to a preference for short jobs and the automatic produc-
tion of an SJF-like schedule. On each step, the scheduler is “tricked” to believing the real earliest
start time of the first queued job is further away in the futurethan it actually is. Fig. 1.9 (right)
shows the average delay of jobs with reservations, beyond their hypothetical “correct” start times
(had accurate estimates all of a sudden been made available to the scheduler, at the exact time
instance when they became first in the wait queue and their shadow time was computed). The
bottom line is therefore that multiplying estimates by a factor is actuallytrading off fairness for
performance, as all the extra backfilling activity is at the expense of further delaying the jobs that
have been waiting the most. This tradeoff if exemplified by Fig. 1.10, showing that the increasing
“unfairness” of the schedule is a kind of mirror image to its improving performance.12

Why Performance Is Worsened We now go on to explaining the ascending part of the V-shaped
performance curves (BLUE in Fig. 1.8). Whenf is very small, the holes in the schedule are
relatively narrow, insuring only truly short jobs can enjoythem (explains the initial descending
part of the curves). But asf becomes bigger, increasingly longer jobs fit the holes too, nudging
the scheduler to “err” and favor longer jobs for backfilling at the expense of shorter ones. Fig. 1.11
demonstrates this pathology, showing that backfilled jobs become longer, while at the same time,
non-backfilled jobs become shorter. The situation is worse for the random model, where long jobs
can masquerade as short and vice versa. We analytically prove that the probability for this to occur
is monotonically increasing asf goes to infinity. The absence of this random component from the
deterministic model explains why it yields better performance than the random model (Fig. 1.8).

The remaining question is how come CTC’s performance is L-shaped? Namely, how does
it “manage to escape” the two aforementioned destructive processes? (Of longer jobs gradually
fitting into the widening holes and of randomness.) Indeed, other logs are similar to BLUE and
also correspond to V-shaped curves (not shown here). The solution to this mystery is related to
load: the level and temporal structure of the activity exhibited in each log. It turns out that CTC is

12Unfairness is defined to be the average delay in the starting of jobs beyond what is “fair” (jobs that were started
earlier than what is fair contribute zero to the average). The notion of “fairness” is accurately defined in Chapter 3.

20 Introduction

 160
 180
 200
 220
 240
 260

 0 2 4 6 8 10

CTC-336: V-shape

f (badness factor)

w
ai

t [
m

in
ut

es
]

real
f=0

random
90% conf.

determ.

Figure 1.12:Introducing burstiness to
CTC by reducing the size of the sim-
ulated machine resulted in V-shaped
performance curves, similarly to other
logs (compare with Fig. 1.8).

 16
 17
 18
 19
 20
 21
 22

10410310210110010-1

w
ai

t [
m

in
ut

es
]

performance

f (badness factor; log scale)

real
determ.

 1
 1.5

 2
 2.5

 3
 3.5

10410310210110010-1

un
fa

irn
es

s
[m

in
ut

es
]

unfairness

Figure 1.13:The effect of multiplying real user estimates by a
factor (“real”) is qualitatively similar to using multiples of run-
times as estimates (“deterministic”), but the latter yields better
results in terms of performance and fairness, meaning accurate es-
timates are better for backfilling. (Results from simulating CTC.)

unique in that its load level is relatively stable, and in particular, unlike all the other logs, it is not
bursty. Burstiness causes longer wait queues, a consequence of many jobs arriving at the same time.
This intensifies both of the above destructive processes, asmore backfill candidates with greater
diversity allow the scheduler to make more “wrong” decisions. To demonstrate this, we simulated
the CTC workload on a machine with less processors than the original system had: instead of 512
we used 336 (the size of the biggest job in CTC). This manipulation was verified to introduce
burstiness, and indeed, the associated performance curvesturned out to be V-shaped, similarly
to all other logs (Fig. 1.12). Thus, performance curves are either V or L-shaped, depending on
whether the workload is bursty or not, respectively.

Refuting the Myth The above observations that were obtained by using thef -model have seem-
ingly only theoretical value, because we are multiplying actual runtimes, whereas this information
is usually unavailable to the scheduler. However, there is one important practical implication.
It turns out that all of our understandings regarding the effect of multiplyingperfectestimates
(runtimes), also apply when multiplyingreal estimates, as were given by users. Fig. 1.13 clearly
shows this, as the trends exhibited by multiplying are qualitatively similar, regardless of whether
the multiplied values are perfect or real (=flawed). The key is noting the quantitative difference.
Apparently, in contrast to common belief, better accuracy does in fact improve performance in
the sense that the more accurate the initial (to be multiplied) estimates are, the better the resulting
performance becomes. As will be further discussed next, in no way does the act of multiplying
emulate the inaccuracy exhibited by real users. Rather, it simply adds a certain “SJFness” to the
schedule through heel and toe dynamics. Consequently, multiplying is actually not more than a
(legitimate) scheduling policy that exercises the fairness/performance tradeoff. The bottom line is
that system analysts should clearly distinguish between two types of inaccuracies:

1. artificial inaccuracy, which is generated by multiplying, trades of fairness for performance,
and is a property of the scheduler, and

2. real inaccuracy, which is generated by and is a property of real users, and has the effect of
worsening performance.

By no means is the first type adequate to serve as a model for thesecond. The problem is that,
up till now, researchers confused between the two types of inaccuracies. This has led to thefalse
misconceptionthat “increased inaccuracy improves performance”. The correct statement should be

1.3 Preview of Results 21

that increased inaccuracyworsenperformance, but that the scheduler can boost it up at the expense
of fairness by multiplying the estimates with some factor.

This conclusion motives (1) developing an adequate model for real user estimates, and (2) im-
prove the quality of estimates used by backfill schedulers. These issues will now be addressed in
turn in the next two subsections, respectively.

1.3.2 Modeling Estimates

Recall that Sec. 1.2.2 motivated the need for a realistic estimate model, and showed that the exist-
ing models (f andΦ) are inadequate. The bottom line was that using these modelsproduces an
unrealistic evaluation, whereby performance results turnout too good to be true (better than if real
estimates were used). The previous Sec. 1.3.1 has shed some light on why this is the case (with
respect to thef -model; in this section we will, among other things, do the same for theΦ-model).
We now go on to focus on developing a better model.

Modality The fundamental and most important observation in achieving this goal is the follow-
ing. Human users donot choose estimates that are uniformly distributed between the real runtime
and its multiple with some constant factor, or anything similar. Rather, they use “round” estimates,
like ten minutes, one hour, etc. In fact, we found about 90% ofthe jobs repeatedly use the same
20 “round” values. The result is a modal distribution, reflected in the staircase-like CDF curves
shown in Fig. 1.14, in which each “mode” corresponds to a popular estimate. One particular pop-
ular value isEmax, the maximal estimate allowed. This value is a per-site administrative upper
bound on estimates (and therefore on runtimes). The value ofEmax is typically around 18h; in
KTH and BLUE 4h and 2h serve as the “effective”Emax because most jobs were submitted during
daytime or to the interactive/express queues, respectively. Emax is used by 10-27% of the jobs and
is the most popular in three of the four logs (in SDSC it’s ranked third). Its immense popularity can
probably be attributed to (1) the fact underestimated jobs are killed by the system upon reaching
their estimate, and (2) the inability of users to predict howlong their jobs will run and their desire
to “play it safe” and prevent their jobs from being prematurely killed.

Implications of Modality Regardless of whyEmax is so popular, the implications are detrimen-
tal in terms of performance. This is true because any job withEmax as estimate will never be
backfilled (as all the holes in the schedule are smaller thanEmax, by definition). The more the
jobs useEmax, the worse the performance gets. At the extreme, associating all jobs withEmax

would mean backfilling activity (as depicted in Fig. 1.1) would completely stop and the schedule
would largely revert to plain FCFS. Surprisingly, despite its decisive effect, the mere existence
(and hence popularity) ofEmax has been completely overlooked by past work, a fact that led to
several mistakes.

One mistake is related to Fig. 1.15. Cirne and Berman hypothesized that the apparent connec-
tion between longer runtimes of jobs and improved accuracy is because the more a job progresses
in its computation, the grater its chances become to reach successful completion [20]. Obviously,
this hypothesis is false and unwarranted, because the existence ofEmax guarantees long jobs to
have high accuracy. For example, assumingEmax is 18h, if a job’s runtime is 17h, then its estimate
must be between 17h–18h (bigger than the runtime, smaller thanEmax) and thus at least 94% ac-
curate. In other words, long jobs are on the right of Fig. 1.15, where accuracy is high, while short
jobs tend to be on the left, at lower accuracies.

22 Introduction

 0

 0.2

 0.4

 0.6

 0.8

 1

18
h8h4h2h1h

30
m

15
m5m2m1m

SDSC

time [log scale]

C
D

F

runtime
estimate

Emax

10%

18
h8h4h2h1h

30
m

15
m5m2m1m

CTC

Emax

24%

60
h

15
h4h2h1h

30
m

15
m5m2m1m

KTH

effective Emax
(daytime)

10%

36
h

18
h8h4h2h1h

30
m

15
m5m2m1m

BLUE

effective Emax
(express)

27%

trace value ofEmax popularity ofEmax

SDSC 18h 9.7%
CTC 18h 23.8%
KTH 4h (weekdays) / 15h (weeknights) / 60h (weekends)10.1% (4h)
BLUE 2h (express/interactive) / 36h (others) 27.3% (2h)

Figure 1.14:Top: cumulative distribution function (CDF) of runtimes and estimates. Unlike runtimes,
estimates are modal. Runtime- are higher than estimate-curves, as runtimes are always shorter than estimates
(underestimates jobs are killed). Bottom: per-site maximal allowed estimate and how many jobs use it.

 0
 20
 40
 60
 80

 100

18h8h4h2h1h30m15m5m2m1m30s10s

av
g.

 a
cc

ur
ac

y
[%

]

avg. runtime

SDSC
CTC
KTH

SDSC

Figure 1.15:Average accuracy (100 × runtime
estimate) as a function of runtime. (The X-axis groups jobs to 100

equally sized bins according to their runtime.) Longer jobsenjoy higher accuracy.

The same exact argument applies to another mistake, relatedto Φ-model (defined in Sec. 1.2.2
in an attempt to emulate the accuracy histograms shown in Fig. 1.4, page 13). Recall that the
uniform part of the accuracy histograms was modeled bye = r/u, whereu is uniformly distributed
in (0, 1], r is the runtime, ande is the resulting estimate. However, due toEmax, the distribution of
jobs within the accuracy histogram is not at all uniform. Similarly to the previous mistake, here too
(Fig. 1.4) long jobs must be on the right at higher accuracies, whereas only short jobs can reside
on the left. Thus,Emax’s existence invalidates the rationale underlying theΦ-model.

Finally, we note that the harmful effect of modality is not just related toEmax. This is true
because an estimate distribution that is dominated by only afew distinct modes (Emax and others)
means less variance among waiting jobs, which means less flexibility for the scheduler to exploit
existing holes (with various sizes) for backfilling.

Modeling Modality Our model therefore targets the modal nature of estimates. It relies on
three input parameters: (1) the number of jobs composing theworkload (namely, the number of
estimates to produce), (2)Emax, and (3) the percent of jobs that useEmax. Based on these, instead
of employing the common practice of artificially generatingestimate values in isolation on a per-
job basis, the model outputs a series ofK modes given by{(ti, pi)}

K
i=1. Each pair(ti, pi) represents

one mode, such thatti is the estimate value (t stands for time), andpi is the percentage of jobs that
useti as their estimate (p for “popularity”). For example, CTC’s series includes(18h, 23.8%),

1.3 Preview of Results 23

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 500 100 20 5 2 1

all

estimate popularity-rank

jo
bs

 [%
]

 0

 5

 10

 15

 20

 25

 20 15 10 5 1

head (j <= 20)

model
SDSC

CTC
KTH

BLUE

 1e-04

 0.001

 0.01

 0.1

 1

 10

 500 200 100 50 20

tail (j > 20)

Figure 1.16: Given a head popularity rankj ∈ [1..20], the associated percent of jobs is given by
thepj = α ·e−β·j +γ exponential function. Given a tail popularity rankj ∈ [21..K], the associated
percent of jobs is modeled by thepj = ω · j−ρ power law. The middle figure has linear axes, while
the other two are logarithmically scaled. The left figure concatenates the head and tail models.

0
0.2
0.4
0.6
0.8

1

 0 0.5 1

KTH

normalized time-rank (i/K)

no
rm

al
iz

ed
es

tim
at

e
(t

i/E
m

ax
) real

model

 0 0.5 1

CTC

 0 0.5 1

SDSC

 0 0.5 1

BLUE

Figure 1.17: The smallest estimate is assigned a “time rank”of 1, the second most smallest has
time rank of 2, etc. Normalizing a time rank means dividing itby K. Likewise, normalizing an
estimate means dividing it byEmax. Given a normalized time rankxi = i

K
(i ∈ [1..K]), the

associated normalized estimateyi = ti
Emax

is modeled by theyi = (a−1)·xi

a−xi
fractional function.

because 23.8% of the jobs used 18 hours as their estimate. (After the series is constructed, our
model offers a utility function to map the artificial estimates onto the jobs, such that each estimate
is equal to or bigger than the associated runtime, as required by the backfilling rules.)

Our approach is toseparatelymodel the time values{ti}
K
i=1 and the popularity values{pj}

K
j=1,

after which we define a mapping between times and popularities to create the pairs in the final mode
series. But before doing this, we show that the modes naturally divide into two groups: the twenty
most popular “head” estimate values (used by about 90% of thejobs throughout the entire trace),
and the remaining “tail” estimates. We show that these two groups have distinctive characteristics.
For example, Fig. 1.16 shows how the{pj}

K
j=1 popularity series is modeled. The X-axis denotes

the “popularity rank”j, where the most popular estimate has rankj=1, the second most popular
has rankj=2, and so on. The Y-axis denotes the associated percent of jobs (=pj). Indeed, “head”
estimates are well modeled by an exponential function, whereas “tail” estimates obey a power law.
In contrast, modeling the{ti}

K
i=1 time series does not require the head/tail differentiation, and the

entire series is successfully modeled by a fractional function (Fig. 1.17). Deciding which specific
time values will serve as the twenty head estimates, however, requires a special effort.

Our conclusion from constructing the model is that users behave invariantly when it comes to
estimating how long their jobs will run. Indeed, all modeledaspects of the estimates distribution
are almost identical across all logs, allowing us to rely on only the three aforementioned input

24 Introduction

 0

 20

 40

 60

 80

 100

36
h

18
h8h4h2h1h

30
m

15
m5m1m

SDSC

estimate

C
D

F
 [%

]

seed0
seed1
seed2
seed3

orig

36
h

18
h8h4h2h1h

30
m

15
m5m1m

CTC

36
h

18
h8h4h2h1h

30
m

15
m5m1m

KTH4H

36
h

18
h8h4h2h1h

30
m

15
m5m1m

BLUE

Figure 1.18: The original estimates distribution (“orig”;solid lines) is very similar to the modal
output of our model, when used with four different seeds for the random number generator.
(KTH4H contains only the “daytime” jobs.)

parameters, while still producing excellent results. Eventhough considerable variance does in
fact exist, it is mostly encapsulated within the percentageof jobs that choseEmax as their estimate,
which is indeed one of the three parameters. The remaining variance (if any) is attributed to another
1-2 very popular modes that sometimes exist, but are unique to individual logs. When provided this
additional minimal information (optional parameters), our model’s output is remarkably similar to
that of the original (Fig. 1.18), but even with its vanilla setting results are satisfactory.

Finally, we show that when used in a simulation (by replacingreal estimates with artificial
ones), our model consistently yields performance results that are close to the original. The model
is available for download at [155]. Unlike previously suggested models, it allows for realistic
evaluation of the impact of increased inaccuracy on backfillalgorithms, e.g. by systematically
increasing the percent of jobs associated withEmax.

1.3.3 Incorporating System-Generated Predictions in Backfill Schedulers

Now that the source of the “badness” of user estimates is wellunderstood, we go on to revisit the
alternative: using history-based system-generated runtime predictions. In Sec. 1.2.3 we surveyed
the considerable amount of work done on the subject and notedthat, in spite of all this effort,
predictors were never incorporated within production system. We identified three major difficulties
underlying this failure, which we now revisit and resolve inturn, while outlining our contributions.

Addressing the Misperception of Estimates as Unimportant Recall that this difficulty em-
anates from many studies that found increased inaccuracy improves or doesn’t effect performance
[146, 47, 169, 170, 34, 64], yielding suggestions to make user estimates even less accurate by dou-
bling [174, 108] or randomizing them [115]. This negated themotivation for improved predictors
and implied accurate estimates are unimportant. We argue that this is false in three respects:

1. First, doubling (or multiplying) original user estimates indeed helps, but even more so if
applied to perfect estimates (compare “realX2” to “perfectX2” in Fig. 1.2 and inspect the
left of Fig. 1.13). We show that doubling of good system-generated predictions is similar:
the more accurate the original predictions are, the more thedoubling is effective.

2. Second, as mentioned above (Sec. 1.3.1), we show that the reason multiplying helps is due to
a heel and toe dynamic, which allows shorter jobs to move forward within an FCFS setting

1.3 Preview of Results 25

by implicitly approximating an SJF-like schedule. Recall that this is obtained by gradually
pushing away the start time of the first queued job, effectively trading off FCFS-fairness for
performance. One contribution of our work is showing that this tradeoff can be avoided to
some extent by explicitly using ashortest job backfilled first(SJBF) backfilling order. By
still preserving FCFSreservation-order, we maintain EASY’s initial appeal and enjoy both
worlds: a fair scheduler that nevertheless backfills effectively. We argue that in any case
choosing SJBF is more sensible than “tricking” the scheduler to favoring shorter jobs by
doubling estimates, randomizing them, or any other similarstunt.

3. The third fallacy in the “inaccuracy helps” claim is the underlying implied assumption that
predictions are only important for performance. In fact, they are also important for various
other functions. One example is advance reservations for grid allocation and co-allocation,
shown to considerably benefit from better accuracy [83, 137,96]. Another is scheduling
moldable jobs (that may run on any number of nodes [31, 138, 22]). The scheduler’s goal
in this case is to minimize response time, considering whether waiting for more nodes to
become available is preferable over running immediately. Thus, a reliable prediction of how
long it will take for additional nodes to become available iscrucial.

Addressing the Complexity of Predictors Three drawbacks were identified in previously sug-
gested predictors (all algorithms suffer from at least one,and often all, of these drawbacks): sug-
gested predictors are (1) based on identifying “similar” jobs in the history and therefore require
significant memory resources and complex data structure to save the history of users, (2) they em-
ploy complicated prediction algorithms (to the point of being off-line), and therefore (3) pay the
price in terms of excessive computational overhead spent onmaintaining and mining the history
[31, 62, 135, 136, 83, 86, 97]. In this context, our contribution is showing that a trivial predictor
(free from all above drawbacks) can actually generate excellent results when used correctly, and
explaining why this is the case.

The predictors we use are as simple as e.g. averaging the runtime of the two most recently
submitted (and already terminated) jobs by the same user. Obviously, such an algorithm is very
easy to implement and is almost overhead-free (it is simply amatter of saving two per-user num-
bers, updating them whenever a job by the user terminates, and averaging them out whenever a
job by the user arrives). We show that when done correctly, this approach works very well. In
fact, it turns out that for runtime predictions,the recency of past jobs is actually more important
than their similarity. This is exemplified in Fig. 1.19, which is the summary of tensof thousands
of simulations utilizing very many prediction algorithm variants. The algorithms differ in several
respects, mostly related to the definition of thehistory window: which previous jobs to use to
generate a prediction and how (exact details are provided inChapter 4). One important parameter
employed by all algorithms is thewindow size, which determines the number of past jobs the al-
gorithm considers, such that the greater this number is, themore the predictor goes back in time
to obtain this many jobs. The window size serves as the X-axisof Fig. 1.19. The Y-axis aver-
ages the performance degradation experienced by all the associated predictors, relative to some
optimum (exact definition in Chapter 4). The conclusion is that the more history we exploit when
making a prediction, the worse the resulting performance becomes. In fact, the performance degra-
dation appears more or less linearly proportional to the size of the history window. This suggests
that the considerable overheads of storing/mining the datafor different classes of historical jobs
[62, 136, 138, 83, 86, 96] are unwarranted, and that using only the 1-2 most recent jobs by the same

26 Introduction

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 5 10 15 20 25 30

av
g.

 p
er

fo
rm

an
ce

 d
eg

ra
da

tio
n

[%
]

size of history window

avg.

± σ

Figure 1.19:Average performance degradation (± standard deviation) is more or less linearly proportional
to the size of the window, indicating that using smaller windows with more recent information is preferable.

user may be optimal. Arlitt et al. reached a similar conclusion in the context of the World Wide
Web, contending that “only the topmost stack element is seeing significant reuse” when predicting
the destination of a work-session based on the user’s history stack [6].

Addressing the Technical Barrier Recall that what technically prevents systems from using
system-generated predictions for backfilling is the issue of what to do when underprediction oc-
curs. According to the backfilling rules, under-predicted jobs will be prematurely killed by the
system, thus violating the contract with users that have requested to run longer than was predicted.
Suggested solutions included simply ignoring the problem,using preemption, employing test runs,
or eliminating the need for backfilling by using pure SJF [62,174, 115, 19, 15, 90]. None of these
retain EASY’s initial appeal of simplicity and fairness. Mu’alem and Feitelson checked the extent
of the underprediction phenomenon, showed it to be significant (20% of the jobs), and concluded
that “it seems using system-generated predictions for backfilling is not a feasible approach” [108]
(this statement was termed the “unfeasibility claim”).

The initial part of our solution to this problem is noticing that estimates have a dual role:
(1) to serve as runtime approximations, and (2) to serve as kill-times. We argue these should be
separated. As it is legitimate to kill a job once its user estimate is reached, but not any sooner, the
main function of estimates is in fact to serve as kill-times.At the same time, there is nothing to
stop us from basing all the other scheduling considerationson the best available information.13

Our first step in utilizing predictions for backfilling is therefore doing just that, namely, basing
everything, but kill times, on predictions instead of estimates.14 This means the reservation time
is computed based on predictions of running jobs. Likewise,waiting jobs that serve as backfill
candidates are judged suitable for backfilling only if theirprediction indicates they will terminate
before the reservation time. This optimization has the positive effect of dramatically improving the

13Note the terminology: “estimate” refers to the runtime approximation provided by the user upon job submittal,
whereas “prediction” refers to the value that the system eventually uses. A prediction can be set to be the estimate, but
it can also be automatically generated by a predictor, as described here. However, “prediction” is an overloaded term:
when “estimates” and “predictions” are contrasted, the latter actually means “system-generated predictions”.

14Recall our predictor generates a job’s prediction e.g. as the average runtime of the last two jobs by the same user.

1.3 Preview of Results 27

SDSC
w

ai
t [

m
in

ut
es

]

0

190

380 −10% −10%

CTC

0

11

22

−26% −33%

KTH

0

60

120
−16% −17%

BLUE

0

65

130
−21%

−33%

b.
 s

lo
w

do
w

n

0

50

100 −13%
−29%

0

2.3

4.6

−27%
−37%

0

45

90

−28% −36%

0

18

36
−25%

−47%

ac
cu

ra
cy

 [%
]

0

35

70 +87% +87%

EASY EASY+ EASY++

0

35

70 +61% +61%

0

35

70 +28% +28%

0

35

70 +100% +102%

Figure 1.20:Comparing average performance and accuracy of the EASY, EASY+, and EASY++ sched-
ulers. The numbers at the top of the bars show the associated percentage change relative to EASY: negative
values indicate an improvement of the performance metrics (wait/slowdown); positive values indicate an
improvement of accuracy.

average accuracy. Regrettably, in spite of this improvement, performance is worsened by up to an
order of magnitude! A thorough analysis revealed that this is due to “expired” predictions, outlived
by their jobs. Such stale information leads the scheduler toerroneously believe that processors
of currently running under-predicted jobs should be available at the present time. The result is an
unrealistically too close shadow time that opens up a very small hole in the schedule for backfilling.
At the extreme, the reservation is made for the present time effectively stopping all backfilling
activity (as shown in Fig. 1.1) and degrading the schedulingtowards plain FCFS.

One way to tackle this problem is to try to minimize it by producing more “conservative”
(bigger) predictions. But as mentioned above, this alternative was shown to be unsuccessful (20%
of the jobs prematurely killed [108]). Further, just “minimizing” the problem is simply not enough,
as the contract with users shouldneverbe violated. We therefore propose a simpler alternative that
finally manages to provide a solution.

The basic idea is to avoid the issue altogether, by refraining from placing the burden of han-
dling underprediction on thepredictor. Instead, we modify theschedulerto dynamically increase
expired predictions proven too short. The underlying rationale for this is the following. If a job’s
prediction indicated it would run for ten minutes, this timehas already passed, but the job is still
alive, why not do the sensible thing and accept the fact it would run longer? Thus, when underpre-
diction is detected, we acknowledge the fact the user was smarter than us and set the new prediction
to be the original estimate as was given by the user. Once the prediction is updated, this effects
reservations for queued jobs and re-enables backfilling.

Fig. 1.20 shows some of the results of our approach. EASY+ replaces user estimates with
predictions, while employing prediction correction. The typical improvement over vanilla EASY
is around 25%. EASY++ adds SJBF to EASY+ and demonstrates an additional improvement.

28 Introduction

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600

ru
nn

in
g

av
g.

 b
. s

lo
w

do
w

n

submit time [days]

original
truncated

Figure 1.21:Comparing the running aver-
age slowdown reveals the difference in the
performance occurs in the 581st day.

JUL
1998

OCT JAN
1999

APR JUL OCT JAN
2000

APR

pr
oc

es
se

s
pe

r
w

ee
k

[th
ou

sa
nd

s]

0

5

10

15
user 21

user 374

user 197

user 328

424 others

Figure 1.22: In the 581st day, user 328 generated a
huge flurry of more the 10,000 submitted processes, ag-
gregated to 32-sized jobs that react en masse to change.

This can up to double the performance relative to the baseline (BLUE/slowdown). Finally, under
both EASY+ and EASY++ the average accuracy stabilizes at a bit more than 60% (whichis again
double the baseline in the case of BLUE).

1.3.4 Workload Flurries and Sanitization

Recall that Sec. 1.2.4 introduced three problematic examples that arose during the process of work-
load modeling and system performance analysis. Specifically, these involved the sensitivity of
overall performance to negligible change, inconclusive system ranking, and the failure to fit a
workload attribute using a standard distribution (Fig. 1.7, page 17). As will be described next,
we discovered that all of these were the result a previously unknown phenomenon we call “work-
load flurries” (Chapter 6 discusses various types of anomalies): rare surges of exceptionally large
repetitive activity, generated by a single user, that dominate the system for a limited period of time.

Impact of Flurries Focusing on the first example (minus 30 seconds in the runtimeof one job
leads to 8% change in overall performance), we define therunning average slowdownat timeT to
be the average slowdown of all those jobs submitted prior toT . When plotted as a function of sub-
mission time, this metric exposes how the average performance evolves. Examining the associated
graph (Fig. 1.21), we see that most of the 8% difference opensup at the 581st day. Further exam-
ination reveals that the cause of this difference is a group of a few hundred big jobs with identical
attributes that were submitted by a single user. Fig. 1.22 pinpoints this group (rightmost peak);
as mentioned earlier, this type of an activity is called a workload flurry. In a nutshell, the fact all
the jobs within the flurry have the same characteristics makes them tend to be similarly affected
by change. Such a tendency has a decisive effect on average performance, because the manner in
which the first job reacts to the initial change is tremendously amplified by all the succeeding jobs
in the flurry that react similarly, collectively “pulling” the entire average in the same direction.

The graph shown in Fig. 1.22 is typical to relatively long logs, as most that are longer than
a year have at least one flurry in them. Once we discovered a flurry was to blame regarding the
sensitivity issue, it became clear that this is not an isolated incident. Fig. 1.23 reevaluates our
three examples using “cleaned” workloads from which flurries were excluded. As we can see, the

1.3 Preview of Results 29

more robust to change

as is truncated

bo
un

de
d

sl
ow

do
w

n

86

88

90

92

94

96

94.2

93.2

−1%

 0

 20

 40

 60

 80

 50 60 70 80 90 100

can decide which is better

bo
un

de
d

sl
ow

do
w

n

load [%]

EASY
conservative

difference

lognormal distribution

interarrival time
1s 10s 1m 10m 1hr 10hr

nu
m

be
r

of
 jo

bs

0

2000

4000

6000

8000

24490 15124

base distrib.
additions due
to flurries

Figure 1.23:Removing flurries from the workloads and repeating the experiments using the cleaned ver-
sions makes our troubles go away (compare with Fig. 1.7, page17).

results are more robust to change (left), a consistent trendemerges when comparing the schedulers
(middle), and the examined distribution turns out to simplybe lognormal (right).

We note that the flurries phenomenon is not unique to the supercomputing domain and was also
identified in other types of systems for which we had long logsavailable (various departmental
servers including file servers, authentication servers, and CPU servers).

Data Sanitization for Reliable Modeling We argue that modeling activity conducted naively
on the basis of raw data which contains flurries is methodologically erroneous. It is in fact a lose-
lose situation, whereby both “normal” activity and the flurries themselves are modeled incorrectly.
Consider the interarrival distribution example in Fig. 1.23 (right). The abrupt flurry modes associ-
ated with shorter values actually occur within a very limited period of time. A general fit which is
oblivious to this fact will evenly disperse these values through the entire workload, thus (1) failing
to recreate the intense temporal flurry activity, and (2) ruining the otherwise lognormal structure
of the background normal conditions with the irregular monolithic modes. A better methodology
is to first divide the workload into “normal” conditions and “flurries”, and then to separately apply
current methodologies on the different parts. Modeling flurries, however, in the current status of
things, is not a generalized approach, as no known flurry is representative of another.

Data Sanitization for Reliable Performance Evaluation Flurries are non-representative of the
typical parallel workload in that they are unique, rare, andtemporally confined events, which do
not occur in the normal mode of work. In addition, flurries arealso non representative of each
other, as each flurry has its own distinctive characteristics. Since most of the time the workload
is flurry-free, the results of an evaluation that deletes flurries from the raw workload will likewise
be applicable most of time. This approach is aligned with thestandard methodology employed
in computer architecture research to use short “stitched” versions of a standard benchmark appli-
cations instead of the actual benchmarks, in the interest ofreducing simulation time (a stitched
version is composed of several “representative” fragmentsof the application’s instruction stream
that are concatenated together) [114, 117].

A stronger justification for the removal of flurries is that they actually have insignificant effect
on the performance metrics associated with the baseline activity. Rather, the simulation instability
reported earlier is merely the artifact of aggregating the metric values of flurry and non-flurry jobs
within the same average (slowdown in our case). Separating this monolitic average into two values
— one that averages only flurry jobs and another that averagesall the rest — reveals that the latter

30 Introduction

is actually stable, well-behaved, and insensitive to minorchanges; the former, on the other hand,
is exactly the opposite and is responsible for the observed instability, being extremely sensitive to
minor perturbations. Note that presenting a perfromance metric as a set of several averages, such
that each is associated with different group of jobs, is alsoa standard methodology (narrow jobs
vs. wide, short jobs vs. long, etc.) [125, 115, 141, 39].

The non-flurry average hassignificantvalue: it embodies the system performanceas experi-
enced by the vast majority. Factoring in the flurry average within the same number merely intro-
duces unwarranted noise that distorts the underlying result. In contrast, the flurry average has no
meaning other than examplifying the sensitivity of the associated jobs. (One certainly cannot use
it as a representative quantity, as it can change by an order of magnitude when negligible pertur-
bations are introduced.) Importantly, we find that the effect of separating the average performance
into two numbers (and considering only one), or deleting theflurry from the raw workload alto-
gether, is qualitatively similar. We therefore recommend the latter alternative since it is clearly the
simpler one. Indeed, with a sanitized version of the log, anyanalyst can simply and immediately
use the log, whereas with the raw version, the analyst (1) must be aware of all the details and (2)
must make a repeated effort to separate the population to flurry vs. non-flurry jobs.

Data sanitization conflicts with certain common views, which consider the original workload
as almost “sacred” (a popular view in the computer systems community is that if one “tampers”
with the data, one might as well arbitrarily decide upon the results in any way one chooses). But
this is in disagreement with what is routinely done in every sound statistical analysis, where data is
throughly validated and, if necessary, cleaned (removal ofoutliers). So sanitization is certainly not
a far fetched idea. Moreover, to argue for an evaluation based on workloads with flurries, one must
argue that the activity of a specific user during a relativelyvery short time should indeed dominate
the evaluation results. Also, one must be satisfied with results that change considerably and even
swing the other way if conditions are slightly changed or thespan of the examined time covered
by the evaluation is shifted such that the flurry is excluded.If flurries are removed, one at least
may argue that the evaluation result are correct, say, 95% ofthe time, and in any case to the vast
majority of the jobs; no such claim can be made if they are leftin.

Once again, as noted with respect to the modeling process, weadvocate a two-phase evaluation:
with flurries first excluded and later included. However, here too the fact no flurry is representative
of another limits the generality of the results of the latter. A real generalization (if possible) is left
for future work, to be conducted when more date and knowledgerelated to flurries are collected.

Dissemination of Data Finally, finding flurries is a nontrivial task. We will later show there are
other types of non-representative data, and these are also hard to find. Indeed, numerous papers
have used the aforementioned logs (and others) in their raw form for performance evaluation and
modeling, oblivious to the fact the various anomalies that the logs contain compromise the results.
We therefore contend that data should be shared along with all the accumulated related information.
As a first step, we have updated the Parallel Workload Archive, which is the source of the above
logs, to include a cleaned version of the logs, in addition tothe raw version [110].

31

Chapter 2

Methodology

This chapter describes our methodology, as used throughoutthe rest of this dissertation.

2.1 The Trace Files

All of our results are based on simulating and modeling workload logs from real production system.
These are available through the PWA (Parallel Workload Archive) [110] in a standardized format
called SWF (Standard Workload Format) [147]. Briefly, logs are given in plain ASCII text. The top
of each such log file contains “header comments” that describe (through standardized fields) the
general aspects of the respective workload: which machine generated it, how many processors it
has, what are its queues and partitions, etc. The body of the log is a sequence of lines, such that each
line represents a job. A line is composed of eighteen fields (as defined by the SWF) separated by
whitespace. Each field specifies a job attribute: the job’s arrival time, runtime, estimate, processors
number (size), user, group, memory size, completion status, executable, queue, partition and more.
The SWF dictates that all valid attribute values must undergo a transformation to be expressed as
nonnegative decimal numbers. However, if an original valueis missing or corrupted, the standard
states it should be set to -1.

The logs we have used in this dissertation are listed in Tab. 2.1 (these are most of the PWA’s
logs; the missing ones were added too recently to be usable inthis context). The four top logs
are the ones containing data about real estimates. Only these four are used in Chapters 3-5; the
remainder are used solely in Chapter 6. Note that the specified data relates to the original trace files
(“raw”), their “cleaned” version (which the PWA recommendsto use), and a “sane” version. The
first two can be freely downloaded from the PWA. The sane version applies a filter on cleaned logs,
removing all jobs that cannot be used in simulations due to missing size, runtime, or submission-
time information. Chapter 6 actually constitutes the basisfor the PWA’s recommendation to favor
cleaned logs over their raw form. Indeed, Chapters 3-5 use the sane versions only, whereas Chap-
ter 6 uses raw logs solely for the purpose of establishing thecase against them.

Finally, note that each log file is associated with a version number of the raw log, and possibly
of a cleaned log (“cln”). If the latter is missing, this meansno anomalies or non-representative
activities were found within the original log. Therefore, the raw log version is also considered to
be the clean version. The version number itself reflects a specific instance of the log.1 This is

1A new version for a raw log is created only when identifying a problem in the conversion process (from the

32 Methodology

abbreviation site machine version cpus duration load job number avg

raw cln start end mon raw clean sane run

-ths time

[min]

CTC Cornell Theory Ctr SP2 1 1.1 512 Jun 96 May 97 11 56% 79,302 77,222 77,222 188

KTH Swedish Royal Instit. of Tech.SP2 1 100 Sep 96 Aug 97 11 69% 28,490 28,490 28,490 148

SDSC San-Diego Supercomput. CtrSP2 2 2.1 128 Apr 98 Apr 00 24 84% 73,496 59,725 54,053 123

BLUE San-Diego Supercomput. CtrBlue Horizon 2 2.1 1,152 Apr 00 Jan 03 32 76% 250,440 243,314 223,407 73

NASA NASA Ames Research Ctr iPSC/860 1 1.1 128 Oct 93 Dec 93 3 47% 42,264 18,239 18,239 13

LANL-CM5 Los Alamos National Lab Conn. Machine 2 2.2 1,024 Oct 94 Sep 96 24 74% 201,387 122,055 122,052 43

SDSC-Par95San-Diego Supercomput. CtrParagon 1 1.1 416 Dec 94 Dec 95 12 68% 76,872 53,947 53,133 68

SDSC-Par96San-Diego Supercomput. CtrParagon 1 1.1 416 Dec 95 Dec 96 12 72% 38,719 32,136 31,334 138

LLNL-T3D Lawrence Livermore Nat. LabCray T3D 1 256 Jun 96 Sep 96 4 62% 21,323 21,323 21,323 23

SDSC-SP2 San-Diego Supercomput. CtrSP2 3 3.1 128 Apr 98 Apr 00 24 84% 73,496 59,725 54,051 123

LANL-O2K Los Alamos National Lab Origin 2000 1 2,048 Nov 99 Apr 00 5 64% 121,989 121,989 116,996 86

OSC Ohio Supercomput. Ctr Linux Cluster 1 178 Jan 00 Nov 01 22 51% 80,713 80,713 80,713 220

DAS-Amst DAS2 Grid Amsterdam U. Linux Cluster 1 64 Jan 03 Dec 03 12 20% 66,429 66,429 65,381 20

DAS-Leiden DAS2 Grid Leiden U. Linux Cluster 1 64 Jan 03 Dec 03 12 12% 40,315 40,315 39,356 18

DAS-Vrije DAS2 Grid Vrije U. Linux Cluster 1 144 Jan 03 Jan 04 12 15% 225,711 225,711 219,618 9

DAS-Delft DAS2 Grid Delft U. Linux Cluster 1 64 Jan 03 Dec 03 12 11% 66,737 66,737 66,112 12

DAS-Utrecht DAS2 Grid Utrecht U. Linux Cluster 1 64 Feb 03 Dec 03 11 14% 33,795 33,795 32,953 47

Table 2.1:Real production logs used as the basis of this study. See the PWA for more details [110].

specified to promote the reproducibility of results, as all instances are available through the PWA.2

Specifically, note that the abbreviations “SDSC” and “SDSC-SP2” refer to different versions of the
same log. Chapters 3-5 use the former, while Chapter 6 uses the latter (the difference, however, is
negligible). This is the only occasion in which a log appearstwice in Tab. 2.1, meaning it presents
16 different logs (rather than 17).

2.2 The Simulator

The performance evaluation done in this work is based on an event-based simulation of the re-
spective system. This is basically EASY scheduling, with possible modifications as noted in the
context in which the evaluation is conducted (e.g. changingthe scanning order of jobs for backfill-
ing). Events are job arrivals and terminations (Chapter 4 adds an additional event, to be described
in the relevant context). Upon arrival, the scheduler is informed of the number of processors the
job needs and its estimated runtime. It can then start the job’s simulated execution or place it in a

original format of the log to SWF). A new version for a cleanedlog is created when an additional non-representative
anomaly is discovered. The major version number of the cleaned version associates it with a raw log, such that some
filter was applied to the latter in order to form the former.

2Naturally, one cannot expect from researchers to redo all their work whenever a problem with one of the logs is
encountered.

2.3 Simulating EASY Backfilling 33

queue. Upon a job termination, the scheduler is notified and can schedule other queued jobs on the
free processors. Job runtimes are part of the simulation input, but are not given to the scheduler.

The input used to drive simulations are the topmost four SWF files (those with user estimates
data), as listed in the Tab. 2.1. Since these traces span the past decade, were generated at different
sites, on machines with different sizes, and reflect different load conditions, we believe consistent
results obtained in this work are truly representative. Thelogs are simulated using the exact data
provided, with possible modifications as noted (e.g. to check the impact of replacing user estimates
with system generated predictions).

2.3 Simulating EASY Backfilling

The EASY backfilling algorithm was briefly described in the previous chapter. In this section we
provide a more detailed description. The scheduler responds to two types of events: job arrival
(also denoted job submission) and job termination. The handling of a job’s arrival is

1. insert the job into the FCFS waiting queue, and

2. invoke theschedule function (that starts as many waiting jobs as possible whileobeying the
backfilling rules),

The handling of a job’s termination is

1. increase thecapacityof the machine (the number of currently availablty free processors) by
the size of the terminated job, and

2. invoke theschedule function.

The implementation of theschedule function is as follows:

1. Let the FCFS waiting queue be denoted asQ. If Q is empty, return.

2. Let the job at the head ofQ be denotedJ — this is the longest waiting job. LetJ.size be
the number of processors required byJ . Let C denote the current capacity of the machine.
If J.size ≤ C then

(a) updateC = C − J.size,

(b) removeJ from Q,

(c) start executingJ , and

(d) go to step 1.

3. Now that we are sure thatQ is not empty and thatJ is too big to be started (J.size > C),
start the backfilling process:

(a) Find the “shadow time” (also denoted “reservation time”) and the “extra nodes”:

i. Sort the list of running jobs according to their estimatestermination time (this is
the start-time plus the user runtime estimate).

ii. Iterate through the list of running jobs and accumulate nodes until their number,
when added toC, is equal to or bigger thanJ.size.

iii. The (estimated) time at which this happens is theshadow time.

34 Methodology

iv. If, at this time, more nodes are available than needed byJ (the first queued job),
the ones left over are theextra nodes.

(b) Find as many jobs to backfill as possible by traversingQ (in FCFS order) and checking
for each job whether one of the following two conditions hold:

i. It requires no more thanC nodes and will terminate by the shadow time, or

ii. It requires no more than the minimum ofC and the extra nodes.

(c) If either of the two conditions are met, remove the job from Q, start it, and updateC
accordingly. Additionally, if the job was backfilled at the expense of the extra nodes,
reduce the number of the extra nodes by the size of the backfilled job.

Backfilling against the shadow time is illustrated in Fig. 1.1 (page 5). Backfilling at the expense of
the extra nodes is illustrated in Fig. 3.14 (page 49).

2.4 Performance Metrics

Like most related studies [51], we measure the performance of systems using two metrics: average
wait-time (Await) and bounded slowdown (Absld), where the average is taken over the jobs that
participate in the simulation.

A job’s wait timeis defined to be the duration of the period between its submittal and starting
time (in this work we usually use minutes to express this metric). Related studies sometimes prefer
to useresponse time(instead of wait time), defined to bew+r, wherew andr are the job’s wait and
running time, respectively. However,Await is preferable over average response time (Aresponse),
because for batch systems the difference between the two is aconstant, regardless of which batch
scheduler is being used. The constant that forms the difference is actually the average runtime
(Aruntime), because

Aresponse ≡
1

n

∑

j∈J

(wj + rj) =
1

n

∑

j∈J

wj +
1

n

∑

j∈J

rj = Await + Aruntime

whereJ is a set containing all participating jobs,n is its size, andwj andrj are the wait-time
and runtime of jobj, respectively. SinceAruntime is a given that is unaffected by the scheduler,
preferring wait-time implies focusing only on the scheduling activity and neutralizing the highly
variable average runtime (rightmost column in Tab. 2.1).

Theslowdownmetric is response time normalized by running time:w+r
r

, reflecting the relative
delay factor of the job (e.g. if a job’s runtime is one hour andit had waited for two hours before
being scheduled, then it suffered from a slowdown of 3; the optimum is of course 1). Thebounded-
slowdownmetric eliminates the emphasis on very short jobs (e.g. withzero runtime) due to having
the runtime in the denominator; a commonly used threshold of10 seconds was set yielding the
formula:

bounded slowdown = max

(

1 ,
w + r

max (10, r)

)

.

Finally, to reduce warmup and cooldown effects of the simulation, the first 1% of terminated
jobs and those terminating after the last arrival were not included in the metrics averages [76]. In
the above definition of response time, for example, this means that these jobs were excluded from

2.5 Artificially Varying the Load 35

theJ set, despite the fact they actually participated in the simulation. This is true not just for the
two performance metrics defined above, but also to the very many other metrics we introduce in
their respective context (e.g. the backfilling rate of a schedule).

2.5 Artificially Varying the Load

In this dissertation, the term “load” is a synonym to what is often referred to as “offered load” or
“utilization”. Under the constraint of avoiding the warmup/cooldown effects, load is defined to be

load =

∑

j∈J sizej × runtimej

P × (Tend − Tstart)

where P is the number of processors composing the parallel machine,Tstart is the last termination
within the 1% aforementioned jobs, andTend is the last arrival. Thus, load is a fraction in [0,1],
or in [0,100] if expressed in percents. Note that the above formula is a simplification: every job
that ran within the[Tstart, Tend] time period contributes to the numerator, such that the runtime is
replaced with a value which is truncated according to the upper and lower bounds of this period.
In other words, the termruntimej is replaced with

min (Tend, terminationj) − max (Tstart, startj) .

When systems are underloaded, their performance is typically very similar (e.g. there can be
very little difference between FCFS and EASY). Higher load conditions expose the real differences
in how systems perform. In this work we therefore often manipulate the log files to reflect different
load conditions. The standard way to do is to multiply the jobinterarrival times by a constant. For
example, if the original offered load isρ, multiplying all interarrival times by a factor ofρ/0.8 will
change the offered load to 0.8.

36 Solving the Mystery of Why Increased Inaccuracy May Help

Chapter 3

Backfilling Dynamics: Solving the Mystery
of Why Increased Inaccuracy May Help

3.1 Introduction

Context This chapter was fully introduced in Sec. 1.2.1 (page 9) thatalso conducted a detailed
survey of related work. Briefly, this chapter builds on the many studies that researched the impact
of inaccurate estimates on the performance of backfill schedulers. The de-facto standard for doing
this was modeling estimates by the “f -model” [146, 47, 174, 169, 108, 15, 142, 170, 122, 34, 64],
wheref ≥ 0 is a “badness factor”, such that given a runtimer, the associated estimate is uniformly
distributed in[r, (f+1)·r] (the “random model”), or is simply set to ber·(f+1) (the “deterministic
mode”). With this, increasingf translates to increased inaccuracy.

Surprisingly, inaccurate estimates (f > 0) yielded better performance than accurate ones (f =
0). Additionally, some researchers observed that this improvement is largely insensitive to the
exact value off , while others suggested biggerfs imply a bigger improvement. Indeed, due to the
noisy nature of results, both observations are possible if using only a few experiments in a non-
systematic manner (Fig. 1.3, page 10). The factf > 0 improves performance was unanimously
explained by theholes argument, claiming biggerfs imply wider holes in the schedule that allow
for more effective backfilling [47, 174, 108, 15, 142]. In contrast, the observed “insensitivity” of
performance to the exactf > 0 value was explained by thebalance argument, claiming the effect
of bigger holes is cancelled out by backfill candidates appearing proportionally longer (as their
runtime is multiplied byf too) [174, 169, 170, 64]. We noted that while both arguments make
sense, they are contradictory, and in any case fail to explain the trends observed in Fig. 1.3.

Roadmap In this chapter we address the following questions: Can a consist trend be found
within the noisy sample space shown in Fig. 1.3? Can this trend be explained? Can the contradic-
tory holes/balance arguments be resolved? Specifically, why does multiplying the estimate by a
factor usually help? And finally, is this result realistic? Namely, is it reflective of the nature of real
inaccurate estimates as provided by users?

To answer these questions, we perform a detailed study of what really happens whenf grows,
both in terms of performance (Sec. 3.2) and in terms of backfilling activity (Sec. 3.3). This leads
to the characterization of a heel-and-toe dynamic, which explains the improved performance as
resulting from a shift in system behavior towards (a less fair) SJF scheduling (Sec. 3.4). We then

3.2 Performance as a Function of Badness 37

show why this can break down with higherf values (Sec. 3.5), and pinpoint the burstiness of the
load as the main cause for this effect (Sec. 3.6). After the impact of increasedf on performance is
fully understood, we go on to explicitly quantify the performance/fairness tradeoff. We then argue
that multiplying estimates is actually a scheduling technique that exercises this tradeoff, as sched-
ulers can multiply the estimates they use, whereas users’ behavior is completely different (Sec.
3.8). In fact, multiplying improves performance regardless of whether the values being multiplied
are actual runtimes (perfect) or were supplied by users (flawed); it’s just that the more accurate the
values we are multiplying, the better the resulting performance becomes (Sec. 3.9). Thus, accu-
rate estimates actually do improve performance, and thef -model is simply inadequate. All these
findings are based on simulation of the EASY scheduler. Our final contribution in this chapter is
therefore showing that the above understandings also applyto other backfill schedulers (Sec. 3.10).

Methodology This chapter presents the results of more than three millionsimulations:1 Under-
standing the impact of variousf values on performance required us to artificially increase and
decrease the load of the trace files listed in Tab. 2.1 (see Chapter 2 for an explanation of how this is
done). Thus, aside from simulating the original loads, all the trace files are simulated under “high”
(SDSC’s 84%) and “low” (CTC’s 56%) load conditions, yielding 10 trace/load pairs. (SDSC and
CTC are only evaluated under two load conditions). Sec. 3.6 uses a fifth trace file, adding another
3 pairs. Further, Sec. 3.10 reevaluates all 13 pairs under two additional schedulers (different than
EASY), yielding a total of 39 trace/load/scheduler triplets. Each such triplet is evaluated under
401 differentf values:f ∈

{
0, 1

10
, 2

10
, ..., 10

}
, f ∈ {11, 12, ..., 100}, f ∈ {110, 120, ..., 1000},

andf ∈ {1100, 1200, ..., 10,000}. Then, when using the random model, each of the 400 positive
fs are simulated with 100 different seeds for the random number generator. Lastly, Sec. 3.8 uses a
modified version of the randomf -model and therefore re-executes all the experiments again. This
yields39 × 400 × 100 × 2 ≈ 3,000,000 simulations.

Naming Notation We have chosenf ’s minimal value to be zero, because this seems to be best
aligned with the perception that “zero badness” implies perfect accuracy. However, due to the
multiplicative nature of this factor, it is often much more convenient to set the minimal value to 1,
in which case we use an uppercase notation:F = f + 1. With this, the random model uniformly
draws an estimate of a job with runtimer from [r, r · F], and the deterministic model simply sets
the estimate tor · F . Note that inall figures where badness is shown along the X-axis, the random
F -model is plotted against the deterministicF/2-model, such that both have the same mean.

3.2 Performance as a Function of Badness

Statistical Confidence The first step we take in trying to uncover the impact of increased “bad-
ness” (= f) on performance is to expose the trends underlying the very noisy Fig. 1.3 (page 10).
To this end, we note that somewhat surprisingly no previous work has used thef -model in a statis-
tically sound manner, that is, researchers have consistently inferred performance results associated
with a givenf from asinglesimulation, despite the model’s random component. Fig. 3.1shows
that plotting performance in terms of mean (“random”) and 90% interval (“90% confidence”, from

1The product of nearly a year’s worth of one Pentium-IV/3GHz/4GB compute time, finished in about 6 days with
the help of a 64-CPU cluster.

38 Solving the Mystery of Why Increased Inaccuracy May Help

 260
 280
 300
 320
 340
 360

 0 2 4 6 8 10

SDSC

w
ai

t [
m

in
ut

es
]

 16

 18

 20

 22

 24

 0 2 4 6 8 10

CTC

 90
 95

 100
 105
 110
 115

 0 2 4 6 8 10

KTH

 90

 100

 110

 120

 130

 0 2 4 6 8 10

BLUE

 65
 70
 75
 80
 85
 90
 95

 0 2 4 6 8 10

b.
 s

lo
w

do
w

n

real
f=0

random
90% confidence

deterministic 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10
 50

 60

 70

 80

 90

 0 2 4 6 8 10
 20

 25

 30

 35

 40

 0 2 4 6 8 10

Figure 3.1:Performance as a function off ∈
{
0, 1

10 , 2
10 , ...

}
, where each “random” point averages 100

runs with different seeds. The mean results expose clearer performance trends (compare with Fig. 1.3).

 260
 280
 300
 320
 340
 360

 0 2 4 6 8 10

SDSC

w
ai

t [
m

in
ut

es
]

 60
 70
 80
 90

 100
 110
 120

 0 2 4 6 8 10

CTC

 200
 220
 240
 260
 280
 300

 0 2 4 6 8 10

KTH

 180

 200

 220

 240

 260

 0 2 4 6 8 10

BLUE

 65
 70
 75
 80
 85
 90
 95

 0 2 4 6 8 10

b.
 s

lo
w

do
w

n

real
f=0

random
90% confidence

deterministic 10

 15

 20

 25

 0 2 4 6 8 10
 100
 120
 140
 160
 180
 200
 220

 0 2 4 6 8 10
 40
 45
 50
 55
 60
 65

 0 2 4 6 8 10

Figure 3.2:Applying SDSC’s high load conditions to KTH and BLUE makes them similar to SDSC.

 72
 74
 76
 78
 80
 82
 84

 0 2 4 6 8 10

SDSC

w
ai

t [
m

in
ut

es
]

 16

 18

 20

 22

 24

 0 2 4 6 8 10

CTC

 54
 56
 58
 60
 62
 64

 0 2 4 6 8 10

KTH

 35

 40

 45

 50

 0 2 4 6 8 10

BLUE

 17
 18
 19
 20
 21
 22

 0 2 4 6 8 10

f (badness factor)

b.
 s

lo
w

do
w

n

real
f=0

random
90% confidence

deterministic
 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10
 35

 40

 45

 50

 0 2 4 6 8 10
 8
 9

 10
 11
 12
 13

 0 2 4 6 8 10

Figure 3.3:The low load conditions of CTC make the V-curves less pronounced and closer to L.

the 5th percentile to the 95th percentile) is beneficial, turning the initial noisy results (Fig. 1.3) into
relatively smooth curves.

V Trend vs. L Trend Fig. 3.1 reveals two trends: The first is V shaped (most pronounced for
SDSC), and the second is L shaped (CTC). In both cases, randomperformance curves initially

3.3 Backfilling as a Function of Badness 39

drop (improve) for smallf values. Then, the curves either asymptotically converge tosome value
(L shape), or the trend is first reversed and only then converges (V shape). This general tendency
continues to largerf values: BLUE is actually V shaped in both metrics (its curvesare quite similar
to that of SDSC if changing the X scale tof ∈ [0, 100] and bigger); KTH/wait and KTH/slowdown
are L and V shaped, respectively. The deterministic model obviously stays noisy (only one sample
per f), but it is evident that its curves are usually found in the proximity of the lower (better)
performance bound of the random model.

Load Correlates with Trends If grouping SDSC and BLUE (V shapes only) and comparing
them to CTC and KTH (some L shapes), then Tab. 2.1 (page 32) reveals they can be characterized
as having higher and lower load, respectively. To check whether the load determines if curves
are V or L shaped, we simulated all the logs under “high” and “low” load conditions. These are
chosen to be SDSC’s 84% and CTC’s 56%, respectively. (Load isvaried as explained in Chapter
2). The results are shown in Figs. 3.2-3.3 and suggest that average load is an influencing, yet
not the exclusive, factor in determining the performance trend: The trends of SDSC and CTC are
invariant to the load change. However, for high load, BLUE and KTH clearly become very similar
to SDSC. In contrast, with lower load, the inner-angle of theV curves becomes less “sharp” and
somewhat closer to CTC’s L curves.

FINDING #3.1

Expressed in terms of confidence intervals, performance is either V or L shaped. Higher
or lower average load implies a tendency towards a V or L shape, respectively. The de-
terministic model is usually closer to the best performanceresults of the random model.

3.3 Backfilling as a Function of Badness

Holes vs. Balance Our goal is to understand the reason for the system behavior as reported in
Finding 3.1. A reasonable first step is to validate or disprove the (contradicting) claims underlying
the “holes” and “balance” arguments. Though we already knowboth fail to provide a full expla-
nation to the observed performance trends (e.g. the V shape), determining which argument (if any)
better describes the effect of increasedf on backfilling is essential. Recall the holes argument
implies backfilling activity intensifies withf , whereas the balance argument claims the effect of
bigger holes evens out by backfill candidates appearing proportionally longer.

Results Fig. 3.4 shows the percent of jobs that were backfilled, as a function of f , along with
the main characteristics of these jobs. Trends are consistent and confidence intervals are tight.
Backfilling rates clearly increase withf . The exact numbers are workload dependent in that higher
loads (Tab. 2.1) imply higher rates. But when simulating thelogs under equal high/low load con-
ditions (as in Sec. 3.2), the rates become remarkably similar. The runtime/size of backfilled jobs
also follow the same pattern, though in this case the increase is invariant to the examined loads.

FINDING #3.2

In accordance to the holes argument and in contrast to the balance argument, biggerfs
imply more jobs that enjoy backfilling. On average, these jobs are longer and wider.

40 Solving the Mystery of Why Increased Inaccuracy May Help

 66
 68
 70
 72
 74
 76

 0 2 4 6 8 10

SDSC

ba
ck

fil
l r

at
e

[%
]

 25
 26
 27
 28
 29
 30

 0 2 4 6 8 10

CTC

 58
 60
 62
 64
 66
 68

 0 2 4 6 8 10

KTH

 65

 70

 75

 80

 0 2 4 6 8 10

BLUE

 80

 85

 90

 95

 100

 0 2 4 6 8 10ru
nt

im
e

[m
in

ut
es

]

 155

 160

 165

 170

 175

 0 2 4 6 8 10
 100

 105

 110

 115

 0 2 4 6 8 10
 45

 50

 55

 60

 0 2 4 6 8 10

 7

 7.5

 8

 8.5

 9

 0 2 4 6 8 10

f (badness factor)

si
ze

 [C
P

U
s]

real
f=0

random
90% confidence

deterministic 6

 6.5

 7

 7.5

 8

 0 2 4 6 8 10
 5

 5.2

 5.4

 5.6

 5.8

 0 2 4 6 8 10
 26
 27
 28
 29
 30
 31
 32

 0 2 4 6 8 10

Figure 3.4:The percent of backfilled jobs and their average runtime and size monotonically increase withf .
In all cases, the relative increase is roughly similar, e.g.the rates/runtimes/sizes associated withf=10 are
10-20% bigger than that off=0.

This finding can be interpreted as supportive of the L-shapedperformance curves (CTC, Fig. 3.1-
3.3), based on the notion that jobs can be partitioned into being “light” or “heavy” according to
whether their characteristics allow them to be backfilled ornot. This interpretation suggests that
biggerfs mean more jobs are light and can enjoy better service. However, as we will show below,
our finding doesn’t just mean“more” jobs. It also meansdifferent jobs, and specifically longer
jobs, possibly at the expense of shorter ones.

3.4 The Heel-and-Toe Dynamics

Heel-and-Toe Hypothesis The question that follows Finding 3.2 is why is it so? What’s wrong
with the balance argument? Why isn’t the effect of bigger holes canceled by the backfill candidates
that are proportionally longer? After reexamining the backfilling rules, we came up with a possible
explanation, as illustrated in Fig. 3.5. To simplify, assume all estimates are exactly double the
runtime (F=2 under the deterministic model; recall the uppercase notation defined in Sec. 3.1).
Based on the information available to the scheduler atT0 (time 0), it appears the earliest time for
J3 (job 3) to start isT12, even though thereal earliest start time is actuallyT6. Thus, the scheduler
makes a reservation onJ3’s behalf forT12 and can only backfill jobs that honor this reservation.
At T4, J2 terminates. AsJ1 is still running, nothing has changed with respect toJ3’s reservation,
and so the scheduler scans the wait queue in search of appropriate candidates for backfilling.J4

(the first backfill candidate under FCFS) fits the gap betweenT4 and the reservation (T12) and
it is therefore backfilled, effectively pushing back the real earliest time at whichJ3 could have
started fromT6 to T8. Likewise, whenJ1 terminatesJ5 is backfilled, and whenJ4 terminatesJ6 is
backfilled, pushingJ3’s real earliest start time toT9 and thenT10.

3.4 The Heel-and-Toe Dynamics 41

Time

2 4 6 8 10 120 2 4 6 8 10 120 2 4 6 8 10 120 2 4 6 8 10 120

N
od

es
W

ai
tin

g

3 3 3 3
1

2
1

2 4 2 4
1 5

2
1 5

4 6

6
5 4

6
5

6

Figure 3.5:Illustrating heel-and-toe. Job numbers indicate arrival order. Job estimates are exactly double
their runtime (F=2). The left portion of jobs (green/dark) indicates their real runtimes. Due to the dou-
bling, the scheduler views jobs as twice as long (right portion; yellow/bright). The bottom arrows show
the progress of time, whereas the top black arrows show the earliest time at which job 3 would have been
started, had real runtimes been known (at that particular point in time). The thief’s width shows the amount
of “stolen” time, at the expense of job 3.

SJFness This “heel-and-toe” scenario, of repeatedly pushing away the earliest starting point of
the first queued job, step by step, may continue untilT12 is reached. During this time, the window
between the current time and the reservation time is continuously shortened, such that waiting jobs
that fit this open gap get shorter and shorter, effectively nudging the system towards Shortest-Job
First (SJF) scheduling. (Note that the initial open gap can be very short to begin with). And
so, if the heel-and-toe dynamic does in fact occur, this limited form of “SJFness” contributes to
the performance improvement reported in Finding 3.1, namely, the first (descending) part of the
V-curves, and the L-curves in their entirety. This effect isdirectly quantified in the next section.

Tendency towards SJFness with positivef was also observed (but not explained) by Zotkin and
Keleher [174], which conducted an “off-line” simulation ofwhat happens whenall the jobs in a
trace arrive at the same exact time instance. They found that, in comparison tof=0, shorter jobs
leave the system at a faster rate when estimates are set to be five times the actual runtime.2 The
heel-and-toe dynamics explain this phenomenon.

Verifying Heel-and-Toe Occurs Let Jh be the first queued job (meaningJh isn’t backfilled, but
rather, it waits for its turn, becomes first, and gets a reservation). LetSh denote thereal shadow
timeof Jh, defined to beJh’s (hypothetical) start-time, if all estimates suddenly become completely
accurate. For example, the initial real shadow ofJ3 in Fig. 3.5 isT6. During the timeJh is first, we
say that a backfill operation iswild if Sh is pushed away because of it, or that it’smild, otherwise.
All the backfill operations in Fig. 3.5 are wild, because all resulted in a change of the real shadow.
By definition, showing that wild backfilling happens means proving that heel-and-toe dynamics
indeed occur. Fortunately, detecting wild backfilling is easy within a simulation: We computeSh

by traversing the run-list in (real) termination order and finding the earliest time in which enough
free processor accumulate to satisfyJh. By doing this before/after a backfill operation, we can tell
if the operation is wild (Sh changed) or mild (stayed the same).

Fig. 3.6 clarifies that the heel-and-toe dynamic is not just hypothetical, e.g. withf=10, 2-5%
of the jobs are wildly backfilled. The X-axis doesn’t start atzero, because there can be no wild
backfilling with perfect estimates (the first real shadow is always the last). The consequences of
wild backfilling aredelayedjobs that suffer from at least one wild backfill operation while they
are at the head of the queue (asJ3 in Fig. 3.5). Fig. 3.7 (top) shows that around 1% of the jobs are

2Though paradoxically this didn’t prevent Zotkin and Keleher from using the balance argument [174].

42 Solving the Mystery of Why Increased Inaccuracy May Help

 1

 2

 3

 4

 5

 10 8 6 4 2 0.1

SDSC

w
ild

 b
ac

kf
ill

 [%
]

 0.5

 1

 1.5

 2

 2.5

 10 8 6 4 2 0.1

CTC

 1

 2

 3

 4

 5

 10 8 6 4 2 0.1

KTH

 1
 1.5

 2
 2.5

 3
 3.5

 10 8 6 4 2 0.1

BLUE

 50
 100
 150
 200
 250
 300
 350

 10 8 6 4 2 0.1ru
nt

im
e

[m
in

ut
es

]

 150

 200

 250

 300

 350

 10 8 6 4 2 0.1
 100
 150
 200
 250
 300
 350

 10 8 6 4 2 0.1
 50

 100
 150
 200
 250
 300
 350

 10 8 6 4 2 0.1

 12
 13
 14
 15
 16
 17

 10 8 6 4 2 0.1

f (badness factor)

si
ze

 [C
P

U
s]

real
random

90% confidence
deterministic

 10

 12

 14

 16

 10 8 6 4 2 0.1
 6
 7
 8
 9

 10
 11

 10 8 6 4 2 0.1
 45
 50
 55
 60
 65
 70
 75

 10 8 6 4 2 0.1

Figure 3.6:Existence of wild backfilling demonstrates heel-and-toe dynamics occurs. The rate of wild
jobs and their average runtime/size follow the same trends as in the general case (Fig. 3.4), but wild jobs are
longer and wider. Increasing the load has similar effects tothose witnessed in Sec. 3.3 for the general case.

delayed. Any performance improvement obtained by thef -model is at the expense of these jobs.
The average number of timesSh is pushed away is shown in the middle of Fig. 3.7 (three times for
J3 in Fig. 3.5). Finally, the bottom of Fig. 3.7 shows the average delay duration. This is the elapsed
time betweenJh’s initial real shadow and its eventual start time (the “stolen” time in Fig. 3.5).

Holes vs. Balance Revisited Our findings indicate that the seemingly contradictory “balance”
and “holes” arguments can in fact be reconciled: The performance improvement attributed to pos-
itive fs is not just because of wider holes in the schedule that allowfor more backfilling (in ac-
cordance to the “holes” argument), because backfill candidates are indeed widened proportionally
(in accordance to the “balance argument”). Rather, it is theresult of a heel-and-toe effect, which
manages to keep the holes open by backfilling shorter jobs that repeatedly delay the execution of
the first queued job and lead to an SJF-like schedule.

FINDING #3.3

The heel-and-toe dynamic (1) is verified to occur in practice, (2) reconciles between the
balance and holes arguments, and (3) leads to a limited form of SJFness. Thus, it explains
the performance improvement due to positivef values.

Let us now explain why performance can also become worse.

3.5 Countering the SJFness of Heel-and-Toe

We now focus on the second, ascending, part of the V-shaped performance curves where perfor-
mance continuously degrades (Finding 3.1; Fig. 3.1-3.3). The explanation has two components:

3.5 Countering the SJFness of Heel-and-Toe 43

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 10 8 6 4 2 0.1

SDSC

de
la

ye
d

ra
te

 [%
]

 0.4

 0.5

 0.6

 0.7

 0.8

 10 8 6 4 2 0.1

CTC

 0.6
 0.8

 1
 1.2
 1.4
 1.6

 10 8 6 4 2 0.1

KTH

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1

 10 8 6 4 2 0.1

BLUE

 1
 1.5

 2
 2.5

 3
 3.5

 10 8 6 4 2 0.1

de
la

ye
rs

[jo

bs
]

 1

 1.5

 2

 2.5

 3

 10 8 6 4 2 0.1
 1

 1.5

 2

 2.5

 3

 10 8 6 4 2 0.1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 10 8 6 4 2 0.1

 0
 50

 100
 150
 200
 250

 10 8 6 4 2 0.1

f (badness factor)

de
la

y
[m

in
ut

es
]

real
random

90% confidence
deterministic 0

 20

 40

 60

 10 8 6 4 2 0.1
 0

 50

 100

 150

 200

 10 8 6 4 2 0.1
 0

 50

 100

 150

 200

 10 8 6 4 2 0.1

Figure 3.7: The rate of jobs that suffer from wild backfilling (top), the average number of wild events
per such job (middle), and the average delay (bottom). Note that multiplying the top and middle curves
results in the top of Fig. 3.6. The unique trend observed in BLUE (top) is also displayed by the other logs
if simulating high load conditions as in Sec. 3.2 and examining a slightly widerf range; on the other hand,
BLUE becomes like all the others if simulating low load conditions.

the increasedf , and the resulting amplification of randomness (for the non-deterministic model).
These components increasingly contradict the SJFness reported earlier:

Increasedf As shown in Fig. 3.4 (and highlighted in Finding 3.2), backfilling activity mono-
tonically increases withf , while at the same time, the runtime of backfilled jobs becomes longer.
Longer average runtime wouldn’t have been problematic by itself, had short jobs been nevertheless
prioritized. But this is not the case. To illustrate why, letus reconsider the scenario depicted in
Fig. 3.5. Tab. 3.1 lists the estimates of jobs at timeT4 (afterJ2 terminates) for variousF values,
as well as the length of the resulting hole. The last row simply specifies what is shown in Fig. 3.5
(F=2). Recall that job indexes indicate arrival order, used bythe scheduler when searching for
backfill candidates. Thus,J4 is the first candidate and since it fits the existing hole it is chosen for
backfilling. However, if the value ofF had been 11

3
instead of 2 (second row in Tab. 3.1), then

the hole would have been proportionally smaller and the scheduler would have deemedJ4 as too
long for backfilling, favoring instead the shorterJ5 for execution. IfF was further reduced to 1
(complete accuracy; first row), thanJ5 would also appear as too long, effectively makingJ6 (the
shortest waiting job) the only eligible candidate. We can therefore see there’s a subtle tradeoff
here:

FINDING #3.4

While biggerf means more backfilling (which short jobs enjoy more than longer ones),
the bigger holes do in fact allow longer jobs to backfill.

This finding is verified in Fig. 3.8. First, the top row shows the average runtime of non-
backfilled jobs: this usually becomes shorter with increased f , suggesting the scheduler indeed

44 Solving the Mystery of Why Increased Inaccuracy May Help

F estimates hole length

J1 J4 J5 J6 atT4

1 6 4 3 2 2

11

3
8 51

3
4 21

3
4

2 12 8 6 4 8

Table 3.1:The length of the hole in the schedule and the estimates of jobs in Fig. 3.5, for variousF values.
The first row (complete accuracy) lists job runtimes and therefore estimates in later rows can be obtained by
multiplying this row with the appropriateF . The hole size isJ1’s estimate minus 4 (the current time isT4,
thus 4 time-units have already elapsed). For eachF , the estimate of the first job that fits the hole appears in
bold.

 196
 198
 200
 202
 204
 206

 0 2 4 6 8 10

SDSC

ru
nt

im
e

of
 n

on
-

ba
ck

fil
le

d
[m

in
ut

es
]

 194
 195
 196
 197
 198
 199

 0 2 4 6 8 10

CTC

 210

 215

 220

 225

 230

 0 2 4 6 8 10

KTH

 114
 116
 118
 120
 122
 124
 126

 0 2 4 6 8 10

BLUE

 38

 40

 42

 44

 46

 0 2 4 6 8 10

f (badness factor)

S
JF

ne
ss

 [%
]

real
f=0

random
90% confidence

deterministic 78

 79

 80

 81

 82

 0 2 4 6 8 10
 48

 50

 52

 54

 0 2 4 6 8 10
 44

 46

 48

 50

 52

 0 2 4 6 8 10

Figure 3.8:Average runtime of non-backfilled jobs is usually made shorter when increasingf (top). Aver-
age SJFness initially rises, but there’s a quick trend change as backfilled jobs become longer.

makes “wrong” decisions by forcing shorter jobs to wait and preferring longer jobs for backfilling
(Fig. 3.4). More important is the bottom row that directly quantifies the effect: “SJFness” is the
percent of jobs that are the shortest in the waiting queue at the time they are chosen to run. Evi-
dently, SJFness intensifies with very smallf values, only to monotonically drop later on (perfectly
coinciding with our explanation above).

Increased Randomness The situation gets worse when randomness is introduced, as now, in
addition, long jobs can masquerade as short jobs and vice versa. To illustrate this, letJ1/J2 be
two jobs within the wait queue with runtimesr1/r2 and estimatese1/e2 that were generated by the
random model, respectively. This is depicted in Fig. 3.9 (left), assumingr1 < r2 without loss of
generality. We are interested inPr (e1 > e2), that is, the probability the scheduler is erroneously
told thatJ1 is longer thanJ2. By conditioning (Bayes’ theorem) this is

Pr (e1 > e2) = Pr (e1 > e2 | e1, e2 ∈ α)·Pr (e1, e2 ∈ α) + Pr (e1 > e2 | e1, e2 ∈ α)·Pr (e1, e2 ∈ α)

whereα ≡ [r2, F r1] is the intersection between the two domains from whiche1 ande2 are drawn.
The second term in the above summation is obviously zero (when eithere1 or e2 are outsideα then
e1 < e2) and so we are left with

Pr (e1 > e2) = Pr (e1 > e2 | e1, e2 ∈ α)
︸ ︷︷ ︸

λ1

· Pr (e1 ∈ α)
︸ ︷︷ ︸

λ2

· Pr (e2 ∈ α)
︸ ︷︷ ︸

λ3

3.6 The Role of Burstiness 45

r1 Fr1

range fore1
︷ ︸︸ ︷

r2 Fr2

︸ ︷︷ ︸

range fore2

α
� -

 1

1/2 ⋅ r1/r2

 0
r2/r11

P
r[

 e
1

>
 e

2
]

F (badness factor)

Figure 3.9:Left: ri andei (i = 1, 2) are the runtime and estimate of jobJi, such thatei is uniformly chosen
from [ri, F ri]. Right: probability thate1 > e2 when actuallyr1 < r2.

If α exists (Fr1 > r2), thenλ1 = 1
2
, because it’s simply the probability one number is bigger than

another if both are uniformly chosen from the same domain. (If α is degenerate thenλ1 = 0.) As
λ2 andλ3 represent standard events in a uniform setting, we get

Pr (e1 > e2) =
1

2
·
Fr1 − r2

Fr1 − r1
·
Fr1 − r2

Fr2 − r2
−→

F→∞

1

2
·
r1

r2

because the supremum limits of the middle and third factors (in the above multiple) are 1 andr1

r2
,

respectively, whenF goes to infinity. Thus, the error probability is monotonically increasing, as
depicted in Fig. 3.9 (right).

FINDING #3.5

Under the random model, the bigger thef , the more it is probable the scheduler would
erroneously view short jobs as long and vice versa. This explains why SJFness is higher
for the deterministic model (Fig 3.8) and hence why the deterministic model consistently
outperforms the random model (Fig. 3.1-3.3).

3.6 The Role of Burstiness

CTC is Different We have now managed to explain all the observed performance trends, both
the descending and the ascending parts of the curves in Fig. 3.1-3.3. The remaining missing piece
in the puzzle is the inherent difference between CTC and the other logs, best observed in Fig. 3.2
that shows performance trends under high load conditions (84% utilization across all logs, as in
SDSC). Clearly, the trend of CTC is L-shaped, whereas the others are V-shaped. The question is
therefore what makes CTC “immune” to high load conditions? How does it manage to “escape”
the destructive processes outlined in Sec. 3.5?

Momentary Load To answer this question, we first define themomentary loadat timeT to be
the total number of running/waiting processes (not jobs) that are present in the system at that time
instance, divided by the size of the machine. For example, ifa machine with 10 CPUs is currently
running 8 processes (leaving 2 CPUs idle), while two jobs of size 6 are waiting in the queue, then
the momentary load is(8 + 6 + 6) /10 = 2. The momentary load induced by EASY (with real
user estimates) is shown in Fig. 3.10 for when the (offered) load is made equal to that of CTC
(top; associated with Fig. 3.3) and that of SDSC (bottom; associated with Fig. 3.2) by means of
manipulating arrival-times as explained in Chapter 2. Whether in its original form (top) or after its

46 Solving the Mystery of Why Increased Inaccuracy May Help

 0

 5

 10

 15

 20

 0 10 20 30 40

SDSC

m
om

en
ta

ry
 lo

ad
(5

6%
 u

til
iz

at
io

n)

 0

 5

 10

 15

 20

 0 5 10 15

CTC

 0

 5

 10

 15

 20

 0 5 10 15

KTH

 0

 5

 10

 15

 20

 0 10 20 30 40 50

BLUE

 0

 5

 10

 15

 20

 0 5 10 15 20

CTC-336

 0

 5

 10

 15

 20

 0 5 10 15 20 25

SDSC

manipulated time [months]

m
om

en
ta

ry
 lo

ad
(8

4%
 u

til
iz

at
io

n)

weekly avg.
running avg.

 0

 5

 10

 15

 20

 0 2 4 6 8

CTC

 0

 5

 10

 15

 20

 0 2 4 6 8 10

KTH

 0

 5

 10

 15

 20

 0 10 20 30

BLUE

 0

 5

 10

 15

 20

 0 5 10 15

CTC-336

Figure 3.10:When the overall load is made higher (bottom) by means of arrival-time manipulation, the
momentary load exposes a bursty activity pattern in all logsbut CTC. Increasing CTC’s overall load by
manipulating the size of the machine rectifies this (CTC-336).

offered load has been artificially intensified (bottom), themomentary load of CTC stands out as
being “well behaved” and exhibits very little burstiness. We therefore conjecture performance is
not just related to the average overall load, but rather, to the manner in which its temporal structure
is manifested.

Burstiness Conflicts With SJFness Our conjecture is supported by the fact the effectiveness of
the two “anti-SJFness” processes (characterized in Sec. 3.5) is tightly correlated with the size of
the wait-queue: To begin with, both processes only apply to jobs that simultaneously populate the
queue, dealing with situations where the scheduler considerscurrentlywaiting jobs for backfilling,
and chooses the longer one. A smaller number of concurrentlywaiting jobs implies such occur-
rences are less frequent. (E.g., at the extreme, there are one or no waiting jobs, so no scheduling
“mistakes” can be made.) Further, the error probability depicted in Fig 3.9 (Pr(e1 > e2) →

1
2

r1

r2
)

is actually quite small ifr1 is considerably smaller thanr2. But this relates to only one pair of
jobs; a crowded wait queue means many pairs are compared, increasing the error-probability pro-
portionally to the wait-queue size. Similarly, the scenarios outlined in Tab. 3.1 only have meaning
if J4/J5/J6 are ever simultaneously present in the wait queue.

Introducing Burstiness to CTC It is therefore possible CTC’s performance trends are quali-
tatively different because it lacks burstiness. To verify this, we decided to try and raise CTC’s
offered load (to be equal to that of SDSC) in a manner that willencourage burstiness. The de-facto
standard methodology for varying the load of job-scheduling related workloads is with arrival-time
manipulation (Chapter 2). However, this is not the only way:Following the intuition illustrated in
Fig. 3.11, we’ve decided to change the load by reducing the size of the CTC machine (512 proces-
sors, originally). Luckily this is possible because the maximal job size within the CTC workload
is 336. Incidentally, changing the machine size from 512 to 336 processors yielded a workload
with 85% utilization, very close to the desired target load of 84%. We call this modified workload
CTC-336, and present its momentary load at the right of Fig. 3.10 (CTC-336’s 85% was made
equal to SDSC’s 84% and CTC’s 56% by standard arrival-time manipulation). Our attempt is in-
deed successful, as CTC-336 is clearly more bursty than CTC.Indeed, examining the performance
trends of CTC-336 in Fig. 3.12 reveals our hypothesis was right:

3.7 Unfairness as a Function of Badness 47

by half
shrink arrivalsshrink size

by half
original

workload

Time

1
2

3
4

1 3
2 4 2

1 3
4

Figure 3.11: Increasing the load of a given trace
(middle) by arrival time manipulation (right) or by
reducing the size of the machine (left). Left displays
a burstier pattern (2/1/2/1) relative to the right (1/1),
though both have 100% utilization.

 160
 180
 200
 220
 240
 260

 0 2 4 6 8 10

w
ai

t [
m

in
ut

es
]

f (badness factor)

 25
 30
 35
 40
 45
 50
 55

 0 2 4 6 8 10

b.
 s

lo
w

do
w

n

Figure 3.12:Performance of CTC-336 (high load
conditions; compare with Fig. 3.2). In contrast to the
original CTC, which was associated with L perfor-
mance curves, CTC-336 is V-shaped.

FINDING #3.6

Performance trends tend to be either V- or L-shaped, depending on whether the workload
is bursty or not, respectively.

3.7 Unfairness as a Function of Badness

The heel and toe dynamics suggest that the performance improvement obtained by multiplying is
at the expense of jobs that get a reservation, which are usually both long and wide. (In the four
logs their average runtime, estimate, and size are approximately 4h, 7h, and 17% of the machine’s
processors, respectively.) It therefore appears as if increasingf is “unfair”. However, to directly
verify that this is true, we need a way to measure fairness. Such a metric is described next.

Given a jobJ , assume it is possible to calculate the hypothetical time inwhich it is “most fair”
to start this job. This is calledJ ’s fair start time, denotedFST (J). Let theactual start timeof J
(under the scheduler we happen to evaluate, which is EASY in our case) be denoted asAST (J).
Using this notation, Sabin and Sadayappan defined the averageunfairnessas

1

|jobs|

∑

J∈jobs

max (0, AST (J) − FST (J))

where thejobs set contains all the participating jobs [123]. Note that this metric expresses time
(e.g. minutes), which is the per-job average delay period beyond what is “most fair”. Also note
that the term involvingmax insures the summation includes only nonnegative values, and that only
jobs which were treated unfairly contribute positive quantities. (These may be “delayed jobs” in
our terminology from above.)

The remaining missing piece is how to computeFST (J). This was defined by Srinivasan et al.
[141] as the start time ofJ under a hypothetical “conservative” backfill scheduler (assigns reser-
vations toall waiting jobs; see Sec. 1.1.2) that has two unique properties: (1) it utilizes completely

48 Solving the Mystery of Why Increased Inaccuracy May Help

 0

 20

 40

 60

 80

 0 2 4 6 8 10

SDSC

f (badness factor)

un
fa

irn
es

s
[m

in
ut

es
]

real
f=0

random
90% confidence

deterministic 0.5
 1

 1.5
 2

 2.5
 3

 0 2 4 6 8 10

CTC

 0
 5

 10
 15
 20
 25

 0 2 4 6 8 10

KTH

 0

 10

 20

 30

 40

 0 2 4 6 8 10

BLUE

Figure 3.13:Unfairness as a function of badness. Increased badness translates to a less fair schedule.

accurate estimates, and (2) it suddenly changes the scheduling strategy to strict no-backfill FCFS
at the exact time instance in whichJ arrives.3

An attractive property of this definition is that it is at least as fair as using a strict FCFS defini-
tion (the order of the FSTs is in perfect alignment with the order of job arrivals and no job is ever
delayed due to later arriving jobs), but it is nevertheless “efficient” enough to be useful, allowing
for a meaningful evaluation when judging the fairness of high-end schedulers. (Unfortunately, in
comparison to FCFS start times, virtually all high-end schedulers may have zero unfairness, due to
the poor performance of FCFS).

The results are shown in Fig. 3.13 and all have aΓ-like shape indicating that increasedf indeed
yields increased unfairness, a fact that perfectly coincides with the heel and toe description. Note
that, with f=0, unfairness is smaller than when real estimates are employed. However, asf is
increased the situation is quickly reversed. The conclusion is therefore that

FINDING #3.7

Multiplying all estimates by a factor is actuallytrading off fairness for performance.

3.8 Making the Model More Realistic

The Problem The f -model is the dominant model for generating artificial user runtime esti-
mates. It is used to complement workloads that lack estimates data [169, 56, 58], but more im-
portantly, to evaluate the impact of inaccurate user estimates on backfilling algorithms [146, 47,
174, 169, 108, 15, 142, 170, 122, 34, 64]. Based on thef -model, researchers have drawn neat con-
clusions that range from “performance is independent of accuracy”, through “what the scheduler
don’t know won’t hurt it”, to “inaccuracy actually improvesperformance” (see Sec. 1.2.1, page 9).
Indeed, when employingartificial estimates as generated by thef -model, these claims may reflect
certain aspects of the truth, as shown above. However, thereis a fundamental, yet evidently very
elusive and overlooked, problem with all the insights that are based on thef -model:

THE PROBLEM WITH THEf -MODEL

Increased inaccuracy that is modeled by greaterf values effectivelyspreadsthe estimates
across a larger domain. But with real estimates it’s exactlythe opposite! Namely, inac-
curacy manifests itself by more jobs using thesameestimate value. Thus, conclusions
based on the theoreticalf -model might not apply when real user estimates are involved.

3It’s as if we’re using a different scheduler for each job; however, with the right data structure, FSTs may actually
be computed during one sequentialO (n) pass through all the jobs, requiring no simulation.

3.8 Making the Model More Realistic 49

Backfill on "extra" nodes

Future Time

FCFS

P
ro

ce
ss

or
s

2

3 3

211

Figure 3.14:FCFS cannot startJ3 beforeJ2. But with backfilling, if more nodes than needed will be
available forJ2 at its reservation time, these “extra” nodes can be allocated immediately.

Understanding results that are based on thef -model can be interesting and important. For ex-
ample, the heel-and-toe dynamics turned out to be the reasonwhy, as shown in Fig. 1.2, doubling
of real user estimates improves performance. (Doubling is a legitimate scheduling optimization as
will be discussed in Sec. 3.9.) Nevertheless, such understandings can have only limited applica-
bility for real systems that employ real user estimates. Importantly, a statement like “inaccuracy
improves performance” is a misleading oversimplification:real inaccuracy is actually tightly cor-
related with degraded performance, as will be exemplified next.

Modality Human users do not choose estimates that are uniformly distributed between the real
runtime and its multiple with some value, but rather repeatedly use the same “round” estimates (5
minutes, 1 hour etc). Indeed, we find that 90% of the jobs use the same 20 “round” values (see
Chapter 5), a fact that explains the staircase-like CDF curves shown in Fig. 1.14 (page 22). As
noted in the associated table, a value that always enjoys immense popularity isEmax (the maximal
estimate allowed), used by 10-27% of the jobs, which typically makes it the most popular esti-
mate. This is probably due to a combination of users lacking the ability to provide good estimates,
along with the strict policy of backfill schedulers to kill underestimated jobs. (Nevertheless, even
when this policy is not enforced, the improvement in the quality of user estimates is apparently
negligible [93], which means the former argument is most likely more detrimental.)

Emax’s popularity has dire implications on performance. To understand why, consider an ex-
treme case in whichall jobs useEmax as their estimate. We claim that in such a case, backfilling
activity (as shown in Fig. 1.1, page 5) completely stops. Theproof’s outline is the following. The
reservation of the first queued job is computed based on estimated termination times of currently
running jobs, and these will all occur beforeEmax time, by definition. Hence, the reservation it-
self will occur beforeEmax time, and therefore backfilling holes (from the present timeuntil the
reservation) are always smaller thanEmax. Since we assume all estimates of waiting jobs are ex-
actlyEmax, we get that none will fit the holes in the schedule. The consequence is that scheduling
largely reverts to plain FCFS, resulting in a serious performance degradation. (The only remaining
backfill activity is on the expense of the “extra” nodes [108], as shown in Fig. 3.14.)

Previous studies have neglected to takeEmax into account. For example, it has been conjectured
that the connection between longer execution time and better accuracy shown in Fig. 1.15 (page
22) is because the more a job progresses in its computation, the grater its chances become to reach
successful completion [20]. But the reason is actually muchmore prosaic: since (1)Emax is an
upper bound on estimates, and (2) backfilling insures estimates are bigger than runtimes, we have

runtime ≤ estimate ≤ Emax

Thus, as runtimes get bigger (closer toEmax), the accuracy fraction (= runtime
estimate

) converges to 1.
Further, the various peaks in Fig. 1.15 are due to other popular estimates (smaller thanEmax)

50 Solving the Mystery of Why Increased Inaccuracy May Help

and the manyunderestimatedjobs that used them: as these jobs are killed upon reaching their
estimates, they have 100% accuracy. But many other jobs thatuse these popular values are in fact
significantlyoverestimated. The problem is that the scheduler has no way to distinguish between
such jobs, in contrast to when thef -model is used. To clarify, consider a scheduler that explicitly
favors shorter jobs for backfilling [174, 15, 156] and must work with inaccurate estimates. If these
estimates nevertheless result in a relatively correct ordering of waiting jobs (as would happen with
the f -model), performance can dramatically improve (up to an order of magnitude according to
[15]). However, if estimates are modal (as generated by realusers), many jobs look the same
in the eyes of the scheduler, which consequently fails to prioritize them correctly, which means
performance deteriorates. As shown earlier, heel-and-toedynamics nudge a FCFS-based scheduler
towards SJFness, and therefore the same argument applies. Further, an estimate distribution that
is dominated by only a few monolithic modes (Emax and others) negatively effects performance,
because less variance among waiting jobs means less opportunities for the scheduler to exploit
existing holes (with various sizes) for backfilling.

Enforcing an Upper Bound on Estimates The bottom line is that if one wants to model in-
creasing user inaccuracy, one should focus on the modality of user estimates. For example, 10%
of the jobs usingEmax is an optimistic scenario relative to 20%, which in turn is more optimistic
than 30%, etc. Modeling increased inaccuracy by gradually associating more jobs withEmax is
certainly more realistic than using the vanillaf -model. Fortunately,Emax can be easily incorpo-
rated within thef -model if instead of using artificial estimates as is, we truncate them to beEmax

in case they are bigger. Namely, if the artificial estimate ise, we instead usemin(e, Emax). Let
this be denoted as thetruncatedf -model. This model has the property that biggerf values imply
more jobs associated withEmax.

Fig. 3.15 shows the results. The truncation has negligible impact for very smallf values, be-
cause at this points very few artificial estimates exceedEmax. The common trend is therefore
of improved performance, similarly to the vanillaf -model. Truncation gradually becomes the
dominant factor asf increases and so the trend is reversed. The difference between the truncated
(Fig. 3.15) and vanilla (Fig. 3.1) models whenf goes to infinity is that the ascending part of the lat-
ter never4 intersects the curves associated with real user estimates (verified till f=10,000), whereas
the former always does. At the intersection point, the truncated model is successful in “capturing
the badness” of the real estimates. Thus, with big enoughf , the behavior of the truncated model
coincides with our claim above that performance degrades ifinaccuracy is increased by making
the estimate distribution more modal.

An Accurate Model While the truncatedf -model is more realistic than the vanilla one, its output
is still fundamentally different from the real thing. A key difference is that only one mode is created
(at Emax), whereas real estimates exhibit several modes (Fig. 1.14,page 22). Indeed, theEmax

mode is the most influential, but other modes are also essential in that they significantly contribute
to the overall observed effect of bad performance in the faceof real user estimates. Further, the
Emax mode as created by the model is poorly constructed: it consists of long jobs only (with big
enough runtimes such that multiplying them withF results in estimates bigger thanEmax). In
reality, many short jobs are estimated by users to runEmax. Of these, most notable are jobs that
fail on startup. Thus, even with the truncated model, the scheduler can still identify shorter jobs
better than when real estimates are employed (until a certain F).

4With the exception of BLUE/wait.

3.9 Practical Implications 51

 250

 300

 350

 400

 450

 0
.1 1 1
0

SDSC

w
ai

t [
m

in
ut

es
]

 18

 20

 22

 24

 26

 0
.1 1 1
0

 1
00

CTC

 90

 100

 110

 120

 130

 0
.1 1 1
0

KTH

 100
 110
 120
 130
 140
 150
 160

 0
.1 1 1
0

BLUE

 60

 80

 100

 120

 140

 0
.1 1 1
0

 1
00

f (badness factor; log scale)

b.
 s

lo
w

do
w

n

real
f=0

random
90% confidence

deterministic
 3

 4

 5

 6

 7

 0
.1 1 1
0

 1
00

 1
00

0

 40

 60

 80

 100

 120

 0
.1 1 1
0

 1
00

 25

 30

 35

 40

 45

 0
.1 1 1
0

 1
00

trace intersectionf
wait b. sld

SDSC 4.77 24.50
CTC 29.82 376.09
KTH 8.36 124.35
BLUE 6.68 47.63

Figure 3.15:Performance results obtained with the truncatedf -model (compare with Fig. 3.1). The table
specifies the intersection point between curves associatedwith the “random” model and those associated
with real estimates. (Slight differences exist between results associated with real user estimate of the vanilla
and the truncated models. This is due to runtimes bigger thanEmax that unexplainably exist in the original
logs and were truncated to make sure they are not bigger than the associated estimates.)

For these reasons, we find ourselves in an undesirable situation where each trace/metric com-
bination requires a differentf to obtain performance results comparable to that of the realthing
(table at right of Fig. 3.15). This serious drawback is contrasted with the model’s simplicity and
ease of implementation and use. We therefore view it as the “quick and dirty” substitute for the
vanilla version, namely, if faced with the choice of using either one of them, we strongly support
the truncated version. It is our opinion that while it is not perfect, it is also not “garbage”.

In general, however, we advocate using the more sophisticated estimate model developed in
Chapter 5, instead of thef -model variants. This chapter serves in part as motivation.The input
of our new model isEmax and optionally the percent of associated jobs.5 The optional argument
allows to gradually increase inaccuracy in a truly realistic manner. The output of the new model is
a series of modes, where each mode is a pair consisting of an estimate value and the percent of jobs
that use it (twenty of which cover 90% of the jobs). This meansthat in contrast to common prac-
tices, estimates are not generated on a per-job basis, but rather, collectively, before hand. Thus, our
model also provides a way to map the generated distribution onto a set of jobs with predetermined
runtimes, such that each job’s assigned estimate is equal toor bigger than its runtime, as required
by the backfilling rules. The model is available for downloadat [155], and was verified to produce
results that are almost identical to the real thing [157] (Chapter 5).

3.9 Practical Implications

Our results so far that were obtained under thef -model have mostly a theoretical value, because
we are multiplying completely accurate runtimes and this information is normally not available
a-priori to the scheduler. Nevertheless, the results do have practical implications, both in terms of
system design and implementation, and in terms of system evaluation.

It turns out that our understandings regarding the act of multiplying prefectestimates (= run-

5We show that the dissimilarity between estimate distributions of different traces is largely embodied in the percent
of jobs that useEmax as their estimate; the distributions are otherwise remarkably similar.

52 Solving the Mystery of Why Increased Inaccuracy May Help

 0

 0.1

 0.2

 0.3

 0.4

 0 1 2 3 4 5

C
D

F

abs. accuracy [minutes]

SDSC
CTC
KTH

BLUE

Figure 3.16:CDF of absolute accuracy (difference
between estimate and actual runtime of jobs).

SDSC CTC KTH BLUE
0.47 0.49 0.75 0.58

Figure 3.17:Correlation between runtimes and es-
timates.

times) also hold when multiplyingreal estimates, as were given by users. Intuitively, this is so
because a non-negligible portion of the jobs reach their estimates and are killed by the system,
which leads to 100% accuracy for such jobs (peaks in Fig. 1.15, page 22). Further, despite the
popularity ofEmax, most estimates are nonetheless rather short (Fig. 1.14, page 22), and since
estimates serve as runtime upper bounds then jobs with shortestimates are guaranteed to indeed
be short. In this respect,relativeaccuracyr

e
, can be less important thanabsoluteaccuracye − r

(actual time difference between an estimate and the associated runtime). Fig. 3.16 shows the CDF
of absolute accuracy, which is zero for 2-10% of the jobs, less than one minute for 8-20%, and
less than five minutes for 15-40%. Tab. 3.17 summarizes the correlation between runtimes and es-
timates, which is indeed non-negligible. The bottom line isthat user estimates are, to some extent,
similar to runtimes. It is therefore not far fetched to expect that the results of multiplying them
would be similar too.

UsingXreal andXperf to denote the cases when multiplying real and perfect estimates, respec-
tively, let us now compare between the two. (Xperf relates to the deterministicf -model.) Fig. 3.18
shows most of the backfilling related metrics that we have used so far, as a function off , for
the two alternatives (note that the X-axis is logarithmically scaled and spans 0–10000). Indeed,
in all cases the trends are clearly qualitatively similar, albeit have quantitative differences, to be
discussed next.

Better Estimates Yield Favoring of Shorter Jobs Specifically, in Fig. 3.18a we can see that
for smallf values (0–10), there is less backfilling activity withXperf , though it rapidly becomes
similar to that ofXreal for biggerfs. Runtimes of backfilled jobs behave similarly (Fig. 3.18b), but
the initialf domain whereXperf backfilled jobs are shorter stretches beyondf=10. The situation is
different when considering wild backfilling (Figs. 3.18c-d), as there is a difference across the entire
f range: theXperf wild jobs are shorter, their rate grows faster and is asymptotically bigger. This
means more and smaller heel-and-toe “steps”, implying a temporal preference ofXperf to backfill
shorter jobs sooner. In other words, even though the rate andaverage runtime of all backfilled
jobs (wild+mild) is usually asymptotically comparable forXreal andXperf (Figs. 3.18a-b), with
Xperf shorter jobs wait less before being backfilled. Indeed, by Fig. 3.18e,Xperf SJFness is clearly
higher, and by Figs. 3.18f-g, this improved SJFness is not atthe expanse of the “delayed” jobs, as
their rate and delay can be similar, higher, or lower forXreal or Xperf , depending on the trace.

Better Estimates Yield Increased Fairness Note that even though there can be more delayed
jobs withXperf (Fig. 3.18f; CTC/KTH), the delay can be longer (Fig. 3.18g; SDSC/BLUE), and
there are certainly more wild jobs (Fig. 3.18c; all logs), the schedule with perfect estimates is
nevertheless distinctively more fair (Fig. 3.18h). This isso because the “delay” related metrics
are computed with respect to the single reservation EASY makes, which is based on inaccurate

3.9 Practical Implications 53

 66

 68

 70

 72

 74 SDSC

ba
ck

fil
l r

at
e

[%
]

 25
 26
 27
 28
 29
 30 CTC

 58

 60

 62

 64

 66 KTH

 65

 70

 75

 80

(a
)

BLUE

 80

 85

 90

 95

 100

ru
nt

im
e

of
ba

ck
fil

le
d

[m
in

]

 155
 160
 165
 170
 175
 180

 100
 102
 104
 106
 108
 110
 112

 45

 50

 55

 60

(b
)

 1
 2
 3
 4
 5
 6

w
ild

 b
ac

kf
ill

 [%
]

 0.5

 1

 1.5

 2

 2.5

 1

 2

 3

 4

 5

 1.5
 2

 2.5
 3

 3.5
 4

(c
)

 50
 100
 150
 200
 250
 300
 350

ru
nt

im
e

of
 w

ild
-

ba
ck

fil
le

d
[m

in
]

 150

 200

 250

 300

 350

 100
 150
 200
 250
 300
 350

 50
 100
 150
 200
 250
 300
 350

(d
)

 38

 40

 42

 44

 46

S
JF

ne
ss

 [%
]

 77
 78
 79
 80
 81
 82

 46

 48

 50

 52

 54

 42
 44
 46
 48
 50
 52

(e
)

 0.8
 1

 1.2
 1.4
 1.6
 1.8

de
la

ye
d

ra
te

 [%
]

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.6
 0.8

 1
 1.2
 1.4
 1.6

 0.75
 0.8

 0.85
 0.9

 0.95
 1

(f
)

 0
 50

 100
 150
 200
 250

de
la

y
[m

in
]

 0

 20

 40

 60

 0

 50

 100

 150

 200

 0

 50

 100

 150

 200

(g
)

 0

 20

 40

 60

 80

10410310210110010-1

f (badness factor; log)

un
fa

irn
es

s
 [m

in
]

real f=0
real f>0

deterministic f=0
deterministic f>0

 0.5
 1

 1.5
 2

 2.5
 3

 3.5

10410310210110010-1
 0
 5

 10
 15
 20
 25

10410310210110010-1
 0

 10

 20

 30

10410310210110010-1

(h
)

Figure 3.18:Comparing the impact of multiplying real and perfect estimates on various backfilling aspects.

54 Solving the Mystery of Why Increased Inaccuracy May Help

 260
 280
 300
 320
 340
 360
 380 SDSC

w
ai

t [
m

in
ut

es
]

 16

 18

 20

 22

 24 CTC

 90
 95

 100
 105
 110
 115 KTH

 90

 100

 110

 120

 130 BLUE

 60
 70
 80
 90

 100
 110

10410310210110010-1

f (badness factor; log)

b.
 s

lo
w

do
w

n

real f=0
real f>0

determ. f=0
determ. f>0 3

 3.5

 4

 4.5

 5

10410310210110010-1
 60

 70

 80

 90

10410310210110010-1
 20

 25

 30

 35

 40

10410310210110010-1

Figure 3.19:Comparing the impact of multiplying real and perfect estimates on performance metrics.

estimates. In contrast, the unfairness metric quantifies fairness in absolute terms, relative to a
theoretical schedule with perfect information in which alljobs get a reservation and are therefore
guaranteed never to be delayed due to any later arriving jobs. Consequently, a job may very well
be considered asnot being delayed, while at the same time be treated unfairly. When taking all
this “unfairness” into account,Xperf is clearly more fair thanXreal.

Better Estimates Yield Better Performance The performance results are shown in Fig. 3.19.
They are rather noisy due to the inherent noisy nature of the deterministic models. Nevertheless,
there are two immediate observations that can be made (theseare probably the more important
findings of this chapter). The first is that, like with perfectestimates, making real estimates less
accurate by multiplying them with a factorF > 1 usually improves performance. In combination
with Fig. 3.18h (“unfairness”) this reinforces Finding 3.7that multiplying estimates by a factor
means trading off fairness for performance.

The second observation is that in contrast to common belief,better accuracy does in fact im-
prove performance in the sense that the more accurate the initial (to be multiplied) estimates are,
the better the resulting performance becomes. As seen earlier, in no way does the act of multiplying
emulate the inaccuracy exhibited by real users. Rather, it simply adds a certain “SJFness” to the
schedule through heel and toe dynamics. Consequently, multiplying is, and should be viewed as,
not more than a scheduling “optimization”. Indeed, it is both legitimate and practical to configure
the scheduler to boost performance at the expense of fairness by means of multiplying estimates.
Thus, we contend that artificial inaccuracy (multiplying) is aproperty of the scheduler, whereas
“real” inaccuracy is a property of users. The latter manifests itself completely differently and like-
wise has completely different consequences in terms of performance (Sec. 3.8). The problem is
that up till now researchers confused between the two types of inaccuracies. This central argument
is summarized in Tab. 3.2 and its bottom line is that

FINDING #3.8

The popular statement that “increased inaccuracy improvesperformance” is afalse mis-
conception, originating from a confusion between a scheduling strategy and the nature
of users. The correct statement is that increased inaccuracy worsenperformance, but that
the scheduler can boost it at the expense of fairness by multiplying the estimates with
some factor.

3.10 Non-FCFS Backfilling 55

source of property of nature of effect on effect on
inaccuracy inaccuracy performance fairness

1 real users modal & favorsEmax worsened worsened
2 artificial (f) scheduler promotes heel & toe improved worsened

Table 3.2:Comparing real and artificial sources of inaccuracy.

Conclusion The implication of our findings on the design and implementation of systems is ex-
posing the performance-fairness tradeoff that may now be judicially exploited by system designers.
The implication of our findings on systems evaluation is revealing that analyses which evaluated
the impact of inaccurate estimates on performance were methodologically erroneous if they relied
on thef -model, as multiplying by a factor is (1) actually a scheduling strategy that is (2) anything
but representative of actual users. A correct evaluation should be done as specified in Sec. 3.8.

3.10 Non-FCFS Backfilling

The results presented in this chapter were all obtained under the EASY scheduler, which is the most
popular supercomputer default setting to date [37]. Nonetheless, many other backfilling configu-
rations were proposed and evaluated (see Sec. 1.1.2), and accordingly, contemporary schedulers
offer a wide range of tunable policies. The question is therefore whether the results presented here
are applicable to other scheduling schemes. In this context, in relation to the initial observation by
Mu’alem and Feitelson that multiplying helps [47, 108], Leeand Snavely argued that

MUST-REPROVE CLAIM

“The key point is that Mu’alem and Feitelson’s result only applies to the specific algo-
rithms they studied, and it is necessary to re-prove (or disprove) their result for each new
algorithm individually” [94].

We contend that the situation is not so bleak and that a generalization is possible.

SJBF Let us first consider the question of what will happen if the scheduler is modified such that
traversing the wait-queue in search of the next job to backfill is done in SJF order, instead of FCFS.
(We introduce this scheduler in Chapter 4 and name itSJBF: Shortest-Job Backfilled First [156]).
It would seem that such a scheduling scheme of explicitly favoring shorter jobs will invalidate the
heel-and-toe rationale of doing it implicitly. One might therefore expect SJBF performance to be
independent off . Nevertheless, as shown in Fig. 3.20, the results are qualitatively rather similar to
that of plain EASY (compare with Fig. 3.19): A positive badness factor usually yields improved
performance for the real and deterministic models, even though slowdown is less sensitive tof
under the latter. Likewise, the random model yields the familiar V and L shapes we have previously
encountered (compare with Fig. 3.1). The reason for this qualitative similarity is that the heel-and-
toe dynamics occur even under SJBF. This is true because SJBFreservations are still allocated in
FCFS order and therefore the same exact mechanism of repeatedly delaying the first queued job
applies. In quantitative terms, SJBF is unsurprisingly better than EASY, because of the increased
preference of shorter jobs.

56 Solving the Mystery of Why Increased Inaccuracy May Help

 250

 300

 350

 400

10410310210110010-1

SDSC

w
ai

t [
m

in
ut

es
]

 14
 15
 16
 17
 18
 19
 20

10410310210110010-1

CTC

 80
 85
 90
 95

 100
 105

10410310210110010-1

KTH

 70
 80
 90

 100
 110
 120

10410310210110010-1

BLUE

 50
 60
 70
 80
 90

 100

10410310210110010-1

f (badness factor; log)

b.
 s

lo
w

do
w

n

real
random
determ. 2

 2.5

 3

 3.5

 4

10410310210110010-1
 40

 50

 60

 70

 80

10410310210110010-1
 12
 14
 16
 18
 20
 22

10410310210110010-1

Figure 3.20:Performance of the SJBF scheduler, as a function off . As usual, the straight horizontal lines
show the performance when using the exact corresponding values, without multiplying them.

 260
 280
 300
 320
 340
 360

10410310210110010-1

SDSC

w
ai

t [
m

in
ut

es
]

 14
 15
 16
 17
 18
 19
 20

10410310210110010-1

CTC

 80
 85
 90
 95

 100
 105

10410310210110010-1

KTH

 60

 80

 100

 120

 140

10410310210110010-1

BLUE

 50
 60
 70
 80
 90

 100

10410310210110010-1

f (badness factor; log)

b.
 s

lo
w

do
w

n

real
random
determ. 2

 2.5
 3

 3.5
 4

 4.5

10410310210110010-1
 40

 50

 60

 70

 80

10410310210110010-1
 10
 15
 20
 25
 30
 35
 40

10410310210110010-1

Figure 3.21:Performance of the LXF&W scheduler, as a function off .

LXF&W Another non-FCFS scheduling variant for improving performance as well as fairness is
LXF&W (Largest eXpansion Factor and Wait time), proposed by Chiang and Vernon [19]. Under
this discipline, the priority of a job is given byw+e

e
+ 0.02w, wheree is the job’s runtime estimate

andw is its current wait time.6 The left term is the estimated “expansion factor”, a.k.a. slowdown.
This component makes sure that shorter jobs are initially favored, due to having the estimate as the
denominator. However, in the interest of fairness, it growsproportionally tow as time elapses, a
trend that is further intensified by the addition of0.02w. Fig. 3.21 shows the performance results
of LXF&W. Surprisingly, instead of being L-shaped, the “real” and “deterministic” curves are U-
shaped and usually intersect the associated straight line corresponding tof=0 (somewhat similarly
to the results obtained with the truncated model shown in Fig. 3.15). The solution to this mystery
lies in the definition of the LXF&W priority function, which when using e.g. the deterministic
f -model is actually

6Note that (1) bothe andw are expressed in hours, which is significant due to the inclusion of 0.02w in the
LXF&W priority, and (2) due to thew component, the priority isdynamicin that it changes over time (recomputed for
each scheduling decision).

3.11 Conclusions 57

w + e

e
+ 0.02w = 1 +

w

e
+ 0.02w = 1 +

w

r · f
+ 0.02w

wherer denotes the runtime. Whenf goes to infinity, this priority obviously becomes dominated
by the rightmost term, which means LXF&W converges to plain EASY, as ordering the queue
by wait- or arrival-time is completely equivalent. The U shape is therefore explained as follows:
The initial performance improvement (left side of the U) is as usual the result of heel-and-toe
dynamics, as similarly to other backfilling algorithms, jobs that wait and get a reservation under
LXF&W are too both long and wide.7 At the same time, for smallerfs, LXF&W is significantly
better than EASY in terms of absolute numbers, due to its explicit preference of shorter jobs (com-
pare Fig. 3.21 to 3.19, for example, LXF&W’sf=0/KTH/deterministic/slowdown is 50, whereas
EASY’s is 71). Consequently, asf increases, the convergence of LXF&W to EASY becomes
the dominant effect, rapidly overshadowing the initial dominance of heel-and-toe dynamics while
the significant performance gap between the two algorithms gradually closes. In other words,
LXF&W is positioned somewhere between LXF and EASY, such that with smallerfs it is closer
to the former and with biggerfs to the latter. Other than that, our findings so far still apply.

Generalizing The bottom line is that the three representatives of the backfilling algorithms class
(EASY, SJBF, and LXF&W) have reacted similarly when subjected to estimates that were multi-
plied by a factor. Based on this observation and on our current understanding of the dynamics of
backfilling, we conclude that

FINDING #3.9

As long as reservations are allocatedto promote fairness, then multiplying of estimates
will result in a heel-and-toe effect whereby shorter jobs exploit the wider scheduling
holes for backfilling, at the expense of longer/wider jobs. This is completely orthogonal
to the specific ordering in which backfilling activity is conducted or reservations are
allocated.

Only if reservations are allocated in a way that is unrelatedto FCFS fairness (e.g. in SJF
order) or are categorically eliminated (e.g. pure SJF) can we expect the impact of multiplying to
be different.

3.11 Conclusions

For the conclusion of this chapter, we refer the reader to Section 7.1 (page 122).

7Their average runtime, (real) user estimate, and size are 4 hours, 7.5 hours, and 17% of the machine’s size,
respectively. Thus, multiplying all estimates by a factor helps delay such job in favor of shorter ones.

58 Backfilling With System-Generated Predictions

Chapter 4

Backfilling With System-Generated
Predictions Rather Than User Runtime
Estimates

4.1 Introduction

Context This chapter was fully introduced in Sec. 1.2.3 (page 13) andSec. 1.3.3 (page 24),
which also conducted a detailed survey of related work. Briefly, recall that backfilling kills jobs
that exceed their estimates, so as not to violate subsequentcommitments. This policy suppos-
edly provides motivation for users to supply accurate estimates, because jobs would have a better
chance to backfill if their estimates are tight, but would be killed if they are too short. Neverthe-
less, estimates are inaccurate despite this incentive, as depicted in Fig. 1.4 (page 13), which shows
a uniform-like accuracy histogram when only considering jobs that have terminated successfully,
meaning any level of accuracy is almost equally likely to happen. A possible reason is that users
find the motivation to overestimate — so their jobs will not bekilled — much stronger than the
motivation to provide accurate estimates and help the scheduler to perform better packing. But
a recent study indicates that users are actually quite confident of their estimates, and most prob-
ably would not be able to provide much better information [93]. As mentioned in the previous
chapter, estimates also embody a characteristic that is particularly harmful for backfilling: they
are inherently modal, as users tend to choose “round” estimates (e.g. one hour) resulting in 90%
of the jobs using the same 20 values; worse, the most popular estimate is typically the maximal
allowed. This significantly limits the scheduler’s abilityto exploit existing holes in the schedule
because all jobs appear the same, and often too long. The combination of inaccuracy and modality
deteriorates performance (Fig. 1.2, page 9; compare “real”to “perfect”) and motivates searching
for an alternative.

The alternative The search for better estimates has focused on using historical data in an attempt
to predict the future, based on the fact users of parallel machines tend to repeatedly do the same
work (Fig. 1.6, page 14). Suggested prediction schemes include using the top of a 95% confidence
interval of job runtimes [62], a statistical model based on the (usually) log-uniform distribution
of runtimes [31], using the mean plus 1.5 standard deviations [108], and more sophisticated tech-
niques [62, 136, 83, 86, 96]. Despite all this work, production backfill schedulers in actual use
still employ user estimates rather than history-based system-generated predictions, due to three

4.1 Introduction 59

difficulties: (1) a technicality, (2) a usability issue, and(3) a misconception, to be further discussed
next.This chapter is about refuting or dealing with these difficulties.

Technicality The core problem is that it’s simply impossible to naively replace estimates with
system predictions, as these might turn out too short leading to premature killing of jobs according
to the backfilling rules. Suggested solutions have includedignoring the problem, using preemption,
employing test runs, or replacing backfilling by shortest job first (SJF) [62, 174, 115, 19, 15,
90].1 None of these retain the appeal of plain EASY. Mu’alem and Feitelson checked the extent
of the underprediction phenomenon, showed it to be significant, and concluded that “it seems
using system-generated predictions for backfilling is not afeasible approach” [108] (denoted the
“unfeasibility claim” in Chapter 1). However, as we will show, solving this problem is actually
quite simple: user estimates must serve as kill times (part of the user contract), while system
predictions can be used for everything else.

Usability Previous prediction techniques have assumed that an important component is to iden-
tify the most similar jobs in the history, and base the predictions on them. To this end they em-
ployed complex algorithm including various statistical methods [31, 136, 97], genetic algorithms
[136], instance based learning [83], and rough set theory [86]. In addition to their unwarranted
computational overhead and complexity, most algorithms require a training period which can be
significant, e.g. Smith et al. trained their algorithm usingan entire trace before evaluating it (on
the very same trace) [138]. In contrast, in this chapter we show that trivial algorithms (e.g. using
the average runtime of two preceding jobs by the same user) can significantly improve the perfor-
mance as well as the accuracy of the predictions themselves.We preferred using a simple predictor
so as to focus on how predictions are integrated into backfilling schedulers, and not on the predic-
tion algorithm itself. However, our evaluations indicate that this was a fortuitous choice, and that
recency is actually more important than similarity when using historical data.

Misconception As noted above, studies regarding the impact of inaccuracy have found that it
doesn’t effect or even improves performance [146, 47, 169, 170, 34, 64], which has led to the
suggestion that estimates should be doubled [174, 108] or randomized [115], to make them even
less accurate. Doubling indeed exhibits remarkable improvements, which supposedly negates the
motivation to improve the quality of estimates, deeming them as “unimportant”. We show this
to be false in three respects. First, we have already noted that while doubling original estimates
helps, doubling of accurate estimates is even better (Fig. 1.2, page 9; compare “realX2” to “per-
fectX2”). In this chapter we show that doubling of good predictions is similar, namely, that the
more accurate the original predictions are, the more the doubling is effective. Second, Chapter 3
has shown that the reason doubling helps is due to the “heel and toe” dynamics (Sec. 3.4), which
trades off FCFS-fairness for performance by implicitly nudging the systems towards a more SJF-
like schedule. (Incidentally, most studies dealing with predictions indicate that increased accuracy
improves performance when shorter jobs are favored [62, 138, 174, 115, 15].) This chapter shows
this tradeoff can be largely avoided by explicitly using ashortest job backfilled first(SJBF) back-
filling order. By still preserving FCFSreservation-order, we maintain EASY’s appeal, enjoying
a fair scheduler that nevertheless backfills effectively. The third fallacy in the “inaccuracy helps”
myth is that it implies predictions are only important for backfilling, even though they are used
in other contexts as well (e.g. advance reservations for grid allocation and co-allocation, shown to
considerably benefit from better accuracy [83, 137, 96]; or the scheduling ofmoldablejobs that

1Smith et al. didn’t specify how they utilized system predictions for backfilling [138].

60 Backfilling With System-Generated Predictions

may run on any number of nodes [31, 138, 22], mandating the system to decide whether waiting
for more nodes to become available is preferable over running immediately on what is currently
available).

Naming Notation In our terminology, the term “estimate” always refers to theruntime approx-
imation that was provided by the user upon job submittal. Theterm “prediction”, however, is
overloaded. In its general meaning, prediction refers to the value that the system eventually uses
for backfilling. When no system-generated predictions are employed, estimates and predictions
are one and the same (e.g. for vanilla EASY that directly utilizes user estimates for backfilling).
But when system-generated predictions come into play, thisis no longer the case, and predictions
and estimates may obviously differ. The second (more frequent) use of “prediction” is shorthand
for “system-generated predictions”. The ambiguity is always resolved by the context in which the
term is used.

Measuring Accuracy The measure ofaccuracyis the ratio of the real runtime to the prediction.
If the prediction is larger than the runtime, this reflects the fraction of predicted time that was
actually used. But as noted, predictions can also be too short. Consequently, to avoid under- and
over-prediction canceling themselves out (when averaged), we define

accuracy =

{
1 if P = Tr
Tr/P if P > Tr

P/Tr if P < Tr

whereP is the prediction; the closer the accuracy is to 1 the more accurate the prediction. This is
averaged across jobs, and also along the lifetime of a singlejob, if the system updates its prediction.
In that case a weighted average is used, where weights reflectthe relative time that each prediction

was in effect. More formally, given a jobJ , its weighted accuracy is
∑N

i=1 Ai ·
(

Ti − Ti−1

TN − T0

)

where

T0 andTN areJ ’s submission and termination time, respectively, andAi is the accuracy of the
prediction ofJ that was in effect from timeTi−1 to timeTi.

Roadmap The rest of the chapter is structured as follows. Sec. 4.2 explains how prediction-
based backfilling is done and demonstrates the improvementsin terms of average performance
and accuracy. Sec. 4.3 deals with “predictability”, namely, how do reservations relate to actual
start times. Sec. 4.4 shows the generality of our techniquesby applying them to schedulers other
than EASY. We then discuss the connection between accuracy,performance, and predictability
(Sec. 4.5). And finally, we investigate the optimal parameter settings for our prediction algorithms,
and contrast the common approach of favoring similar jobs when generating predictions, with our
approach of favoring recent ones (Sec. 4.6).

4.2 Incorporating Predictions into Backfilling Schedulers

The simplest way to incorporate system-generated predictions into a backfilling scheduler is to
use them in place of user-provided estimates. The problem ofthis approach is that aside from
serving as a runtimeapproximation, estimates also serve as the runtimeupper-bound(kill-time).
But predictions might happen to be shorter than actual runtimes, and users will not tolerate their
jobs being killed just because the system speculated they were shorter than the user estimate.
So it is not advisable to just replace estimates by predictions. Previous studies have dealt with

4.2 Incorporating Predictions into Backfilling Schedulers 61

trace wait [minutes] b. slowdown accuracy[%]
EASY EASY EASY EASY EASY EASY

PRED PRED PRED

SDSC 363 757+109% 99 233 +136% 32 55 +70%
CTC 21 29 +38% 4.6 7.0 +53% 39 56 +44%
KTH 114 968+748% 90 746 +729% 47 49 +4%
BLUE 130 1324+920% 35 439+1141% 31 55 +78%

avg. +454% +515% +49%

Table 4.1:Average wait time (minutes), bounded slowdown, and accuracy for vanilla backfilling with user
estimates (EASY), and when these are replaced by our simple system-generated predictions (EASYPRED).
Shaded columns give changes relative to EASY in percents. These are always positive, which is a good
thing for accuracy (as now it is higher), but bad for the othermetrics (bigger wait period and slowdown).

this difficulty either by eliminating the need for backfilling (e.g. using pure SJF [62, 138]), by
employing test runs [115, 15, 90], by assuming preemption isavailable (so jobs that exceed their
prediction can be stopped and reinserted into the wait queue[62, 19]), or by considering only
artificial estimates generated as multiples of actual runtimes (effectively assuming underprediction
never occurs) [174, 115, 15, 141, 142]. As mentioned earlier, Mu’alem and Feitelson noted this
problem, and investigated whether underprediction does infact occur when using a conservative
predictor (average of previous jobs with the same user / size/ executable, plus11

2
times their

standard deviation) [108]. They found that∽20% of the jobs suffered from underprediction and
would have been killed prematurely by a backfill scheduler. They therefore suggested that system-
generated predictions for backfilling is not a feasible approach.

4.2.1 Separating the Dual Roles of Estimates

The key idea of our solution is recognizing that the underprediction problem emanates from the
dual role an estimate plays: both as a prediction and as a kill-time. We argue that these should
be separated. It is legitimate to kill a jobonce its user estimate is reached, but not any sooner;
therefore user estimates should only retain their role as kill-times. All the other considerations of
a backfilling scheduler should be based upon predictions, which can potentially be more accurate.
There is no technical problem preventing us from running anybackfill scheduler using predictions
instead of estimates. The only change is that a running job isnot killed when its prediction is
reached; rather, it is allowed to continue, and is only killed when it reaches its estimate. This
entirely eliminates the problem of premature killings.

The system-generated prediction algorithm we use is very simple. The prediction of a new job
J is set to be the average runtime of the two most recent jobs that were submitted by the same
user prior toJ and that have already terminated. If no such two jobs exist wefall back on the
associated user estimate (other ways to select the history jobs are considered in Sec. 4.6). If a
prediction turns out higher than the job’s estimate it is discarded, and the estimate is used, because
the job would be killed anyway when it reaches its estimate. Implementing this predictor is truly
trivial and requires about a dozen lines of code: saving the runtime of the two most recent jobs in
a per-user data structure, updating it when more recently submitted jobs terminate, and averaging
the two runtimes when a new job arrives. Nevertheless, as shown below, this simple predictor is
enough to significantly improve the accuracy of the data usedby the scheduler, which is sufficient
for our needs in this chapter.

62 Backfilling With System-Generated Predictions

original prediction
reservation based on

Time original prediction
reservation based on

acutal termination)
user estimate (and

N
od

es

scheduler’s optimistic view

original
prediction

what may happen

prediction
corrected

with corrected predictions

2
3
4

2
3
4

2
3 4

1 11 underprediction

Figure 4.1:Underpredicting the runtime of job 1 causes the scheduler tomake an early reservation for job
2 (left). This misconception prevents jobs 3 and 4 from beingbackfilled (middle). Correcting the prediction
once proved wrong enables the scheduler to reschedule the reservation and re-enables backfilling (right).

Tab. 4.1 shows the results of our experiment of running a system using original EASY vs. a
system in which estimates are replaced with our automatically generated predictions. The results
indicate a colossal failure. Both performance metrics (average wait and slowdown) consistently
show that using predictions results in severe performance degradation of up to an order of mag-
nitude (KTH’s wait time). This happens despite the improvedaccuracy of the predictions. The
first suspect of being responsible for the dismal results wasof course our ridiculously simplistic
prediction algorithm. However, as noted, even these simplepredictions are usually far superior to
the estimates supplied by users, and may almost double the average accuracy. Discovering the un-
derlying reason for the performance loss required a thorough investigation. Our in-depth analysis
revealed that the true guilty party isunderestimation, that is, cases in which a generated prediction
is smaller than the job’s actual runtime. This problem is addressed next.

4.2.2 Prediction Correction

By the rules of backfilling, a reservation computed based on user estimates will never be smaller
than the start time of the associated job, as estimates are runtime upper bounds.2 This is no longer
true for predictions, as they are occasionally too short. Atthe extreme, predictions might erro-
neously indicate that certain jobs should have terminated by now and thus their processors should
be already available. Assuming there aren’t enough processors for the first queued jobJ , this dis-
crepancy might lead to a situation whereJ ’s reservation is made for the present time, because the
scheduler erroneously thinks the required processors should already be available.

Note that the backfill window is between the current time (lower bound) and the reservation
(upper). When these are made equal, backfill activity effectively stops3 and the scheduler largely
reverts to plain FCFS, eliminating the potential benefits ofbackfilling (Fig. 4.1, left/middle). This
explains why our naive approach from above dramatically worsened performance, despite the im-
provement in average accuracy.

The solution is to modify the scheduler to increase expired predictions proven to be too short.
For example, if a job’s prediction indicated it would run for10 minutes, and this time has already
passed but the job is still running, we must generate a new prediction. The simplest approach is to
acknowledge that the user was smarter than us and set the new prediction to be the user’s estimate
(other approaches are explored later on). Once the prediction is updated, this affects reservations

2Apparently, this is not always the case in practice, as will shortly be described.
3The only remaining backfill activity is on the expense of the “extra” processors, which are the “leftover” after

satisfying the reservation for the first queued job, see Fig.3.14 (page 49).

4.2 Incorporating Predictions into Backfilling Schedulers 63

trace underestimated jobs
number %

SDSC 4,138 7.7%

CTC 7,174 9.3%

KTH 478 1.7%

BLUE 22,216 9.9%
 0

 0.2

 0.4

 0.6

 0.8

 1

 0
.0

1

 0
.1 1 1
0

 1
00

 1
00

0

 1
00

00

 1
00

00
0

C
D

F

runtime - estimate [minutes]

SDSC
CTC
KTH

BLUE

Figure 4.2:Left: up to 10% of the jobs have runtimes bigger than user estimates. Right: CDF of differences
between runtimes and estimates, of underestimated jobs. Most estimate violations are less than one minute.

for queued jobs and re-enables backfilling (Fig. 4.1, right). While this may undesirably delay the
reservations made for queued jobs, such delays are still bounded by the original runtime estimates
of the running (underpredicted) jobs.

On rare occasions prediction correction is necessary even beyond the estimate, as in real sys-
tems jobs sometimes exceed their estimates (Fig. 4.2, left). In most cases the overshoot is very
short (not more than a minute) and probably reflects the time needed to kill the job. But in some
cases it is much longer, for unknown reasons. Regardless of the exact reason, the prediction should
be extended to keep the scheduler up to date (independent of the fact the job should be killed, and
maybeis being killed). As most of these jobs only exceed their estimate by a short time, we enlarge
post-estimate predictions in a gradual manner: The first adjustment adds only one minute to the
old prediction. This will cover the majority of the underestimated jobs (Fig. 4.2, right). If this is
not enough, theith prediction correction adds15 × 2i−2 minutes (15min, 30min, 1h, 2h, etc.).

The results of adding prediction correction are shown in Tab. 4.2. This compares the origi-
nal EASY with a version that uses user estimates as predictions and adds prediction correction
(EASYPCOR), and a version that combines prediction correction with system-generated predic-
tions (EASY+). Note that while EASYPCOR employs user estimates as predictions, correction is
still needed to handle the underestimated jobs discussed earlier. Prediction-correction by itself has
only a marginal effect, because only a small fraction of the jobs are grossly underestimated. The
real value of prediction correction is revealed in EASY+, where system-generated predictions are
added: results show a significant and consistent improvement of up to 28% (KTH’s slowdown in
Tab. 4.2). This is an important result that shouldn’t be taken lightly. The fact that historical infor-
mation can be successfully used to generate runtime predictions is known for more than a decade
[48]. Our results in Tab. 4.2 demonstrate for the first time that this may be put to productive use
within backfilling schedulers, without violating the contract with users. Moreover, the overhead is
low, with predictions corrected only 0.56–0.63 times on average per job.

Note that obtaining the reported improvement is almost free. All one has to do is create pre-
dictions as the average runtime of the user’s two most recentjobs and set an alarm event to correct
those predictions that prove too short. Importantly, this does not change the way users view the
scheduler, allowing the popularity of EASY to be retained. Finally, note that this scheme signif-
icantly improves the average accuracy, which can be up to doubled (BLUE) and is stabilized at
60–62% across all four traces when using EASY+.

64 Backfilling With System-Generated Predictions

trace wait [minutes] b. slowdown accuracy[%] avg. corr.[±σ]
EASY EASY EASY

+
EASY EASY EASY

+
EASY EASY EASY

+
EASY EASY

+

PCOR all PCOR PCOR PCOR

SDSC 363 360 -1% 326 -10% 99 93 -6% 86 -13% 32 32 +0% 60 +87% 0.09±0.33 0.56±0.64

CTC 21 21 +0% 16 -26% 4.6 4.5 -2% 3.3 -27% 39 39 +0% 62 +61% 0.12±0.41 0.63±0.69

KTH 114 115 +1% 96 -16% 90 90 +1% 65 -28% 47 47 +0% 60 +28% 0.02±0.24 0.53±0.57

BLUE 130 128 -1% 102 -21% 35 36 +1% 26 -25% 31 31 +0% 61 +100% 0.13±0.48 0.60±0.69

avg. -0% -18% -2% -23% +0% +69% 0.09 0.58

Table 4.2:Average performance, accuracy, and overhead for schedulervariants. EASYPCOR adds pre-
diction correction (needed even when user estimates serve as predictions, as these are occasionally smaller
than runtimes). EASY+ further adds system-generated predictions, replacing estimates. As before, shaded
percents are changes relative to EASY; negative values are good for wait/slowdown; positive ones are good
for accuracy. Right most metric shows the per-job average prediction-correction number (± std. deviation).

4.2.3 Shortest Job Backfilled First (SJBF)

A well known scheduling principle is that favoring shorter jobs significantly improves overall
performance. Supercomputer batch schedulers are one of thefew types of systems which enjoy a-
priori knowledge regarding runtimes of scheduled tasks, whether through estimates or predictions.
Therefore, SJF scheduling may actually be applied. Moreover, several studies have demonstrated
that the benefit of accuracy dramatically increases if shorter jobs are favored [62, 138, 174, 115,
15, 131]. For example, Chiang et al. [15] show that when replacing user estimates with actual

runtimes, while ordering the wait queue by descending
√

Tw+Tr

Tr
+ Tw

100
, average and maximal wait

times are halved and slowdowns are an order of magnitude lower.4

Contemporary schedulers such as Maui can be configured to favor (estimated) short jobs, but
their default configuration is essentially the same as in EASY [37] (SJF is the default only in PBS).
This may perhaps be attributed to a reluctance to change FCFS-semantics perceived as being the
most fair. Such reluctance has probably hurt previously suggested non-FCFS schedulers, that
impose the new ordering as a “package deal”, affecting both backfilling and reservation order (for
example, with SJF, a reservation made for the first queued jobhelps the shortest job, rather than
the one that has been delayed the most). In contrast, we suggest separating the two.

Our scheme introduces a controlled amount of “SJFness”, butpreserves EASY’s FCFS nature.
The idea is to keep reservation order FCFS (as in EASY) so thatno job will be backfilled if it delays
the oldest job in the wait queue. In contrast, backfilling is done in SJF order, that is, Shortest Job
Backfilled First — SJBF. This is acceptable, as the first-fit essence of backfilling is a departure
from FCFS anyway. We argue that in any case, explicit SJBF is more sensible than “tricking”
EASY into SJFness by doubling [174, 108] or randomizing [115] estimates (see Sec. 4.5).

Results of applying SJBF are shown in Tab. 4.3. In its simplest version this reordering is used
with conventional EASY (i.e. using user estimates and no prediction correction). Even this leads
to typical improvements of 10–20%, and up to 42% (BLUE’s bounded slowdown).

Much more interesting is EASY++ which adds SJBF to EASY+ (namely combines system-
generated predictions, prediction correction, and SJBF).This usually results in double to triple

4Recall thatTw andTr are wait- and run-times. Short jobs are favored since the numerator of the first term rapidly
becomes bigger than its denominator. The second term is added in an effort to avoid starvation. We remark that this
priority is very similar to the LXF&W priority used in Chapter 3, which was proposed by the same researchers.

4.2 Incorporating Predictions into Backfilling Schedulers 65

trace wait [minutes] b. slowdown accuracy[%]
EASY EASY EASY

++
PERF ECT

++
EASY EASY EASY

++
PERF ECT

++
EASY EASY EASY

++
PERF ECT

++

SJBF SJBF SJBF

SDSC 363 361 -0% 327 -10% 278 -23% 99 87 -12% 70 -29% 58 -42% 32 32 +0% 60 +87%100 +211%
CTC 21 19 -10% 14 -33% 19 -10% 4.6 3.9-14% 2.9 -37% 2.8 -39% 39 39 +0% 62 +61%100 +158%
KTH 114 102-11% 95 -17% 91 -20% 90 73 -19% 57 -36% 50 -44% 47 47 +0% 61 +28%100 +111%
BLUE 130 102-21% 87 -33% 87 -33% 35 21 -42% 19 -47% 13 -64% 31 31 +0% 62 +102%100 +225%

avg. -10% -23% -22% -22% -37% -47% +0% +70% +176%

Table 4.3:Average wait, bounded slowdown, and accuracy of EASY compared with three improved vari-
ants. EASYSJBF just adds SJF backfilling (based on original user estimates). EASY++ employs all our
optimizations: system-generated predictions, prediction correction, and SJBF. PERFECT++ is the optimum,
using SJBF with perfect predictions. Shaded columns show improvement relative to traditional EASY.

 0

 50

 100

 150

 0.5 0.6 0.7 0.8

b.
 s

lo
w

do
w

n

load

SDSC

 0

 5

 10

 15

 20

 25

 30

 0.5 0.6 0.7 0.8

CTC

 0

 50

 100

 150

 200

 250

 0.5 0.6 0.7 0.8

KTH

 0

 30

 60

 90

 120

 150

 0.5 0.6 0.7 0.8

BLUE
 EASY
 EASY+

 EASY++

 PERFECT++

Figure 4.3:Relative performance of EASY+ / EASY++ typically improves with medium or higher loads.

the performance improvement in comparison to EASYSJBF and EASY+. Performance gains are
especially pronounced for bounded slowdown (nearly halvedin BLUE). There is also a 33% peak
improvement in average wait (CTC and BLUE). This is quite impressive for a scheduler with
basic FCFS semantics that differs from EASY by only a few dozens lines of code. Even more
impressive is theconsistencyof the results, which all point to the same conclusion, as opposed
to other experimental evaluations in which results depended on the trace or even the metric being
used [138, 39]. The accuracy of EASY++ is similar to that of EASY+ at 60–62%.

Finally, we have also checked the impact of having perfect predictions when SJBF is employed
(here there is no meaning to prediction correction as predictions are always correct). It turns
out PERFECT++ is marginally to significantly better than EASY++ with the difference being
most pronounced in SDSC, the site with the highest load (Tab.2.1; further discussed below).
Interestingly, EASY++ outperforms PERFECT++ in CTC’s average wait. This is due to subtle
backfill issues and a fundamental difference between CTC andthe other logs, as analyzed by
Feitelson [39].

4.2.4 Varying the Load

All results in this chapter evaluate our suggested optimizations using the workloads “as is”. Here,
through trace manipulation, we complement our measurements by investigating the effect of load.
Load is artificially varied by multiplying all arrival timesby a constant (see Chapter 2). Results
show that PERFECT++ is better than EASY++, which is better than EASY+, which is better than
EASY (Fig. 4.3). Higher loads usually intensify the trends pointed out earlier, but the precise
effect of the optimizations is workload dependent. EASY++ benefits are relatively small in SDSC,
especially under high loads; for KTH the biggest improvement occurs for intermediate loads of

66 Backfilling With System-Generated Predictions

algorithm optimization
prediction replace estimate SJBF
correction with prediction

EASY
EASYPRED

√

EASYPCOR

√

EASYSJBF

√

EASY+ √ √

EASY++ √ √ √

PERFECT++ N/A (with runtime)
√

Table 4.4:Summary of the algorithms used in this section, and the optimizations they employ.

around 70–80%; for CTC, the improvement over EASY grows withload, and is most significant
towards 90%. Examining PERFECT++, we see that in all cases accuracy becomes crucial as load
conditions increase, generating a strong incentive for developing better prediction schemes.

4.2.5 Optimizations Summary

To summarize, three optimizations were suggested: (1) prediction correction where predictions
are updated when proven wrong, (2) simple system-generatedpredictions based on recent history
of users, and (3) SJBF in which backfilling order is shortest job first. All optimizations maintain
basic FCFS semantics. They are all orthogonal in the sense that they may be applied separately.
However, using system generated predictions without prediction correction leads to substantially
decreased performance. The combination of all three consistently yields the best improvement of
up to doubling performance in comparison to the default configuration of EASY. The algorithms
covered and the optimizations they employ are summarized inTab. 4.4 for convenience. The rest
of the chapter will focus on EASY+ and EASY++.

4.3 Predictability

Previous sections have shown that, on average, replacing user estimates with system-generated
predictions is beneficial in terms of both performance and accuracy. However, when abandoning
estimates in favor of predictions, we might losepredictability: The original backfilling rules state
that a jobJb can be backfilled if its estimated termination time does not violate the reservation
time R1 of the first queued jobJ1. SinceJb is killed when reaching its estimate, it is guaranteed
thatJ1 will indeed be started no later thanR1. However, this is no longer the case when replacing
estimates with predictions, asR1 is computed based on predictions, but jobs are not killed when
their predicted termination time is reached; rather, they are simply assigned a bigger prediction.
For example, ifJb is predicted to run for 10 minutes andR1 happens to be 10 minutes away, then
Jb will be backfilled, even if it was estimated to run for (say) three hours. Now, if our prediction
turned out to be too short andJb uses up its entire allowed three hours,J1 might be delayed by
nearly 3 hours beyond its reservation.

Predictability is important for two main reasons. One is thesupport ofmoldablejobs [31, 138,
22], that may run on any partition size (according to [23],∽98% of the jobs are moldable). Such
jobs trust the scheduler to decide whether waiting for more nodes to become available is preferable

4.3 Predictability 67

trace rate[% of jobs] avg. diff. [minutes] median diff.[minutes] stddev diff.[minutes]
EASY EASY

+
EASY

++
EASY EASY

+
EASY

++
EASY EASY

+
EASY

++
EASY EASY

+
EASY

++

SDSC 17 14 -18% 15 -15% 171 93 -46% 91 -47% 64 20 -69% 19 -70% 471 174 -63% 168 -64%
CTC 6.8 5.4 -19% 5.7 -16% 51 29 -43% 27 -46% 8.3 2.2 -73% 1.9 -78% 92 74 -20% 69 -25%
KTH 15 14 -8% 14 -8% 38 35 -7% 35 -7% 6.3 3.2 -49% 3.2 -49% 84 90 +7% 88 +5%
BLUE 9.6 7.5 -22% 7.8 -18% 68 45 -33% 45 -34% 16 3.3 -79% 3.4 -79% 212 191 -10% 184 -13%

avg. -17% -14% -32% -34% -68% -69% -22% -24%

Table 4.5: Effect of predictions on the absolute difference between reservations and actual start times.
Rate is the percentage of jobs that wait and get a reservation. Both rate and statistics of the distribution
of differences are reduced with predictions, indicating improved performance and superior predictability,
respectively.

over running immediately on what’s available now. Predictability is crucial for such jobs. For
example, a situation in which we decide to wait for (say) 30 minutes because it is predicted a
hundred additional nodes will be available by then, only to find that the prediction was wrong, is
highly undesirable. The second reason predictability is important is that it is needed to support
advance reservations. These are used to determine which of the sites composing a grid is able to
run a job at the earliest time [96], or to coordinate co-allocation in a grid environment [83, 137],
i.e. to cause cooperating applications to run at the same time on distinct machines. Note that in
this case underprediction is as bad as overprediction, e.g.for a grid broker that must select where
to dispatch a job. Knowing that resources would become available earlier could shift the balance.

The question is therefore which alternative (using estimates or predictions) yields more credible
reservation times. To answer it, we have characterized the distribution of the absolute difference
between a job’s reservation and its actual start time. This is only computed for jobs that actually
wait, become first, and get a reservation; jobs that are backfilled or started immediately don’t have
reservations, and are therefore excluded. A scheduler aspires to minimize both the number of jobs
that need reservations and the differences between their reservations and start times. Note that with
prediction correction a job may have multiple reservationsduring its life; we use the first for the
predictability measurements.

The predictor we use (in this section only) is slightly different from the one used in Sec. 4.2:
instead of using the last two jobs to make a prediction, we only use them if their estimate is
identical to that of the newly submitted job; otherwise, we fall back on the user estimate. The
reason is that, in some respects, this is the optimal predictor in this case; a full discussion of the
tradeoffs along with results for the predictor used so far are given in Sec. 4.5. Results are shown
in Tab. 4.5. Evidently, the rate of jobs that need a reservation is consistently reduced by 8–22%
when predictions are used, indicating more jobs enjoy backfilling and reduced wait times. The rest
of the table characterizes the associated distribution of absolute differences between reservations
and start times. Both EASY+ and EASY++ obtain big reduction in the average differences: e.g.
on SDSC, from almost 3 hours (171 minutes) to about an hour anda half (91 minutes). Reductions
in median differences are even more pronounced: they are at least halved across all traces, with a
79% top improvement obtained by EASY++ on BLUE. The variance of differences is typically also
reduced, sometimes significantly, with an exception of a 5–7% increase for KTH. The bottom line
is therefore that using runtime predictions consistently and significantly improves predictability of
jobs’ starting time.

Improving the quality of reservations on average is desirable e.g. in grid context where it is

68 Backfilling With System-Generated Predictions

trace rate[% of jobs] avg. delay[minutes] median delay[minutes] stddev delay[minutes]
EASY EASY

+
EASY

++
EASY EASY

+
EASY

++
EASY EASY

+
EASY

++
EASY EASY

+
EASY

++

SDSC 1.5 3.8 +149% 3.8 +150% 513 92 -82% 86 -83% 0.9 8.6 +896% 8.3 +859% 1442 223 -85% 206 -86%
CTC 0.7 1.3 +81% 1.3 +83% 72 37 -49% 34 -53% 1.9 3.0 +62% 2.6 +43% 119 102 -14% 94 -21%
KTH 0.1 1.8 +1518% 1.8 +1493% 58 52 -11% 44 -23% 0.7 11 +1541% 9.9 +1428% 108 107 -1% 87 -20%
BLUE 0.9 1.8 +97% 1.8 +102% 48 35 -28% 31 -35% 0.8 2.2 +174% 2.1 +165% 318 154 -52% 136 -57%

avg. +461% +457% -42% -48% +668% +624% -38% -46%

Table 4.6:Effect of predictions on the delays beyond a job’s reservation. With predictions, the rate and
median delay are increased, but the average and standard deviation of delays are reduced.

important to know that a job will start on time. (If sitesA/B declare they can run a job in 5/10
hours from the current time, respectively, then obviously site A will be chosen; however, if it turns
out that siteB could have executed the job in only 10 minutes from the current time, and just didn’t
know about it because of low quality predictions, then obviously submitting the job toA was the
wrong way to go.) However, it is conceivable some systems would care more about jobs being
delayed beyond their reservation, than started earlier. Tab. 4.6 shows the rate of delayed jobs and
the distribution of actual delays. Even with plain EASY 0.1–1.5% of the jobs are delayed, because
(as reported earlier) jobs sometimes outlive their user estimates. Unfortunately, when predictions
come into play, the delays become much more frequent and involve 1.3–3.8% of the jobs. On
the other hand, both the average delay and its standard deviation are dramatically reduced, e.g.
SDSC’s average drops from about 8.5 hours (513 minutes) to less than 1.5 (86 minutes) and its
standard deviation drops at a similar rate. Medians values,however, increase by up to an order
of magnitude (KTH/SDSC), though in absolute terms they are all less than ten minutes. This
indicates that EASY’s delay-distribution is highly skewedand that our techniques curb the tail, at
the expense of making short delays more frequent.

Nevertheless, there are two solutions for systems that do not tolerate delays. One is to employ
double booking: leave the internals of the algorithms basedon predictions, while reporting to
interested outside parties about reservations which wouldhave been made based on user estimates
(never violated if jobs are killed on time). This solution enjoys EASY++’s performance but suffers
from EASY’s (in)accuracy. The other solution is to backfill jobs in prediction order, but only if
their user-estimated termination falls before the reservation. This ensures backfilled jobs do not
interfere with reservations, at the price of reducing the backfilling rate. Indeed, this algorithm
enjoys all the benefits of the “+” variants in terms of internal accuracy, while being similar or
better than EASY with respect to unwarranted delays. As for performance, it is 1–10% better than
that of plain EASYSJBF (Tab. 4.3).

4.4 Relationship With Other Algorithms

Our measurements so far have compared various scheduling schemes, culminating with EASY++,
against vanilla EASY. However, other variants of backfilling schedulers have been proposed since
the original EASY scheduler was introduced. In this respect, it is desirable to explore two aspects:
comparing EASY++ against some other generic proposals, along with investigating the effect of
directly applying our optimization techniques to the otherschedulers themselves.

We have chosen to compare EASY++ against the two generic scheduling alternatives that were
previously mentioned in this chapter: EASY with doubled user estimates (denotedX2), and SJF

4.4 Relationship With Other Algorithms 69

trace wait [minutes] b. slowdown accuracy[%]
EASY X2 SJF EASY

++
EASY X2 SJF EASY

++
EASY X2 SJF EASY

++

SDSC 363 333 -8% 535 +47% 327 -10% 99 89 -10% 69 -30% 70 -29% 32 16 -49% 32 -0% 60 +87%
CTC 21 20 -8% 13 -38% 14 -33% 4.6 4.1 -10% 2.8 -40% 2.9 -37% 39 20 -49% 39 +0% 62 +61%
KTH 114 102 -11% 79 -31% 95 -17% 90 80 -11% 45 -50% 57 -36% 47 24 -50% 47 -0% 61 +28%
BLUE 130 115 -11% 81 -38% 87 -33% 35 30 -15% 25 -29% 19 -47% 31 16 -47% 31 +0% 62 +102%

avg. -10% -15% -23% -12% -37% -37% -49% +0% +70%

Table 4.7:Average wait and bounded slowdown achieved by EASY++ compared with two other schedulers
proposed in the literature: doubling user estimates and using SJF scheduling.

trace doubling shortest job
wait [minutes] b. slowdown wait [minutes] b. slowdown

X2 X2+
X2perf X2++

X2++

perf
X2 X2+

X2perf X2++
X2++

perf
SJF SJF

+
SJFperf SJF SJF

+
SJFperf

SDSC 333357 +7% 293-12% 333 -0% 270-19% 89 94 +6% 77 -13% 67 -25% 58 -34% 535 308 -42% 270-50% 69 34 -51% 19 -73%

CTC 20 16 -18% 18 -8% 15 -25% 16 -16% 4.1 3.6-13%3.2-21% 3.0-28% 2.5-38% 13 12 -11% 12 -11% 2.8 2.4 -12% 1.8-35%

KTH 102 98 -4% 95 -6% 93 -8% 84 -18% 80 66 -18% 70 -13% 53 -33% 50 -38% 79 87 +10% 67 -16% 45 44 -2% 24 -46%

BLUE 115105 -9% 107 -8% 86 -26% 80 -31% 30 33 +8% 28 -7% 21 -32% 12 -59% 81 90 +11% 50 -39% 25 37 +49%5.4-78%

avg. -6% -8% -15% -21% -4% -14% -30% -42% -8% -29% -4% -58%

Table 4.8:Average performance and (shaded) improvement when optimizing vanillaX2 and SJF.

based on user estimates (as a representative of several different schemes that prioritize short jobs).
The results are shown in Tab. 4.7. EASY++ outperformsX2 by a wide margin for all traces and
both metrics. It is also rather close to SJF scheduling in allcases, and outperforms it in one case
(SDSC’s wait) where SJF fails for an unexplained reason. Theadvantage over SJF is, of course, the
fact that EASY++ is fairer, being based on FCFS scheduling with no danger of starvation. Also,
the gap can potentially be reduced if better predictions aregenerated.

As mentioned earlier, EASY++ attempts to be similar to prevalent schedulers’ default setting
(usually EASY [37]) in order to increase its chances to replace them as the default configuration.
But the techniques presented in this chapter can be used to enhanceany backfilling algorithm.
Tab. 4.8 compares vanillaX2 and SJF to their corresponding “optimized” versions: In addition
to doubling of estimates (recall that these serve as fallback predictions when there’s not enough
history),X2+ replaces estimates with (doubled) predictions, and employs prediction correction.
X2++ adds SJBF toX2+. Finally, SJF+ is similar to EASY++, but allocates the reservation to the
shortest (predicted) job, rather than to the one that has waited the most.5 The theoretical optima
of X2+, X2++, and SJF+, areX2perf , X2++

perf , and SJFperf , respectively (use perfect estimates
instead of system-generated predictions).

Tab. 4.8 shows that switching fromX2 to X2+ can better performance (up to -18% in CTC’s
wait and KTH’s slowdown) or worsen it (up to +8% in BLUE’s slowdown), though improvements
are more frequent and on average,X2+ is 4-6% better thanX2. When further optimizing by
adding SJBF (X2++), performance is consistently better, with a common improvement of 25-
33%. The result of upgrading SJF to SJF+ is once again inconsistent among traces/metrics, but
here too improvements are more frequent (4-8% on average). In all cases, using prefect predictions
(X2perf , X2++

perf , and SJFperf) leads to consistent improvements in performance, indicating prior
inconsistency steamed from our simplistic predictor and motivating the search for a better one.

5SJF+ and SJF++ are equivalent because both employ SJBF by definition.

70 Backfilling With System-Generated Predictions

trace performance accuracy prediction pyabs pydelay

wait [min] b. slowdown rate [job %] rate [job %] minutes rate [job %] minutes
imm all imm all imm all imm all imm all imm all imm all imm all

SDSC 363327-10% 81 70 -13% 56 60 +8% 59 89 +52% 15 12 -21% 91 98 +8% 3.8 5.0 +30% 86 150 +74%
CTC 17 14 -16% 3.6 2.9-20% 59 62 +6% 63 90 +44% 5.7 5.1-11% 27 27 -1% 1.3 1.7 +26% 34 53 +56%
KTH 98 95 -3% 67 57 -15% 58 61 +5% 39 84 +115% 14 11 -22% 35 63 +78% 1.8 3.6+106% 44 149+236%
BLUE 100 87 -13% 19 19 -2% 59 62 +5% 70 90 +29% 7.8 5.2-33% 45 65 +46% 1.8 2.0 +10% 31 136+333%

avg. -10% -12% +6% +60% -22% +33% +43% +175%

Table 4.9:Comparing theimmediate andall versions of EASY++: pyabs relates to metrics from Tab. 4.5
(absolute difference between start time and reservation);pydelay relates to metrics from Tab. 4.6 (delay
beyond a reservation). Theall version is∽10% better in terms of average performance and 6% more
accurate. Nevertheless, despite its improved accuracy, itseems to loose in predictability: itspyabs rate is
11-33% lower (good), but the actual difference might be 78% higher (KTH); worse, both rate and duration
of delayed jobs are significantly increased (KTH’s rate is doubled, BLUE’s delay is more than quadrupled).

4.5 Does Better Accuracy Imply Better Performance/Predictability?

This study is based on the notion that superior accuracy should result in improved performance
(better packing) and predictability (better individual runtime predictions). However, we have also
witnessed several occasions in which these metrics appear to conflict. This issue has been largely
dealt with in the previous chapter. But (1) in order to close some loose ends from previous sections,
and (2) to argue that, similarly to multiplying of user estimates, multiplied predictions shouldn’t
be used as a model for “worse” predictors,6 and (3) for completeness, we also conduct a short
discussion here.

The first and most obvious (though already addressed) example is Fig.1.2 (page 9), where
deliberately making estimates less accurate by doubling them consistently improves performance.
A secondexample is related to the predictor switch done in Sec. 4.3. Throughout this chapter
we’ve used what we call anall prediction window, where the last two terminated jobs by thesame
user were used for prediction, regardless of their attributes. In contrast, in Sec. 4.3 we’ve used an
immediate window, in which we generate a prediction only if these two jobs have user runtime
estimates that are equal to that of the newly submitted job (i.e. they are “similar”). The fact of the
matter is thatall (which is more accurate) is better for performance, whereasimmediate appears as
better for predictability (Tab. 4.9). Further, athird example is that the performance ofimmediate-
EASY+ andX2 is very similar (Tab. 4.10). These schedulers are identicalin every respect, except
EASY+ uses runtime predictions, whereasX2 uses something that is even less accurate than user
estimates (user estimates that are doubled). The fact the two yield similar performance might
prompt a reader (who did not fully absorb the implications ofChapter 3) to raise the question of
whether it is worthwhile to even bother with runtime prediction.

This section addresses the question implied from the three examples, namely, what makes accu-
racy, performance, and predictability seem contradictory? Beginning with why doubling estimates
helps performance, we simply note that this question was already addressed to its full in Chapter
3. The bottom line was that due to the heel-and-toe dynamics,whatX2 is really doing is trading
off FCFS-fairness for performance. Indeed, when doubling real user estimates the “heel and toe”
effect is greatly amplified (Tab. 4.11).

6A methodological mistake already done by Guim et al. that followed up on our work [64].

4.5 Does Better Accuracy Imply Better Performance/Predictability? 71

trace wait [minutes] b. slowdown
imm X2 imm X2

SDSC 343333 -3% 92 89 -3%
CTC 18 20 +7% 3.7 4.1 +10%
KTH 108102 -6% 79 80 +2%
BLUE 121115 -4% 31 30 -3%

avg. -2% +2%

Table 4.10: X2 and immedi-
ate EASY + yield similar per-
formance despite the fact they
are identical except the latter im-
proves predictions whereas the
former worsens them.

trace stalled rate[%] stall time[min] avg. thieves #
EASY X2 EASY X2 EASY X2

SDSC 7.2 11 +49% 91 137 +50% 1.9 2.1 +9%
CTC 9.1 11 +9% 35 50 +42% 2.5 2.8 +10%
KTH 7.0 11 +61% 51 107+111% 1.6 2.3 +45%
BLUE 9.2 12 +29% 54 118+119% 2.3 3.1 +33%

avg. +39% +80% +24%

Table 4.11: “Heel and toe” effect is amplified due toX2. Rate is
the percent of jobs that had their earliest start time pushedback due to
the effect, out of waiting jobs that got a reservation. Stall-time is the
average period between a job’s earliest start-time (computed according
to perfect estimates) and its actual start-time. “Thieves”indicate the
per-job average number of times the earliest start-time is pushed back (3
times forJ3 in Fig. 3.5, page 41).

Based on this analysis, it should be clear that comparing betweenX2 andimmediate EASY+

(Tab. 4.10) is actually comparing between two different types of unrelated andorthogonalop-
timizations: favoring shorter jobs vs. improving predictions. Thus, as was well established in
Chapter 3 in relation to user estimates, doubling of prediction should be viewed as a property of a
scheduler,not the prediction algorithm. Indeed, both Fig. 1.2 and Tab. 4.8indicate that doubling
of improved predictions (whether perfect or based on history) yields better performance than when
doubling the lower quality user runtime estimates. We arguethat predictors should strive to make
the best predictions they can, and leave the choice of whether to exercise the performance/fairness
tradeoff to the scheduler, where it belongs. In any case, an evaluation of the implications of pre-
diction mistakes, where “mistakes” actually means multiplying predictions [64], would simply be
dominated by the tradeoff and will not teach us anything new.

The remaining open issue is thatall, which is more accurate, seems less predictable thanim-
mediate in Tab. 4.9. Nevertheless,all is actually more predictable. First, considerpyabs. While
the absolute difference underimmediate is reduced, the rate of jobs that suffer such a difference
is significantly higher. To see which of the two metrics have more impact (rate or difference), we
computed the average difference with respect toall the jobs in the log (product of Tab. 4.9’s “rate”
and “minutes” columns, divided by 100). This reveals thatall is actually more predictable than
immediate in 3 out of the 4 logs.7

As for pydelay, we note that this metric is actuallyvery problematic and should not be used
alone. For example,X2 obviously reduces the accuracy of estimates, but has much lower pydelay

than using the estimates as is, because it computes reservations based on unrealistically too-long
predictions; tripling the estimates would make the effect even more pronounced. Likewise,im-
mediate produces less predictions thanall and therefore falls back on user estimates more often
(Tab. 4.9’s prediction rate). This explains whyimmediate is less accurate. Additionally, as esti-
mates are bigger than predictions (by definition),immediate’s reservations are further away in the
future. In other words,pydelay is an unreliable predictability metric as it only accounts for “one
side to the coin”: jobs that runlater than their reservation.

7The number associated withimmediate are 13,1.5, 4.6, and 3.5 minutes for SDSC, CTC, KTH, and BLUE,
respectively; the numbers forall are 11, 1.4, 6.7, 3.4.

72 Backfilling With System-Generated Predictions

4.6 Tuning Parameters
The EASY++ algorithm has several selectable parameters that may affect performance. We have
identified seven parameters (formally defined later on) thatare mainly concerned with the definition
of thehistory window: which previous jobs to use, and how to generate the prediction. Some of
these parameters have only two optional values, while others have a wide spectrum of possibilities.

To evaluate the effect of different settings, we simulatedall 8,640 possible parameter combina-
tions8, henceforth calledconfigurations, using our four different workloads. This led to a total of
nearly 35,000 simulations (8,640 times the 4 traces),9 where each simulation yielded two perfor-
mance metrics (average wait and slowdown). Thus, each configuration (that is, parameter combina-
tion) is evaluated by eight trace/metrictestcases({SDSC,CTC,KTH,BLUE}×{wait,slowdown}).

The results of the simulations indicate that the “performance surface” is extremely noisy. There
are many different and seemingly unrelated configurations that achieve high performance, but there
is no single configuration that is best for all eight testcases. In order to provide effective guidance
in choosing the parameters we therefore performed a joint analysis of all the data. Our goal is to
find the best configuration, where “best” means robust good performance under all eight testcases.
We anticipate that such a configuration will also perform well under other conditions, e.g. with
new workloads, as will be explained below.

The analysis is done as follows. We start by ranking all 8,640configurations (parameter com-
binations) in two steps. First, we evaluate the “degradation in performance” of each configuration
c under each trace/metric testcaset. This is done relative to the best performing configurationb for
that testcase, as follows: letPb andPc be the performance ofb andc undert, respectively, thenc’s
degradation undert is defined to be100Pc

Pb

− 100. Thus, each configuration is now characterized
by eight numbers, reflecting its relative performance degradation under the eight testcases. In the
second step we average these eight values and the configurations are ranked accordingly: the best
configuration, with thelowestaverage performance degradation, has rank 1; the worst configura-
tion has rank 8,640. Even with this ranking, the top configurations are rather diverse (Tab. 4.12;
parameters will be discussed shortly).

It is important to note that our methodology is finding acompromisethat reflects all eight
testcases. For example, the top ranking configuration is nottop-ranked for any of the testcases
individually. Instead, it suffers a degradations ranging from 4.1% to 21.8% relative to the best
configurations for each testcase. But its average degradation is only 9.4%, which is lower than the
average of any other configuration.

Recall we are searching forrobustconfigurations. This robustness should manifest itself by
being immune to trivial changes and small modification. The top ranking configuration does not
qualify as such: it uses 11 jobs for its prediction window, but when this value is replaced with 12,
the associated configuration is ranked 1,295 and suffersdoublethe average performance degra-
dation. It would be ludicrous to assume 11 is a magic number and to recommend using it based
on this analysis. We therefore search for acontiguous subspacewithin the configuration space
(namely, a set “nearby” configurations), such thatall its population yields good results.

The distributions of the different parameter values are shown in Fig. 4.4, and we now discuss

8Product of the number of different values each parameter mayhave. Following the left-to-right parameters’ order
in Fig. 4.4, this is:3 × 2 × 2 × 2 × 4 × 3 × 30 = 8, 640; see detailed explanation below.

9Some combinations were actually equivalent and were therefore only done once; an example is making predictions
using the average, median, maximum, or minimum of history jobs when there is only one history job.

4.6 Tuning Parameters 73

rank average configuration
performance window window fullness metric fallback propagation prediction
degradation size type correction

1 9.41% 11 all partial avg est yes estimate
2 10.60% 3 ext full avg rel yes estimate
3 10.84% 16 all full med rel yes estimate
4 11.16% 21 all partial med rel yes estimate
5 11.25% 10 all full med est yes estimate
6 11.31% 4 ext partial min rel yes estimate

7/8 11.47% 9 all partial med rel/est no estimate
9 11.56% 2 ext full min est yes estimate

10/11 11.61% 22 all partial med rel/est no estimate
...

8640 239.88% 26 all full min est no gradual

Table 4.12:Top and bottom ranked configurations.

 0
 20
 40
 60
 80

 100

 0 2
0

 4
0

 6
0

 8
0

 1
00

pred. correction

nu
m

be
r

of
co

nf
ni

gn
ur

at
io

ns
 [%

]

rank [%]

gradual
exponential

estimate

 0
 20
 40
 60
 80

 100

 0 2
0

 4
0

 6
0

 8
0

 1
00

pred. correction

nu
m

be
r

of
co

nf
ni

gn
ur

at
io

ns
 [%

]

rank [%]

 0 2
0

 4
0

 6
0

 8
0

 1
00

fallback

estimate
relative

 0 2
0

 4
0

 6
0

 8
0

 1
00

fallback

 0 2
0

 4
0

 6
0

 8
0

 1
00

propagation

no
yes

 0 2
0

 4
0

 6
0

 8
0

 1
00

propagation

 0 2
0

 4
0

 6
0

 8
0

 1
00

fullness

full
partial

 0 2
0

 4
0

 6
0

 8
0

 1
00

fullness

 0 2
0

 4
0

 6
0

 8
0

 1
00

metric

max
min

median
average

 0 2
0

 4
0

 6
0

 8
0

 1
00

metric

 0 2
0

 4
0

 6
0

 8
0

 1
00

window type

extended
immediate

all

 0 2
0

 4
0

 6
0

 8
0

 1
00

window type

 0 2
0

 4
0

 6
0

 8
0

 1
00

window size

26-30
21-25
16-20
11-15
6-10
1-5

 0 2
0

 4
0

 6
0

 8
0

 1
00

window size

Figure 4.4:Distributions of ranked configurations, as a function of each parameter. Rank values (X-axis)
are converted to percents by dividing them with 8,640. Configurations are aggregated into 5%-sized bins.
For example, with prediction correction (left subfigure), about 90% of the 5%-top-ranking configurations
are associated withestimate and the remaining 10% are associated withexponential.

each one in turn, starting with those that are easiest to characterize (left to right). The first param-
eter is how to performprediction correction (when the predicted termination has arrived but the
job continues to run). One option is to simply revert to the original userestimate. Other options
are to grow the predictiongradually (by predefined increments as in Section 4.2), or in anexpo-
nential manner (by adding e.g. 20% each time). The results (Fig. 4.4,left) clearly indicate that
it is best to jump directly to the full userestimate, and not to first try lower predictions, as this
option dominates 90% of top-ranked configuration. This is probably so because using the full user
estimate opens the largest window for backfilling. Using agradual increase is especially bad, and
dominates the bottom half of the ranked configurations.

When we cannot generate a prediction due to lack of historical information, we use the user
estimate as aprediction fallback . Theestimate can be used as is, or it can berelatively scaled
according to the accuracy the user had displayed previously[136]. The results (Fig. 4.4, “fall-
back”) show thatrelative provides a slight advantage, as it appears more often in highranking
configurations.

The next two parameters (“propagation” and “fullness”) turned out not to have such decisive
results, at least not when considered in isolation.Propagation refers to the action taken when new
data becomes available. For example, if we make a predictionfor a newly submitted job, and later

74 Backfilling With System-Generated Predictions

a previous job terminates, should we update the prediction based on this new information? The
second is windowfullness. The window is the set of history jobs that is used to generatepredic-
tions. The two options are to allow apartial window, meaning that a prediction is made based on
whatever data is available, or to require afull window and use the user estimate as a fallback if not
enough jobs are available. For both these parameters, the possible values are approximately evenly
spread across the ranked configuration. The slight advantage of propagation seems not enough to
justify its computational complexity. On the other hand,partial is significantly better when larger
prediction windows are employed (not shown).

The last three parameters have intricate interactions thatwill eventually lead to the configura-
tion subspace we seek. The first is theprediction metric . Given a set of history jobs, how should
a prediction be generated? Four simple options are to use theaverage, median, minimum, or
maximum of the runtimes of these jobs. Evidently,minimum tends to lead to a low-ranking con-
figuration, and themaximum to a middle rank. Theaverage and themedian share 80% of the
top-ranked configurations, leaving the question of which one should be used.

A harder question occurs with thewindow type. The three types areall, meaning that all
recent jobs are eligible,immediate, meaning that recent jobs are used only if they are similar
to the new job (same estimate), orextended, meaning similar jobs are used even if they are not
the most recent (using the entire user history). The problemis that theall distribution has a U
shape: it accounts for more than half the top-ranked configurations, but also for two-thirds of the
lower-ranked ones.

Finally, a third difficult question is how to set thewindow size(the number of history jobs to
consider). We simulated all sizes in the range 1–30; the graph (Fig. 4.4, right) shows them in bins
of 5. Smaller windows are more common in high-ranking configurations, but there is no range-size
that can be said todominatehigh-ranking configurations.

To solve these problems we need to employ additional considerations, and to carefully study
the interactions among the problematic parameters. We start with the window type parameter.
There are actually big advantages to using theall window type. First, its evident top ranking peak.
Second, it is easier and more efficient to implement, becausewe just need to keep a record of the
runtimes of the last terminated (and most recently submitted) jobs by the user, and do not need to
check for job similarity. The problem is that many configurations that employ anall window type
are low ranking. The question is therefore whether we can avoid them (and how). Luckily, this can
be done by a judicious choice of the other parameter values.

Specifically, there are 1298 configurations in the bottom-ranked 30% that employ anall win-
dow type. Of these, only 194 use theestimate directly as a prediction correction. As using
estimate was shown above to be obviously beneficial, this helps eliminate 85% of the problem-
atic configurations. Of the remaining configurations, 186 use theminimum prediction metricand
employ a relatively large prediction window (≥ 7, with average of 18.8). It turns out the huge
tail of minimum (Fig. 4.4) is mostly associated with large window sizes, andthat increasing the
window size consistently worsen the average degradation acrossall configurations. In fact, Fig.
1.19 (page 26) shows the connection between size and degradation is almost linear (both average
and variance), with the exception that 2 is slightly better than 1.

The bottom line is that using anall window-type is actually safe in combination withestimate
prediction correction and a small window size (< 7), eliminating more than 99% ofall’s tail
configurations and clearly making it the best choice. Indeed, this subspace seems to meet our
robustness demands, as is shown in Fig. 4.5 (left), because all its configurations are high ranking.

4.6 Tuning Parameters 75

 0
 20
 40
 60
 80

 100
 0 2
0

 4
0

 6
0

 8
0

 1
00

subspace

nu
m

be
r

of
co

nf
ig

ur
at

io
ns

 [%
]

rank [%]

full space
all/est

+ size ≤ 10
+ size ≤ 3

 0
 20
 40
 60
 80

 100
 0 2
0

 4
0

 6
0

 8
0

 1
00

subspace

nu
m

be
r

of
co

nf
ig

ur
at

io
ns

 [%
]

rank [%]

 0 2
0

 4
0

 6
0

 8
0

 1
00

metric

max
min

median
average

 0 2
0

 4
0

 6
0

 8
0

 1
00

metric

 0 2
0

 4
0

 6
0

 8
0

 1
00

window size

3
2
1

 0 2
0

 4
0

 6
0

 8
0

 1
00

window size

 0 2
0

 4
0

 6
0

 8
0

 1
00

fallback

estimate
relative

 0 2
0

 4
0

 6
0

 8
0

 1
00

fallback

 0 2
0

 4
0

 6
0

 8
0

 1
00

propagation

no
yes

 0 2
0

 4
0

 6
0

 8
0

 1
00

propagation

 0 2
0

 4
0

 6
0

 8
0

 1
00

fullness

full
partial

 0 2
0

 4
0

 6
0

 8
0

 1
00

fullness

Figure 4.5:Left: chosen subspace (type=all, correction=estimate) with decreasing window size. Others:
parameters distribution within the smallest shown subspace (size≤ 3).

parameter description suggestion
window size how many history jobs to consider1-2
job selectionwhich jobs to include in the windowall
metric how to generate predictions average
correction how to increase too-short predictionuser estimate

perf. degradationsize=1 size=2 full space
min 11.7% 12.0% 9.4%
max 15.3% 14.7% 239.9%
average 14.2% 13.4% 30.4%
std. deviation 1.2% 0.7% 10.1%

Table 4.13:Suggested settings for EASY++ (left), and performance degradation statistics of size=1 /size=2
configurations within this chosen subspace, compared to thestatistics of all 8,640 configurations (right).

Accordingly, we choose to limit the window size of our chosensubspace to be≤ 3. The rest
of the sub-figures explore the remaining parameters within this subspace. Clearly, average is the
preferable metric. Additionally, 1-2 sized windows are preferable over 3. However, it is hard to
decide between the two because size=2 dominates the top (50%) but the worst-case of size=1 is
better than that of size=2, and so we seem to have a tie. As there are also no clear winners within the
other parameters, we conclude by summarizing our recommendations in Tab. 4.13, which match
the prediction algorithms used in this chapter.

Note that our conclusions are in disagreement with previouswork: Gibbons used all the history
available [62], and Smith et al. experimented with a limitedhistory just to reduce the size of the
search space, implying a preference for the full history [136, page 129]. However, they did not
show results. We too intuitively felt that when using historical information, it would be necessary
to focus onsimilar jobs, i.e. those with the same partition size, executable, estimate, etc. This
has motivated the definition of theextended window type. However, the results clearly show that
recencyis more important than similarity (Fig. 1.19, page 26) — it isbetter to use the last job by
the same user than to search for the most similar job. This implies that the overheads for storing
and searching through data about different classes of history jobs (as is done in e.g. [136, 138,
83, 86, 96]) can be avoided altogether. Arlitt et al. reacheda similar conclusion in the context
of the World Wide Web, contending “only the topmost stack element is seeing significant reuse”
when predicting a destination of a work session based on the user’s history stack[6]. Likewise,
Isci et al. reached a similar conclusion when predicting thememory-references to operations ratio
for the next 100-million operations phase: they concluded it’s better to use the ratio of the last
phase as a predictor, than to use an 8-sized prediction window or even a variable sized prediction
window [71].

Finally, we remark that in addition to preferring to use all available history, Gibbons also used a
different prediction metric: the 95th percentile of history jobs [62], which is close to the maximum
metric, and was shown above to be inferior to the average.

76 Backfilling With System-Generated Predictions

4.7 Conclusions

For the conclusion of this chapter, we refer the reader to Section 7.3 (page 125).

77

Chapter 5

Modeling User Runtime Estimates

5.1 Introduction

Context This chapter was fully introduced in Sec. 1.2.2 (page 11) andSec. 1.3.2 (page 21),
which also conducted a detailed survey of related work. Briefly, backfill systems mandate users
to provide runtime estimates for all the jobs they submit, which are then used by the scheduler for
better packing. This was shown to improve utilization, throughput, and turnaround time. However,
the strict policy of backfilling systems to (1) kill underestimated jobs, while (2) rewarding jobs
with tight estimates (with increased chances for backfilling), has failed to deliver, as in spite of
it, user estimates turned out to be highly inaccurate (Fig. 1.4, page 13). The previous chapters
have thoroughly demonstrated that this inaccuracy has a decisive effect on performance, and that
estimates are an important and influential parameter withinthe workload experienced by paral-
lel machines. In fact, estimates are important enough to be considered alongside the three most
important job attributes: arrival time, runtime, and size.The starting point of this chapter is not-
ing that in contrast to the latter three attributes, which have beenextensivelystudied and modeled
[46, 30, 77, 17, 20, 170, 99, 105], estimates were largely neglected in this respect. The reason is
most probably related to the misperception of inaccurate estimates as not affecting or improving
performance, best articulated in a recent paper by England et al. [34] that claimed

ROBUSTNESS CLAIM

“Our results support those of a previous work and also indicate that backfilling is robust
to inaccurate run time estimates in general. It seems that, with respect to backfilling,
what the scheduler doesn’t know won’t hurt it.”

In Chapters 3 and 4 we have proved this claim, along with the aforementioned previous work,
wrong. The goal of this chapter is therefore to close the modeling gap.

The Need For an Estimates Model The purpose of any good model, and hence an estimate-
model, is to truthfully reflect reality. It is needed for three reasons. First, it is useful as part of a
general workload model of parallel machines that allows forvalid performance evaluations, e.g.,
to study different job scheduling schemes by means of simulation. (Simulations are particularly
valuable when evaluating system designs; here, a model’s main merit is its flexibility, allowing an
evaluation of multiple configurations without having to actually build the respective systems.)

Second, it is often the case that estimates data is absent from existing log files of production
systems [110], e.g., when those employed a non-backfill scheduler. Similarly to models, real logs

78 Modeling User Runtime Estimates

can also be used to drive simulations (the approach taken in our work). While not as flexible
as models, real logs have the advantage of being truly representative of what really goes on in
production systems, eliminating the concern that the chosen model might have neglected to reflect
some important aspect.1 An estimate model can artificially add the missing information to the log.

Indeed, an important product of our work in this chapter is a utility (available for download
at [155]) that gets as input a log in “Standard Workload Format” [147] and appends to it estimates
information. This utility can be used to complement both real production log-files and outputs of
previously suggested models. Specifically, we advocate that this should replace thef -model and
Φ-model (addressed below), which have been used for this purpose up till now.

The third reason for the need for a model, is that it allows fora deeper understanding of the
nature of the workload, with which the associated systems must cope. This can often provide
helpful insights as to “what went wrong” and as to how can a system design be improved to
rectify the problem. To illustrate this, note that while Chapter 4 (that deals with improving the
system rather than understanding it) appears before this chapter, chronologically, the order was
reversed (see publication dates of [157] and [156]). Indeed, only after we modeled the estimates
and understood their modal nature and its dire implication on backfilling, did we come up with
the idea presented in Chapter 4, about how to improve estimates’ quality in a manner usable for
backfilling. Thereal motivation for Chapter 4 and its simplistic prediction approach was our
understandings based on this chapter: that, in contrast to previous work [62, 83, 138, 86, 97], one
in no way needs a sophisticated algorithm to overcome modality; rather, even a simple average
of recent jobs will do. After this, it became clear that the focus should not be on the prediction
algorithm, but rather, on how to exploit its output for the sake of backfilling. The bottom line is that
only throughunderstandingthe workload were we able to understand how to improve the design.

We therefore note that, in contrast to the previous chapter,this one targets the first two above
reasons. Namely, here we aim to understand, model, and reflect reality,not to make it better.

The Need For Estimates Altogether As noted above, the quality of estimates has a dramatic
effect on the performance of systems, which makes them an important and model-worthy attribute.
However, Chapter 4 have opened an intriguing possibility torid users from the annoying need to
provide estimates altogether. While our prediction algorithms above still make use of estimates for
prediction-correction and as fallback when not enough history is available, it is technically possible
to get by without this information. (We explore this idea in [152], but the details are beyond the
scope of this dissertation). Nonetheless, we argue that systems with no user estimatesat all (that
is, with no runtime upper bound) are undesirable, as these will allow jobs to run indefinitely,
potentially overwhelming the system (e.g. consider runaway buggy jobs). Thus, it appears such a
policy is inadequate for supercomputers. At the very least we would expect users to choose some
runtime upper-bound from a predefined set of values (possibly associated with different system
queues). However, we will show below that this scenario is rather similar to reality anyway, as
most users are already limiting themselves to very few canonical “round” estimates. It turns out
there is actually no fundamental difference between allowing users to choose “any value”, or from
within a limited set. The bottom line is that regardless of any possible scheduling improvements
or changes, it seems a parallel workload model will not be complete if realistic user estimates are
not included.

1This concern is acute: suggested models were often found inadequate or lacking after they were put into use. One
example is Lublin’s model of rigid jobs [99], which Talby et al. found to lack self-similarity [151].

5.2 Existing Estimate Models and Their Shortcomings 79

5.2 Existing Estimate Models and Their Shortcomings

As estimates were never “natively” incorporated within anypreviously-suggested general work-
load model, researchers were forced to artificially generate estimates by themselves. This was
done using three models that specifically targeted estimates directly (runtimes, sizes, and arrival
times came from a different source: either from the output ofa general model, or from a real
trace-file generated by a production system).

Complete Accuracy The simplest model is to assume that user estimates are completely accu-
rate. For example, such a model was used by [84, 145, 163, 39, 133]. This approach has two
advantages: it is extremely simple, and it avoids the murky issue of how to model user estimates
correctly. However, as witnessed by the data in Fig. 1.14 (page 22) and Fig. 1.4 (page 13), it is far
from the truth.

The f-Model The second model, which is a generalization of the first, is thef -model [47]. This
model assumes a job’s estimate is uniformly distributed in[r, (f + 1) · r], wherer is the job’s
runtime, andf is a non-negative “badness” factor. Thus, withf = 0, we get the above model,
but increasingly positivesfs supposedly model increasingly inaccurate estimates. This model
proved to be the most popular and was extensively used to (1) study the impact of inaccuracy on
performance [146, 174, 108, 15, 142, 122, 34, 64], and to (2) complement workloads that did not
contain estimates data but were simulated under backfillingsystem [169, 56, 58].

By Chapter 3, the generalizedf -model is actually worse than the previous model (f = 0), as
positivefs suffer from all the shortcomings of a zerof , and more. The bottom line was that thef -
model’s artificial-inaccuracy simply trades off fairness for performance, which at best is reflective
of a scheduling policy, but is anything but reflective or the impact of real estimates on performance
(Tab. 3.17, page 52).

The Φ-Model The third model is theΦ-model [108], which attempts to reproduce the accuracy
histogram in Fig. 1.4 (page 1.4). This model was described indetail in Sec. 1.2.2 (page 11). The flat
histogram portion implies thatr/e = u, for estimatee, and a uniform random variableu ∈ [0, 1].
Thus,e is modeled byr/u. The model also artificially created the hump of failed jobs at low values,
and the 100% peak of underestimated job (the height of this peak was denotedΦ, and was set to
be a parameter of the model [171]). Although far less popularthan thef -model, theΦ-model was
used for the same purposes, namely to complement workloads that were missing estimates data,
and to evaluate the impact of increased inaccuracy (by gradually reducingΦ) [171, 170]. Similarly
to thef -model, theΦ-model ignored the per-site limit on runtimes and estimates— Emax, which
contradicts its assumption thatr is independent ofu: since estimates are bigger than runtimes, we
haver ≤ e ≤ Emax, which means the bigger ther the moreu (= r/e) gets closer 1. In other
words,r andu are proportional. And sinceu is defined to be the accuracy, longer jobs (biggerr)
are always on the right of Fig. 1.4 (page 13), where accuracy is high, while short jobs tend to be
on the left, at lower accuracies.

We note in passing that Cirne and Berman [20] suggested a model that takes the opposite
direction in comparison to theΦ-model (see details in Sec. 1.2.2). They assumede is given and
that the model should generatedr. This methodology suffers from the same problem as the original
model, because accuracy is again independent of runtime.

Lack of Repetitiveness In addition to the per-model shortcomings listed above, there are two
drawbacks from which all models collectively suffer: The first is lack of repetitiveness: The work

80 Modeling User Runtime Estimates

of users of parallel machines usually takes the form of temporal bursts of very similar jobs, charac-
terized as “sessions” [173, 133]. In SDSC for example, the median value of the number of different
estimates used by a user is only 3, which means most of the associated jobs look identical to the
scheduler. In the next chapter (and in [160, 54]) we show thatsuch repetitiveness can have decisive
effect on performance.

Lack of Modality The second shortcoming of all models is a direct result of thefirst: estimates
form a modal distribution composed of very few values, a factthat is not reflected in any existing
model. Modality was shown above to be particularly harmful in the context of backfilling. While
this was largely revealed during the development of the model to be described in this chapter, we
already considered the issue in great detail (Section 3.8, page 48). Thus, we only conduct a short
discussion here regarding the bottom line.

Jobs that use the maximal allowed estimate —Emax — cannot be backfilled (see proof in
aforementioned section). Therefore, the factEmax is always a very popular estimate (typically
the most; see Fig. 1.14, page 22) has a detrimental effect on performance. At the extreme, if all
jobs usedEmax, backfilling activity would completely stop (except from onthe “extra” nodes; see
Fig. 3.14 page 49) and the schedule would largely revert to plain FCFS. The observation regarding
Emax is true to some extent for all the other modes (= popular estimates), as in general, if the
estimates distribution is dominated by only a few large modes, performance is negatively effected,
because less variance among jobs means less opportunities for the scheduler to perform backfilling
using existing holes. In addition, many scheduling policies provide some preference to shorter jobs.
This may be an explicit preference, as is the case of the LXF&Wscheduler (discussed in Sec. 3.10,
page 55), or an implicit preference, as is the case of plain EASY, due to users’ inaccurate estimates
and the resulting heel and toe effect. Obviously, the more the estimates distribution is modal,
the less the scheduler can distinguish between short and long jobs, and performance deteriorates
accordingly.

The result of replacing real user estimates by values that were generated by the above three
models is shown in Fig. 1.5 (page 13). It is evident all of models produce unrealistically good
results in comparison to the original. While counter intuitive, our goal in this chapter is to produce
estimates such that performance isworsened, not improved. Namely, our aim is to accurately
reflect reality, not to paint a brighter (false) picture.

Arbitrary Binning When addressing modality, an immediate heuristic that comes to mind when
trying to reconstruct this property within a model, is to “round” artificially generated estimates
(e.g. by one of the models described above) to the nearest “canonical” value: values smaller than
1 hour are rounded to (say) the nearest multiple of 5 minutes,values smaller than 5 hours are
rounded to the nearest hour, and so on. Experiments have shown that this heuristic also fails in
capturing the badness of real user estimates, and performance results are actually rather similar to
those obtained before this artificial modality was introduced.

Further, arbitrary “binning” fails to reproduce the various properties of the estimate distribu-
tion, as reported in the following sections. The fact of the matter is that modes have a different
(worse) nature than produced by the arbitrary binning. For example, when examining the number
of jobs associated with the most popular estimates, we learnthat these decay in an exponential
manner e.g. half of the jobs use only 5 estimate values, 90% ofthe jobs use 20 estimates values
etc. Thus, there is no way around the need to develop an accurate model, as is done next.

5.3 Methodology and Roadmap 81

5.3 Methodology and Roadmap

The modal nature of estimates motivates the following methodology. When examining a trace, we
view its estimate distribution as a series ofK modes given by{(ti, pi)}

K
i=1. Each pair(ti, pi) rep-

resents one mode, such thatti is the estimate-value in seconds (t for time), andpi is the percentage
of jobs that useti as their estimate (p for percent or popularity). For example, the CTC mode series
includes the pair(18h, 23.8%) because 23.8% of the jobs have used 18 hours as their estimate.
Occasionally, we refer to modes asbinswithin the estimate histogram. Note that

∑K
i=1 pi = 100%

(we are considering all the jobs in the trace).
The remainder of this section serves as a roadmap of this chapter, describing step-by-step how

the{(ti, pi)}
K
i=1 mode-series is constructed, while outlining our methodology. Each of the follow-

ing paragraphs correspond to a section or two in this chapter, and may contain some associated
definitions to be used later on.

Trace Files We build our model carefully, one component at a time, in order to achieve the
desired effect. Each step is based on analyzing user estimates in traces from various production
machines, in an attempt to find invariants that are not uniqueto a single installation. To this end we
had to apply some manipulations to some of the traces files we use. This is discussed in Section 5.5.

Mass Disparity Our first step is showing that the modes composing the mode-series naturally
divide into two groups: About 20 “head” estimate values are used throughout the entire trace by
about 90% of the jobs. The rest of the estimates are considered “tail” values. This subject is titled
“mass disparity” [41] and is discussed in Section 5.6. We will see that the two mode groups have
distinctive characteristics and actually require a separate model. Naturally, the efforts we invest in
modeling the two are proportional to the mass they entail.

Number of Estimates We start the modeling in Section 5.7 by finding out how many different
estimates there are, that is, modeling the value ofK. Note that this mostly effects the tail as we
already know the head size (∼20).

Time Ranks The next step is modeling the values themselves, that is, what exactly are theK
time-values{ti}

K
i=1. The indexing of this ascendingly sorted series is according to the values, with

t1 being the shortest andtK being the maximal value allowed within the trace (also denotedEmax).
The indexi denotes thetime rankof estimateti. This concept proved to be very helpful in our
modeling efforts. We also define thenormalized timeof an estimateti to be ti/Emax (a value
between 0 and 1). Section 5.8 defines the functionFtim that getsi as input (time rank), and returns
ti (seconds).

Popularity Ranks Likewise, we need to model the mode sizes / popularities / percentages:
{pj}

K
j=1. This series is sorted in order of decreasing popularity, sop1 is the percentage of jobs

associated with the most popular estimate. The indexj denotes thepopularity rankof the mode to
which pj belongs. For example, the popularity rank of 18h within CTC is 1 (p1 = 23.8%), as this
is the most popular estimate. We also define thenormalized popularity rankto bej/K (a value
between 0 and 1). Section 5.9 defines the functionFpop that getsj as input (popularity rank), and
returnspj, the associated mode size.

Mapping Given the above two series, we need to generate a mapping between them, namely, to
determine the popularitypj of any given estimateti, which are paired to form a mode. Section 5.10
defines the functionFmap that getsi as input (time rank) and returnsj as output (popularity rank).

82 Modeling User Runtime Estimates

Using the two functions defined above, we can now associate each ti with the appropriatepj. This
yields a complete description of the estimates distribution. The model is then briefly surveyed in
Section 5.11.

Validation Finally, the last part of this chapter is validating that theresulting distribution re-
sembles the reality. Additionally, we also verify through simulation that the “badness” of user
estimates is successfully captured, by replacing the original estimates with those generated by our
model. The replacement activity mandates developing a method according to which estimates are
assigned to jobs (recall that an estimate of a job must be bigger than or equal to its runtime). This
is done in Section 5.12.

5.4 Input, Output, and Availability

As we go along, the number ofmodel parametersaccumulates to around a dozen. Most are optional
and are supplied with reasonable default values. The only mandatory parameters are the number
of jobsN (the number of estimates to produce), and the maximal allowed estimate valueEmax.
Another important parameter is the percentage of jobs associated withEmax, as this popular mode
exhibits great variance and has decisive effect on performance. Theoutput of the modelis the
series of the modes: how many jobs use which estimate.

The model we develop is somewhat sophisticated and involvesseveral technical issues with
subtle nature. As it is our purpose to allow simulations thatare more realistic, theC++ source
code of the model is made available for download from the Parallel Workload Archive [110, 155].
Its interface includes of two functions: The first gets a structure containing all the model parameters
(all but two are assigned default values), and returns an array of K modes. The second gets the
mode array, and another array composed of job structures (which includes ID and runtime). It then
associates each job with a suitable estimate, under the constraint that runtime mustn’t be bigger.
An accompanying shell utility can read SWF file and appendingestimates to it.

5.5 Trace Files Manipulation

The analysis and simulations reported in this chapter are, as usual, based on the four accounting
logs we have used throughout this entire dissertation. However, during the development of the
estimate model we found that SDSC and KTH need to be manipulated, in order to be useful in the
context of this chapter. The two “new” trace files are listed in Tab. 5.1, alongside the “old” four, to
provide convenient reference. SDSC-106 and KTH4H are the manipulated versions of SDSC and
KTH, respectively, to be described next.

SDSC-106 We say an estimate mode is “owned” by a user if this estimate was exclusively used
by only that user within the log. It turns out that user 106 is uniquely “creative” in comparison to
others, owning 204 estimates of the 543 found in SDSC (nearly40%). This is highly irregular,2 as
shown in Fig. 5.1, which displays the number of modes owned byeach user (only mode owners are
shown). We therefore remove this unique activity from the log for the remainder of the discussion
(regular activity of user 106, using estimates that are alsoused by others, is allowed to remain).

2In fact, as this activity is concentrated within about 2 months of the log, it actually constitutes a workload flurry
as will be defined in Chapter 6.

5.6 Mass Disparity of Estimates 83

Abbrev. Site Start End CPUs Number of jobs (N) M U X K

original cleaned sane mon usr max est

SDSC-106 San-Diego SC Ctr. Apr 98 Apr 00 128 73,103 59,332 53,673 24 428 18h 339

CTC Cornell Theory Ctr. Jun 96 May 97 512 79,302 77,222 77,222 11 679 18h 265

KTH4H Swedish Royal Instit. Sep 96 Aug 97 100 23,070 23,070 23,070 11 209 4h 106

BLUE San-Diego SC Ctr. Apr 00 Jun 03 1,152 250,440 243,314 223,407 32 468 36h 525

SDSC San-Diego SC Ctr. Apr 98 Apr 00 128 73,496 59,725 54,053 24 428 18h 543

KTH Swedish Royal Instit. Sep 96 Aug 97 100 28,490 28,490 28,490 11 214 60h 271

Table 5.1:Adding SDSC-106 and KTH4H to the 4 trace files we have used up till now. The variablesM ,
U , X, andK are months duration, number of users, maximal estimate value, and number of estimate bins,
respectively. Note that while BLUE’s maximal estimate is 36h, its “effective”Emax is actually 2h, the limit
associated with the “express” and “interactive” queues, used by most jobs within BLUE (Fig. 1.14, page 22).

 200
 150
 100

 50
 1

 0 100 200 300 400 500 600 700m
od

es
 o

w
ne

d

user-rank

SDSC

CTCKTH BLUE

Figure 5.1: Assume there aren users in a log. Users are associated with the number of modes they ownmi

(i = 1, ..., n) such thatm1 is the smallest andmn is the biggest. The indexi is defined to be the “user-rank”
and serves as an X-value;mi serves as the associated Y-value. Only positivemi-s are displayed (users that
own no modes are not shown). The SDSC outlier is associated with user 106 which is order of magnitude
more “industrious” than other users, exclusively owning 38% of SDSC’s modes.

The resulting log is calledSDSC-106. This version is beneficial when modelingK in Section 5.7
(number of estimate modes) andFtim in Section 5.8 (actual estimate time values). Other aspects
of the model are not affected.

KTH4H The other problematic workload was KTH: This log is actuallya combination of three
different modes of activity (see bottom of Fig. 1.14, page 22): running jobs of up to 4 hours on
weekdays, running jobs of up to 15 hours on weeknights, and running jobs of up to 60 hours on
weekends. We have found that in the context of user estimatesmodeling, considering these three
domains in an aggregated manner is similar to, say, aggregating CTC and BLUE to be a single log.
We therefore focused on only one of them — the daytime workload with the 4-hour limit, which
is the largest component of the log. This is denoted byKTH4H.

5.6 Mass Disparity of Estimates

Examining the histogram of estimates immediately reveals that the distribution is highly modal
(Fig. 1.14, page 22): A small number of values are used very many times, while many other values
are only used a small number of times. In this section, we establish the mass disparity among
estimate bins.

Human beings tend to estimate runtime with “round” or “canonical” numbers: 15 minutes, one
hour etc. [108, 15, 93]. This has two consequences. One is that the number of bins in the histogram

84 Modeling User Runtime Estimates

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1
0

 1
00

 1
00

0

 1
00

00

SDSC-106

joint
ratio
9/91C

D
F

bin size [jobs]
 bin fraction (of that size)
 job fraction (fall within bins of that size)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1
0

 1
00

 1
00

0

 1
00

00

 1
00

00
0

CTC

joint
ratio
9/91C

D
F

bin size [jobs]

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1
0

 1
00

 1
00

0

 1
00

00

KTH4H

joint
ratio
15/85C

D
F

bin size [jobs]

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1
0

 1
00

 1
00

0

 1
00

00

 1
00

00
0

BLUE

joint
ratio
7/93C

D
F

bin size [jobs]

Figure 5.2: Distributions of bins and of jobs, showing that a small fraction of the bins account for a
large fraction of the jobs and vice versa. The actual fractions are indicated by the joint ratio, which is a
generalization of the proverbial 10/90 rule.

(K) is very small relative to the number of jobs in the trace (N). According to Table 5.1,N may
be in the order of tens to hundreds of thousands, whileK is invariably in the order of only a few
hundreds.

The other consequence is that a small set of canonical bins dominates the set of values. Similar
phenomena have been observed in many other types of workloads. They are called a “mass dis-
parity”, because the mass of the distribution is not spread out equally; rather, a small set of values
gets a disproportionally large part of the mass [26].

The mass disparity of user runtime estimates is illustratedin Fig. 5.2. These are CDFs related
to the bin size (the number of jobs composing a bin). In each graph, the top line is simply the
distribution of bin sizes. This line grows sharply at the beginning, indicating that there are very
many small bins (i.e. values that are used by only a small number of jobs). The other line is the
distribution of jobs, showing the fraction of jobs with estimates that fall into bins of the different
sizes. This line starts out flat and only grows sharply at the end, indicating that most jobs belong
to large bins (i.e. most estimate values are the popular values that are repeatedly used very many
times).

The figure also shows the joint ratio for each case [41]. This is a generalization of the well-
know 10/90 rule. For example, the joint ratio of 9/91 for the CTC log means that 9% of the bins
account for 91% of the jobs, and vice versa: the other 91% of the bins contain only 9% of the jobs.
Further details about the shape of the distributions are given in Table 5.2. This shows the absolute
number of bins involved, rather than their fraction; for example, the CTC row shows that a mere 4
bins cover 50% of the jobs, 10 bins cover 75% of the jobs, and 22bins contain 90%. Indeed, a bit
more than 20 head bins are enough to account for 90% of the jobsin all four logs.

“Head” bins dramatically vary in size: While the most popular is used by10−27% of the jobs,
only ≈ 1% use the 20-th most popular. Regardless, all head bins, whether large or small, have a
common temporal quality: their use is not confined to a limited period of time. Rather, they are
uniformly used throughout the entire log. This is shown in Fig. 5.3 that plots the number of weeks
in which estimates are used, as a function of their popularity ranks. The horizontal dot sequence
associated with head bins indicates they are spread out evenly throughout the log. Further, the
point of intersection between this sequence and the Y-axis is always the duration of the trace, e.g.

5.7 Number of Estimates 85

jobs 10% 50% 75% 90% 95% 98% 99% 100%

SDSC-106 1 6 12 22 39 77 116 339

CTC 1 4 10 22 36 62 89 265

KTH4H 1 6 12 21 28 36 43 106

BLUE 1 3 8 23 42 76 116 563

SDSC 1 6 12 23 43 91 156 543

KTH 1 8 21 41 60 89 122 270

Table 5.2: Mass disparity: per-log minimal number of estimate bins needed to cover the specified percent
of the jobs, as noted in the first row.

 1000

 100

 10

 1

 1
00

0

 1
00 1
0 1

SDSC-106

popularity rank

nu
m

be
r

of
 w

ee
ks

 1000

 100

 10

 1

 1
00

0

 1
00 1
0 1

CTC

popularity rank

nu
m

be
r

of
 w

ee
ks

 1000

 100

 10

 1

 1
00

0

 1
00 1
0 1

KTH4H

popularity rank

nu
m

be
r

of
 w

ee
ks

 1000

 100

 10

 1

 1
00

0

 1
00 1
0 1

BLUE

popularity rank

nu
m

be
r

of
 w

ee
ks

Figure 5.3: Weeks in which an estimate appears, as a function of its popularity-rank. Recall that using
popularity-ranks implies estimates are sorted on the X-axis from the most popular to the least. The top-20
most popular estimates appear throughout the entire logs.

for SDSC this is 2 years (a bit more than 100 weeks).

5.7 Number of Estimates

We have established that about 20 popular “head” bins represent about 90% of the jobs’ estimate
distribution mass. We are left with the question of modelingthe number of the other “tail” bins
used by the remaining 10%.

Examining the four traces of choice in Table 5.1, we see thatK tends to grow with the size of
the trace, where this “size” can be measured in various ways:as the number of jobs executed (N),
as the duration of time spanned (M), as the maximal estimate (X), or as the number of different
active users (U). Note that theU metric also measures size, as new users continue to appear
throughout each log. This is relevant because after all, users are the ones generating the estimates.
In fact, in each of the four traces of choice, about 40% of the estimate modes are exclusively owned
(as defined above) by various users.3

We have experimented in modelingK as a function of the aspects mentioned above (indi-
vidually or combined), and most attempts revealed some insightful observations. In fact, we are
convincedK is the product of a combination of all factors, and that they all effect it to some degree.
However, in the interest of being short while avoiding unwarranted complications (considering this
only affects the tail of the distribution), we have chosen tomodelK as a function ofN alone, which
obtains tolerable results.

3A surprising anecdote is that the actual number of bin-owners is also (exactly) 40, in three of the four traces.

86 Modeling User Runtime Estimates

 0

 100

 200

 300

 400

 500

 600

250,000200,000150,000100,00050,000 0

jobs submitted so far

es
tim

at
e-

bi
ns

 u
se

d
so

 fa
r

linear model
power model

SDSC
SDSC-106

CTC
KTH

KTH4H
BLUE

SDSC

KTH

 0
 2
 4
 6
 8

 10

 2
0 0

jobs submitted so far

es
tim

at
e-

bi
ns

 u
se

d
so

 fa
r

 0
 5

 10
 15
 20
 25
 30

 2
00 2

0

jobs submitted so far

es
tim

at
e-

bi
ns

 u
se

d
so

 fa
r

 15
 20
 25
 30
 35
 40
 45

 1
00

0

 2
00

jobs submitted so far

es
tim

at
e-

bi
ns

 u
se

d
so

 fa
r

 20
 40
 60
 80

 100
 120

 1
00

00

 1
00

0

jobs submitted so far

es
tim

at
e-

bi
ns

 u
se

d
so

 fa
r

 50
 100
 150
 200
 250
 300
 350

 7
00

00

 1
00

00

jobs submitted so far

es
tim

at
e-

bi
ns

 u
se

d
so

 fa
r

 200

 300

 400

 500

 600

 2
50

00
0

 7
00

00

jobs submitted so far

es
tim

at
e-

bi
ns

 u
se

d
so

 fa
r

the four traces
linear model

power model

Figure 5.4: Modeling K using a power modelK = αNβ (α = 1.1, β = 0.5) and a liner model which
is defined by the points as specified in Table 5.3. In the top figure, curves associated with SDSC share the
same texture (color), the lower is of SDSC-106.

N (jobs) 0 20 200 1,000 10,0000 70,000 250,000

K (ests) 0 10 20 35 90 340 565

K/N (slope) 1/2 1/18 1/53 1/164 1/240 1/800

Table 5.3: Points defining the linear model ofK usingN . Slope indicates the arrival rate of new estimates.

Fig. 5.4 plotsK as a function of the number of jobs submitted so far (ifn is an X value, its
associated Y is the number of estimate bins in use, before then-th job was submitted). Note how
the vanilla version of KTH and SDSC stands out: the former dueto the three estimate domains it
contains, and the latter due to user 106. All curves can be rather successfully fitted with a power
model on individual bases (we present one such power model that was simultaneously fitted against
all four traces of choice).

Accordingly, we allow the user of our model to supply the appropriate coefficients (as optional
parameters). However, as this only effects tail bins, we setan ad-hoc linear model (defined by
Table 5.3) as the default configuration. This provides a tolerable approximation ofK for any given
job numberN .

5.8 Time Values of Estimates

Having computed aK approximation (order of a few hundreds), we know how many estimate bins
should be produced by our model. Let us continue to generate theseK values, namely manufacture
the{ti}

K
i=1 series. It has already been noted that users tend to give “round” estimates [108, 17, 93],

but this loose specification is not enough. In this section wedevelop a simple method to generate
K such appropriate values. We are currently not considering the most popular (20) estimates in
a separate manner. These will be addressed in detail later on(Section 5.10), complementing the
model we develop in this section.

5.8 Time Values of Estimates 87

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.2 0.4 0.6 0.8 1

real data

normalized time-rank (i/K)

no
rm

al
iz

ed
 ti

m
e

(t
i/E

m
ax

) KTH4H
CTC

SDSC-106
BLUE

 0 0.2 0.4 0.6 0.8 1

model

normalized time-rank (i/K)

no
rm

al
iz

ed
 ti

m
e

(t
i/E

m
ax

)

0
0.2
0.4
0.6
0.8

1

 0 0.5 1

KTH4H

normalized time-rank (i/K)

no
rm

al
iz

ed
 ti

m
e

(t
i/E

m
ax

)

real
model

 0 0.5 1

CTC

normalized time-rank (i/K)

no
rm

al
iz

ed
 ti

m
e

(t
i/E

m
ax

)

 0 0.5 1

SDSC-106

normalized time-rank (i/K)

no
rm

al
iz

ed
 ti

m
e

(t
i/E

m
ax

)

 0 0.5 1

BLUE

normalized time-rank (i/K)

no
rm

al
iz

ed
 ti

m
e

(t
i/E

m
ax

)

Figure 5.5: Modeling estimate times usingf(x) = (a−1)x
a−x .

trace KTH4H CTC SDSC-106 BLUE

a 1.91 > 1.57 > 1.50 > 1.24

K 106 < 265 < 339 < 525

Table 5.4: The a parameter of the fractional fit presented in Fig. 5.5 is correlated with the number of
different estimates (K).

Recall that the time-ranks of estimates are their associated indexes, when ascendingly num-
bered from shortest to longest. Evidently, this concept canbe very helpful for our purposes. We
define a functionFtim that upon a time-rank inputi, returns the associated time valueti (seconds),
such thatFtim(i) = ti.

The top-left of Fig. 5.5 plots normalized estimate time (ti/Emax, whereEmax is the maximal
estimate) as a function of its associated normalized time-rank (i/K), for all four traces. According
to the top-right and bottom of Fig. 5.5, it turns out the resulting curves can be modeled with great
success when using the fractional functionf(x) = (a−1)x

a−x
for somea > 1 (x is normalized time-

rank). Further, the actual values ofa (Table 5.4) are negatively correlated withK, in that biggerK
implies smallera.

An obvious property off(x) in the relevant domain (x ∈ [0, 1]) is that whena gets closer
to 1, its numerator goes to zero and therefore the curve gets closer to the bottom and right axes.
On the other hand, asa gets further from 1 (goes to infinity), its numerator and denominator get
more and more similar, which means the function converges tof(x) = x (the main diagonal).
The practical meaning of this is that less estimate values (smallerK, biggera) means estimates’
temporal spread is more uniform. In contrast, more estimatevalues (biggerK, smallera) means a
tendency of estimates to concentrate at the beginning of theY-axis, namely, be shorter.

In order to reduce the number of user-supplied parameters ofour model, we can approximate
a as a function ofK (which we already know how to reasonably deduce from the number of jobs).
The problem is that we only have four samples (Table 5.4), toofew to produce a fit. One heuristic
to overcome this problem is splitting the traces in two and computingK anda for each half. This
enlarges our sample space by eight (two additional samples per trace) to a total of twelve. The
results of fitting this data to the best model we could find are shown in Fig. 5.6 and indicate a
moderate success.

88 Modeling User Runtime Estimates

 1

 1.2

 1.4

 1.6

 1.8

 2

 100 200 300 400 500 600 700

th
e

"a
"

pa
ra

m
et

er

different estmates (K)

BLUE

SDSC-106
CTC

KTH4H data
power model

Figure 5.6: Modelinga as a function ofK using1+αKβ (with α = 12.1, β = −0.6). A biggerK results
in ana-parameter that is closer (but never equal) to 1, as required.

We can now define the requiredFtim to be

Ftim(i) = Emax · f (i/K) = Emax ·
(a − 1) i

K

a − i
K

.

Generating the{ti}
K
i=1 series of time values is done by simply assigning1, 2, ..., K to the time-rank

i in an iterative manner. Finally, as almost 100% of the estimates are given in a minute resolution,
the generated values are rounded to the nearest multiple of 60 (if not colliding with previously
generated estimates).

5.9 Popularity of Estimates

In the previous section we have modeled the time values of estimates. Here we raise the question of
how popular is each estimate, that is, how many jobs actuallyuse each estimate value? Answering
this question implies modeling the{pi}

K
i=1 percentage series. Once again, like in the previous

section, ranking the estimates (this time based on popularity) proves to be highly beneficial. Recall
that{pi}

K
i=1 is descendingly sorted such thatp1 is the percentage of jobs using the most popular

estimate value,pi is the percentage of jobs using thei-most popular estimate value, andi serves
as the associated popularity rank. We seek a functionFpop such thatFpop(i) = pi. Note that the
constraint of

∑K
i=1 Fpop(i) = 100 must hold.

Fig. 5.7 plots the size (percent) of each estimate bin, as a function of its popularity-rank.
There’s a clear distinction between the top-20 most popularestimates (distribution’s head) and
the others (tail), in that the sizes of head-bins decay exponentially, whereas the decay of the tail
obeys some power law.

The suggested fits are indeed very successful (R2 > 0.95 in both cases). However, when
concentrating on the head (left or middle of Fig. 5.7), it is evident the exponential model is less
successful for the first few estimates. For example, in CTC the most popular estimate is used
by about 24% of the jobs, while in SDSC this is true for only 11%. In BLUE the situation is
worse as the three top ranking estimates “break” the exponential curve. (Indeed, the exponential
fit was produced after excluding these “abnormal” points.) Obviously, no model is perfect. But
this seemingly minor deficiency (at the “head of the head”) isactually quite significant, as a large

5.9 Popularity of Estimates 89

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 500 100 20 5 2 1

all

estimate popularity-rank

jo
bs

 [%
]

 0

 5

 10

 15

 20

 25

 20 15 10 5 1

head [x <= 20]

estimate popularity-rank

jo
bs

 [%
]

model
SDSC-106

SDSC
CTC
KTH

KTH4H
BLUE

 1e-04

 0.001

 0.01

 0.1

 1

 10

 500 200 100 50 20

tail [x > 20]

estimate popularity-rank

jo
bs

 [%
]

Figure 5.7: Modeling percent of jobs associated with estimate bins, as afunction of popularity rank.
The head (middle) is modeled by the exponential functionαeβx + γ (with α = 14.05, β = −0.18, and
γ = 0.46). The tail (right) is modeled by theωxρ power law (withω = 795.6 andρ = −2.27). Note that
the middle figure has linear axes, while the other two are log scaled. The left figure concatenates the head
and tail models.

part of the distribution mass lies within this part (differences in less popular estimates are far less
important).

We note that the observed differences among the traces at the“head of the head” expose an
inherent weakness in any estimate model one might suggest, because the effect of the variance
among these 1-3 estimates is decisive. Consequently, our model will allow (though not mandate)
the user to provide information regarding top-ranking estimates as model parameters (this will be
further addressed in the next section). As for the default, recall that a job estimating to run for
the maximal allowed value (Emax) is the worst kind of job in the eyes of a backfilling scheduler
(Section 5.2). For this reason, we prefer the default model to follow the CTC example by making
the (single) top ranking estimate “break” the exponential contiguity. This significant job percentage
will later be associated withEmax to serve as a realistic worst case scenario. We therefore define
Fpop as follows

Fpop(i) =

89 −
∑20

j=2

(
αeβ·j + γ

)
i = 1

αeβ·i + γ i = 2, 3, ..., 20
ω · iρ · 100−89

λ
i = 21, 22, ..., K

Starting with the (simplest) middle branch,Fpop is determined by the exponential model for all
head popularity ranks but the first (the default values for the coefficients are specified in the caption
of Fig. 5.7). The first branch is defined so as to preserve the invariant shown in Table 5.2 that the
twenty top ranking estimates are enough to cover almost 90% of the jobs. Finally, the third branch
determine sizes of tail estimates according to a power law (again, coefficient values are specified in
Fig. 5.7). But to preserve the constraint that

∑K
i=1 Fpop(i) = 100, tail sizes are scaled by a factor of

100−89
λ

, whereλ is the sum of the tail:
∑K

i=21 ω · iρ. The resulting default curve is almost identical
to the one associated with the model as presented in Fig. 5.7,with a top rank of a bit more than
20% (to be associated withEmax).

90 Modeling User Runtime Estimates

 0
 20
 40
 60
 80

 100

 0 20 40 60 80 100

SDSC-106

norm. popularity-rank [%]

no
rm

. t
im

e-
ra

nk
 [%

]

 0
 20
 40
 60
 80

 100

 0 20 40 60 80 100

CTC

norm. popularity-rank [%]

no
rm

. t
im

e-
ra

nk
 [%

]

 0
 20
 40
 60
 80

 100

 0 20 40 60 80 100

KTH4H

norm. popularity-rank [%]

no
rm

. t
im

e-
ra

nk
 [%

]

 0
 20
 40
 60
 80

 100

 0 20 40 60 80 100

BLUE

norm. popularity-rank [%]

no
rm

. t
im

e-
ra

nk
 [%

]

Figure 5.8: Scatter plots of relative popularity-ranks vs. relative time-ranks appear to reveal a uniform
distribution across all traces.

SDSC−106

0

20

40

60

80

100

no
rm

. t
im

e−
ra

nk
 [%

]

0

20

40

60

80

100

0 20 40 60 80 100

norm. popularity−rank [%]

0 20 40 60 80 100

0−20% 20−40% 40−60% 60−80% 80−100%

CTC

0

20

40

60

80

100

0 20 40 60 80 100

KTH4H

0

20

40

60

80

100

0 20 40 60 80 100

BLUE

0

20

40

60

80

100

0 20 40 60 80 100

Figure 5.9: Aggregating the data shown in Fig. 5.8 into a grid-based heat-map reveals no further insight,
other than a consistent tendency of popular estimates to be short (bottom-left black cells).

5.10 Mapping Time to Popularity

The next step after separately generating the estimates’ time {ti}
K
i=1 and popularity{pj}

K
j=1 is

figuring out how two construct a bipartite matching between the two. We seek a functionFmap

such thatFmap(i) = j, that is, we want to map each time-rank to a popularity-rank in a manner
that yields estimate distributions similar to those found in the original traces (Fig. 1.14, page 22).

5.10.1 Mapping of Tail Estimates

As a first step towards constructingFmap, let us examine this mapping as it appears in the four
traces. Fig. 5.8 scatter plots normalized popularity-ranks vs. normalized time-ranks: one point per
estimate.4 The points appear to be more or less uniformly distributed, which means there is no
apparent mapping rule.

In an effort to expose some trend possibly hidden within the “disorder” of the scatter plots, we
counted the number of points in each grid-cell within Fig. 5.8. We then generated an associated
heat-map for each sub-figure by assigning a color based on thepoint-count of each cell: cells that
are populated by 80-100% of the maximal (cell) point-count found within the sub-figure (denoted
C), are assigned with black; cells populated by 0-20% ofC are assigned with white; the remaining
cells are assigned with a gray intensity that is linearly proportional to their point-count, batched in
multiples of 20% ofC.

4A scatter plot of actual values turns out to be meaningless.

5.10 Mapping Time to Popularity 91

The result, displayed in Fig. 5.9, appears to strengthen ourinitial hypothesis that the map-
ping between popularity-ranks and time-ranks is more or less uniformly random, as other than
the bottom-left cell being consistently black (top-20 popular estimates show tendency of being
shorter), there is no consistent pattern that emerges when comparing the different traces.

Our next step was therefore to randomly map between time and popularity ranks. Regrettably,
this resulted in failure, as the generated CDFs were significantly different than those displayed
in Fig. 1.14 (page 22), because “big modes” fell in wrong places. The fact of the matter is that
when (uniformly) randomly mapping between time and popularity ranks, there is a nonnegligible
probability that the 4-5 most popular estimates are assigned to (say) times in the proximity of the
maximal value, which means that the majority of the distribution mass is much too long. Alterna-
tively, there is also a nonnegligible probability that the opposite will occur, namely, that none of
the more popular estimates will be assigned to a time in the proximity of Emax, contrary to our
previous findings.

We conclude that it is tail estimates (in terms of popularity) that are roughly randomly mapped
to times in a uniform manner, forming the relatively balanced scatter plot observed in Fig. 5.8. This
appearance is created due to the fact there are much more tailestimates (few hundreds) than head’s
(20). The head estimates minority, which nevertheless constitute 90% of the mass, distributes
differently and requires a greater modeling effort.

5.10.2 Determining Head Times

We have reached the point where the effort to model user estimates is reduced to simply deter-
mining 20 actual time-values and mapping them correctly to the appropriate (head) sizes. In other
words, our task is as simple as producing 20(ti, pi) pairs. These are good news, as the number
of samples is small enough to allow a thorough examination ofthe entire sample-space. The bad
news is that unlike previous parts of the model that are actually relatively trivial, and in spite of
considerable efforts we’ve made, we failed to produce asimplemethod to accomplish the task.
In the interest of practicality and space, we do not describeour various unsuccessful attempts to
produce a simple straightforward solution. Instead, we concentrate on describing the sophisticated
algorithm we’ve developed that has finally managed to deliver satisfactory results.

Let us examine the relevant sample space. Table 5.5 lists the20 most popular estimates in each
trace, and their associated sizes (percent of jobs). Of the 36 values displayed, a remarkable 15 are
joint timesacross all traces (we ignore KTH4H when deciding which values, bigger than 4h, are
joint). The joint times are highlighted in bold font, and have values one would expect from humans
to ordinarily use. Note that this is regardless of the different per-trace maximal estimate limits. We
conclude that joint times should be hard-coded in our model,as it is fairly reasonable to conjecture
humans will always extensively use values like 15 minutes, 1hour, etc. We therefore define the
first head-mapping step — determining the 20 time values thatare the most popular — as follows:

1. ChooseEmax, the maximal estimate (which is a mandatory parameter of ourmodel). As
previously mentioned, this is always a top ranking value.

2. Choose all hard-coded joint times that are smaller thanEmax.

3. Choose in descending order multiples ofTround (smaller thanEmax), whereTround is 200h,

92 Modeling User Runtime Estimates

estimate SDSC-106 CTC KTH4H BLUE
hh:mm

1 00:01 6.6(4)

2 00:02 4.0(10)

3 00:03 2.2(14)

4 00:04 1.2(20)

5 00:05 11.3(1) 8.8(3) 11.5(2) 2.7(7)

6 00:10 7.9(4) 6.4(4) 9.6(3) 4.3(6)

7 00:12 1.2(17)

8 00:15 3.0(13) 10.6(2) 5.3(7) 16.0(3)

9 00:20 4.8(7) 2.0(12) 3.1(12) 2.5(8)

10 00:30 4.7(8) 3.5(9) 5.5(6) 17.7(2)

11 00:40 1.3(19) 0.5(19)

12 00:45 1.1(18)

13 00:50 0.5(20)

14 01:00 10.5(2) 4.2(8) 5.8(5) 4.9(5)

15 01:30 0.8(18) 1.3(18) 1.5(12)

16 01:40 1.4(16)

17 01:59 6.0(4)

18 02:00 5.3(6) 5.4(6) 4.5(9) 21.3(1)

19 02:10 1.3(17)

20 02:30 1.2(16) 1.4(15)

21 03:00 3.8(10) 4.9(7) 2.5(13) 1.8(10)

22 03:20 5.1(8)

23 03:50 3.3(11)

24 04:00 5.7(5) 2.2(11) 12.5(1) 1.6(11)

25 04:50 0.6(20)

26 05:00 1.4(15) 1.1(16) 0.9(15)

27 06:00 2.0(14) 6.1(5) 1.0(14)

28 07:00 0.9(19)

29 08:00 3.4(11) 1.5(14) 0.8(17)

30 10:00 3.3(12) 1.7(13) 0.9(16)

31 12:00 4.0(9) 2.2(10) 0.6(18)

32 15:00 0.9(20) 1.5(15)

33 16:00 1.0(17)

34 17:00 0.6(19)

35 18:00 9.8(3) 23.8(1) 2.1(9)

36 36:00 1.1(13)

sum (all) 86.4 88.9 89.3 88.7
sum (joint) 81.2 84.4 60.4 79.1

Table 5.5: The top-20 most popular modes in the four traces. Each columncontains exactly 20 job percent
values. Note that 15 of the top-20 estimates are joint acrossall traces (excluding KTH4H for estimates
bigger than 4 hours). Joint estimates are highlighted in bold font. The parenthesized subscripts denote the
associated popularity-ranks (e.g. in BLUE, 2h is the most popular value used by21.3% of the jobs). Notice
that the sum of each column is invariantly in the neighborhood of 89%, the value we used in Section 5.9 to
defineFpop.

5.10 Mapping Time to Popularity 93

then 100h, 50h, 10h, 5h, 2h, 1h, 20m, 10m, and 5m. We stop when the number of (different)
chosen values reaches 20.

The role of the third item above is to add arelative aspect to the process of choosing popu-
lar estimates, which is largely hard-coded. As will later beshown, this manages to successfully
capture KTH4H’s condensed nature. At the other end, workloads with larger estimate domains, of
jobs that span hundreds of hours, do in fact exist [17]. Regrettably, their owners refuse to share
them with the community. Nevertheless, our algorithm generates longer times based on the modes
they report (400h, 200h, 100h, and 50h in the NCSA O2K traces).

Finally, recall we have already generatedK time values usingFtim defined in Section 5.8.
Head times generated here, replace the 20 values generated by Ftim that are the closest to them
(and so the structure reported in Fig. 5.5 is preserved).

5.10.3 Mapping of Head Estimates

Having both head times (seconds) and sizes (job percentages), we go on to map between them. As
usual, mapping is made possible by using the associated ranks, rather than the actual values. For
this purpose we need two new definitions:

First, we define a new type of time-rank, thetop-20 time rank(or ttr for short), which is
rather similar to the ordinary time-rank: All top-20 times,excludingEmax, are ascendingly sorted.
The first is assigned a ttr=1, the second a ttr=2, and the last attr=19. For example, according to
Table 5.5, in CTC, 00:05 has ttr=1, 00:10 has ttr=2, 01:30 hasa ttr=7, and 17:00 has a ttr=19.Emax

is always associated with ttr=0.
Second, for each trace-filelog, we define a functionFlog that maps ttr-s to the associated pop-

ularity ranks, within that log. For example,Fctc(0)=1 asEmax=18h (associated with ttr=0) is its
most popular estimate. Likewise,Fctc(1)=3, as 5min is the smallest top-20 estimate (ttr=1) and is
the third most popular estimate within CTC. Table 5.6 listsFlog of the four traces. Recall that 2h
is the effectiveEmax of BLUE and therefore this is the estimate we choose to associate with ttr=0.
Additionally, note the BLUE 01:59 mode near itsEmax=2h (Table 5.5). This is probably due to
users trying to enjoy both worlds: use the maximal value, while “tricking” the system to assign
their jobs a higher priority as a result of being shorter. We are not interested (nor able) to model
such phenomena. Therefore, in the generation of Table 5.6 and throughout the reminder of this
chapter, we aggregate the 01:59 mode with that of 2h and consider them a single 27.3% mode.

The Flog functions in Table 5.6 reflect reality, and are in fact the reason for the log-uniform
CDFs observed in Fig. 1.14 (page 22). We therefore seek an algorithm that can “learn” these
functions and be able to imitate them. Given such an artificial Flog, we would finally be able to
match head-sizes (produced in Section 5.9, their size defines their popularity rank) to head-times
(produced in Section 5.10.2, their value defines their ttr-s) and complete our model.

At first glance, the fourFlog functions appear to have little similarities (the correlation coeffi-
cient between the columns of Table 5.6 is only 0.1-0.3), seemingly deeming failure on the general-
ization attempt. However a closer inspection reveals some regularities. Consider for example the
more popular (and therefore more important to model) ranks:at least three of four values of each
such rank are clustering across neighboring lines (ttr-s).This is made clearer in Fig. 5.10.

Another observation is that when dividing popularity-ranks into two (1-10 vs. 11-20), around
75% of the more popular ranks are found in the top half of Table5.6, which indicates a clear

94 Modeling User Runtime Estimates

ttr Fsdsc−106 Fctc Fkth4h Fblue

0 3 1 1 1
1 1 3 4 6
2 4 4 10 5
3 17 2 14 3
4 13 12 20 7
5 7 9 2 2
6 8 8 3 18
7 18 18 7 19
8 2 6 12 4
9 6 7 6 11

10 16 11 19 20
11 10 20 5 9
12 5 16 18 10
13 15 5 16 14
14 14 14 9 13
15 19 13 17 16
16 11 10 15 15
17 12 15 13 17
18 9 17 8 8
19 20 19 11 12

Table 5.6: TheFlog functions of the four traces. The four most popular ranks in each trace are highlighted
in bold font.

 14
 12
 10

 8
 6
 4
 2
 0

 7 6 5 4 3 2 1

ttr
 r

an
ge

 o
f

cl
os

es
t t

hr
ee

popularity rank

Figure 5.10: There is only 0-3 difference between the closest three ttr-sthat are associated with the more
popular ranks (Table 5.6). For example, 3 of the ttr-s associated with popularity rank 2, are located in rows
3-5 in Table 5.6 (underlined and highlighted in a different color). In the above figure, this corresponds to
range-bar associated with popularity rank 2 that stretchesbetween lines 3-5.

tendency of more popular ranks to be associated with smallerttr-s. (This coincides with the log-
uniformity of the original estimate distributions). It is our job to capture these regularities.

In the initialization part of our algorithm, which we call thepool algorithm, we associate ttr=0
(of Emax) with popularity rank=1, that is, the maximal estimate is also the most popular. The
rationale of this decision is that

1. according to Table 5.6 this is usually the case in real traces,

2. as explained in Section 5.2, makingEmax the most popular estimate constitutes a realistic
worst case scenario, which is most appropriate to serve as the default setting, and

3. it is the “safest” decision due to the constraint that estimates must be longer than runtimes.

5.10 Mapping Time to Popularity 95

The last two items are the reason why we chose to follow the CTCexample and enforce a sizable
first rank on the construction ofFpop (end of Section 5.9) that “breaks” the exponential contiguity
observed in Fig. 5.7. To complete the initialization part, we allocate an empty vectorVpool des-
ignated to hold popularity ranks. Any popularity rank may have up to four occurrences within
Vpool.

The body of the pool-algorithm iterates through the rest of the ttr-s in ascending order (Jttr =
1, ..., 19) and performs the following steps on each iteration:

1. For each trace filelog, insert the popularity rankFlog(Jttr) to Vpool, but only if this rank
wasn’t already mapped to some smaller ttr in previous iterations. (In other words, insert all
the values from within theJttr line in Table 5.6, that weren’t already chosen.)

2. If there exists popularity ranks that have four occurrences withinVpool, choose the smallest
of these ranksR, mapJttr to R, remove all occurrences ofR from Vpool, and move on to the
next iteration.

3. Otherwise, randomly choose two (not necessarily different) popularity ranks from within
Vpool, map the smaller of these toJttr, and remove all its occurrences fromVpool.

A main principle of the algorithm is the gradual iteration over Table 5.6, such that no popularity-
rankR is eligible for mapping toJttr, before we have actually witnessed at least one occasion in
whichR was mapped to a ttr that is smaller than or equal toJttr. This aims to imitate the original
Flog functions, along with serving as the first safety-mechanismobstructing more popular ranks
to be mapped to longer estimates (recall that estimate CDFs are log-uniform, which means most
estimates are short).

Another important principle of the algorithm is that increased number of occurrences of the
sameR within Vpool, implies a greater chance ofR to be randomly chosen. And so, anR that is
mapped to a ttr≤ Jttr within two traces (two occurrences withinVpool), has double the chance
of being chosen in comparison to a popularity rank for which this condition holds with respect to
only one trace (one occurrence withinVpool). This aspect of the algorithm also aims to capture the
commonality between the various traces.

Item number two in the algorithm tries to make sure anR will not be mapped to a ttr that is
bigger thanall the ttr-s to which it was mapped in the four traces. Like the first principle mentioned
above, this item has the role of making sure the resulting mapping isn’t too different than that of
the original logs. It also serves as the second safety-mechanism limiting the probability of more
popular ranks to be mapped to longer estimates.

The combination of the above “safety mechanisms” was usually enough to produce satisfactory
results. However, on rare occasions, too many high popularity ranks have managed to nevertheless
“escape” these mechanisms and be mapped to longer estimates. Adding a third safety-mechanism,
in the form of using the minimum between two choices of popularity ranks (third item of the
algorithm), has turned this probability negligible.

5.10.4 Embedding User-Supplied Estimates

While the estimate distributions of the traces bare remarkable resemblance, they are also very
distinct within the “head of the head” (as discussed in Section 5.9), that is, the 1-3 most popular

96 Modeling User Runtime Estimates

estimates. For example, considering Table 5.5, the difference between the percentage of SDSC and
CTC jobs associated with 18h (10% vs. 24%) is enough to yield completely different distributions.
Another example is BLUE’s shift of the maximum from 36h to 2h,or its two huge modes in
15min and 30min; the fact that more than 60% of its jobs use oneof these estimates (along with
01:59), cannot be captured by any general model. Yet anotherexample is KTH4H’s unique modes
below 5min. This variance among the most important estimatebins, along with the fact users may
be aware of special queues and other influential technicalities concerning their site, mandates a
general model to allow its user to manually supply head estimates as parameters.

To this end, we allow the user to supply the model with a vectorof up to 20(ti, pi) pairs. The
manner in which these pairs are embedded within our model is the following: Theti values replace
default-generated head times (Section 5.10.2) that are theclosest to them, with the exception of
Emax which is never replaced unless explicitly given by the user as one of the(ti, pi) pairs. (This
is due to the reasons discussed in Section 5.10.3.) As an example, in order to effectively replace
the maximal value of BLUE, the user must supply two pairs:(36h, 1%) to prevent the model from
making the old maximum (36h) the most popular estimate, and(2h, 27%) to generate the new
maximum.

Similarly to times, user suppliedpi sizes (job percents) replace default-generated sizes (Sec-
tion 5.9) that are the closest to them. Once again, the biggest value (reserved forEmax) is not
replaced if the user did not supply a pair containingEmax. Additionally, the remaining non-user
head-sizes are scaled such that the total mass of the head is still 89% (scaling however does apply to
the largest non-user size). If scaling is not possible (sum of user sizes exceed 89%), non-user head-
sizes are simply eliminated, and the tail sizes are scaled such that the sum of the entire distribution
is 100%.

Finally, the pool algorithm is refined to skip ttr-s that are associated with user-supplied esti-
mates and to avoid mapping their associated popularity ranks.

5.11 Overview of the Model

Now that all the different pieces are in place, let us briefly review the default operation of the
estimates model we have developed:

1. Get input. The mandatory parameters are maximal estimatevalueEmax, and number of jobs
N (which is the number of estimates the model must produce as output). A third, “semi
mandatory”, parameter is the percentage of jobs associatedwith Emax. While the model can
arbitrarily decide this value by itself, its variation in reality is too big to be captured by a
model, whereas its influence on performance results is too detrimental to be ignored (Emax

jobs are the “worst kind” of jobs in the eyes of the scheduler;Section 5.2).

2. Compute the value ofK (different estimate times) as defined in Section 5.7.

3. GenerateK time-values usingFtim as defined in Section 5.8.

4. Generate 20 “head” time-values using the algorithm defined in Section 5.10.2 and combine
them with theK time-values produced in the previous item. Non-head times are denoted
“tail” times.

5.12 Validating the Model 97

5. GenerateK sizes (jobs percent) usingFpop as defined in Section 5.9. The largest 20 sizes
are the head sizes. The rest are tail.

6. Map between time- and size-values usingFmap as defined in Section 5.10, by

• Randomly mapping between tail-times and tail-sizes in a uniform manner (Section 5.10.1).

• Mapping head-times and head-sizes using the pool algorithm(Section 5.10.3).

7. If received user supplied estimate bins, embed them within the model as described in Sec-
tion 5.10.4.

5.11.1 About the Complexity

The only part which is non-trivial in our model is the pool algorithm: Generating the estimate time
values by themselves is a trivial operation. Generating sizes (percentages of jobs) is equally trivial.
Mapping between these two value sets is also a relatively easy operation, as all but the 20 most
popular sizes can be randomly mapped. All the complexity of the model concentrates in solving the
problem of deciding how many jobs are associated with each “head” estimate, or in other words,
where exactly to place the larger modes. The question of whether a simpler alternative than the
one suggested here exists, is an open one, and it is conceivable there’s a positive answer. However,
all the “immediate” heuristics we could think of in order to perform this task in a simpler manner
have been checked and verified to be inadequate. In fact, it isthese inadequacies that has lead us
step by step in the development of the pool algorithm.

5.12 Validating the Model

Having implemented the estimate model, we now go on to validate its effectiveness. This is essen-
tially composed of two parts. The first is obviously making sure that the resulting distribution is
similar to that of the traces (Section 5.12.1). However, this is not enough by itself, as our ultimate
goal is to allow realistic performance evaluation. The second part is therefore checking whether
performance results obtained by using the original data arecomparable to those produced when
replacing original estimates with artificial values produced by the model (Section 5.12.3). The
latter part mandates developing a method according to whichartificial estimates are assigned to
jobs (Section 5.12.2).

5.12.1 Validating the Distribution

Fig. 5.11 plots the original CDFs (solid line) against thosegenerated by the “vanilla” model using
various seeds. The only input parameters that are given to the model are those listed in Section 5.11,
that is, the maximal estimateEmax, then number of jobsN , and the percentage of jobs associated
with Emax. Recall that BLUE’s maximum is considered to be 2 hours and that in order to reflect
this we must explicitly supply the model with an additional pair (Section 5.10.4).

The results indicate the model has notable success in generating distributions that are remark-
ably similar to that of SDSC-106 and CTC; it is far less successful with respect to the other two
traces. However, this should come as no surprise because, asmentioned earlier, the model has no

98 Modeling User Runtime Estimates

 0

 20

 40

 60

 80

 100

36
h

18
h8h4h2h1h

30
m

15
m5m1m

SDSC-106

estimate

C
D

F
 [%

]

seed0
seed1
seed2
seed3

orig

36
h

18
h8h4h2h1h

30
m

15
m5m1m

CTC

estimate

C
D

F
 [%

]

36
h

18
h8h4h2h1h

30
m

15
m5m1m

KTH4H

estimate

C
D

F
 [%

]

36
h

18
h8h4h2h1h

30
m

15
m5m1m

BLUE

estimate

C
D

F
 [%

]

Figure 5.11: The original estimate distribution of the traces (solid lines) vs. the output of the vanilla
model, when used with four different seeds. Output is less successful for traces with unique features.

 0

 20

 40

 60

 80

 100

36
h

18
h8h4h2h1h

30
m

15
m5m1m

SDSC-106

estimate

C
D

F
 [%

]

seed0
seed1
seed2
seed3

orig
36

h
18

h8h4h2h1h
30

m
15

m5m1m

CTC

estimate

C
D

F
 [%

]

36
h

18
h8h4h2h1h

30
m

15
m5m1m

KTH4H

estimate

C
D

F
 [%

]

36
h

18
h8h4h2h1h

30
m

15
m5m1m

BLUE

estimate

C
D

F
 [%

]

Figure 5.12: Output of the model under the “improved” setting which provides minimal information
identifying the unique features.

pretense of reflecting abnormalities or features that are unique to individual traces. In the case of
KTH4H, these are the large modes that are found below 5 minutes (Table 5.5). In fact, if aggre-
gating these modes with that of 5 minutes, we get that a remarkable 25.5% of KTH4H’s jobs have
estimates that are 5 minutes or less, which is inherently different in comparison to the other traces.
In the case of BLUE, its uniqueness takes the form of two exceptional modes located at 15 and 30
minutes. This distinctive quality is especially apparent in Fig. 5.7, where the three biggest modes
“break” the log-uniform contiguity.

The practical question is therefore if the model can producegood results when provided with
minimaladditional information highlighting the trace-specific abnormalities. The amount of such
information is inherently limited if we are to keep the modelapplicable and maintain its practical
value. We therefore define the “improved” setting in which the KTH4H model is provided with the
additional(5min, 25%) pair. The BLUE model is provided with two additional pairs associated
with its two exceptional modes:(15min, 16%) and(30min, 18%).

The results of the improved setting are shown in Fig. 5.12 andindicate that this additional in-
formation was all that the model needed in order to produce satisfactory results (also) with respect
to the two “unique” traces. To test the impact of additional information on situations where the
vanilla model manages to produce reasonable results by itself, the improved setting supplied three
additional pairs (of the most popular estimates) when modeling CTC and SDSC-106. It is not
apparent whether the additional information made a qualitative difference.

The important conclusion that follows from the successful experiment we have conducted in

5.12 Validating the Model 99

this section, is that estimate distributions are indeed extremely similar: Most of their variance con-
centrates within the 1-3 most popular estimates, and once these are provided, the model produces
very good results.

5.12.2 Assigning Estimates to Jobs

The next step in validating the model is putting it to use within a simulation. For this purpose
we have decided to simulate the EASY scheduler and evaluate its performance under the four
workloads. This can be done with original estimates or afterreplacing them with artificial values
that were generated by our model. Similar performance results would indicate success.

The common practice when modeling a parallel workload is to define canonical random vari-
ables to represent the different attributes of the jobs, e.g. runtime, size, inter-arrival time etc.
[30, 77, 99]. Generating a workload ofN jobs is then performed by creatingN samples of these
random variables. Importantly, each sample is generatedindependentlyof other samples.

In this respect, the assignment of artificial estimates to jobs is subtle, as this must be done under
the constraint that estimates mustn’t be smaller than the runtimes of the jobs to which they are
assigned. Here, we can’t just simply randomly choose a value. However, if independence between
jobs is still assumed, we can easily overcome the problem by using therandom shuffle algorithm.
This algorithm gets two vectorsVestimate andVruntime that holdN values as suggested by their
names. The content of both vectors is generated as usual, according to the procedure described
above (under the assumption of independence). Now all that is needed is a random permutation
that maps between the two, such that every estimate is equal to or bigger than its associated runtime.
The random shuffle algorithm finds such a permutation as follows. First, it sorts the two vectors;
call the sorted versionsSVestimate andSVruntime. Next, it iterates throughSVruntime from the top
down, i.e. starting with the largest runtimes. For each runtimeSVruntime[i], it finds the smallest
index j such thatSVruntime[j] ≥ SVruntime[i]. This identifies the legal estimates to use: they
are those from that index to the end. The algorithm then picksone of these estimates at random,
and pairs is with theith runtime. After values are paired, they are removed from their respective
vectors.

Note that we do not claim that the independence assumption underlying the random shuffle
algorithm is correct. On the contrary. We only argue that this is the common practice. However,
there is a way to transform the original data such that this assumption holds: The algorithm can
be applied to the original data, that is, we can populate theVestimate vector with original trace
estimates and reassign them to jobs using the shuffle algorithm. The outcome of doing this would
be that the original estimates are “randomly shuffled” between jobs (which is the source of the
algorithm’s name). The result of such shuffling is to create independent “real” estimates. This is
suitable as a basis for comparison with our model, as explained below.

5.12.3 Validating Performance Results

Several estimate-generation models have been evaluated and compared against the original data:

• TheX2-model: simply doubles user estimates on the fly (as in e.g. Chapter 4).

• Theshfl-model: the result of applying the random shuffle algorithm (defined above) to the
original data. As noted, assuming independence in this context is correct.

100 Modeling User Runtime Estimates

SDSC−106

X
2

sh
uf f0 f1 f3 f1
0

f1
00

f3
00 Φ

va
nl

im
pr

bo
un

de
d

sl
ow

do
w

n

70

80

90

100
CTC

X
2

sh
uf f0 f1 f3 f1
0

f1
00

f3
00 Φ

va
nl

im
pr

2

3

4

5
KTH4H

X
2

sh
uf f0 f1 f3 f1
0

f1
00

f3
00 Φ

va
nl

im
pr

11

12

13

14
BLUE

X
2

sh
uf f0 f1 f3 f1
0

f1
00

f3
00 Φ

va
nl

im
pr

24

28

32

36

SDSC−106

model

X
2

sh
uf f0 f1 f3 f1
0

f1
00

f3
00 Φ

va
nl

im
pr

w
ai

t [
m

in
ut

es
]

280

320

360

400

original

CTC

X
2

sh
uf f0 f1 f3 f1
0

f1
00

f3
00 Φ

va
nl

im
pr

12

16

20

24
KTH4H

X
2

sh
uf f0 f1 f3 f1
0

f1
00

f3
00 Φ

va
nl

im
pr

11

12

13

14
BLUE

X
2

sh
uf f0 f1 f3 f1
0

f1
00

f3
00 Φ

va
nl

im
pr

100

110

120

130

140

Figure 5.13: Validating badness. The reason for the peculiar results associated with the average wait time
of SDSC and BLUE remain unknown.

• Thef -model (see Sec.5.2). In accordance with [108], six values of f were chosen: 0 (com-
plete accuracy), 1, 3, 10, 100, and 300.

• TheΦ-model (see Sec.5.2).

• Thevanl-model: the vanilla setting of the model developed in this chapter (defined above).

• The impr-model: the improved setting of our model, supplying it withsome additional in-
formation (defined above).

NoticeX2 andshflaren’t models per-se as both are based on real estimates. The“competitors” of
our model aref andΦ (producing estimates based on runtime).

Performance results are shown in Fig. 5.13 in the usual form of average wait time and bounded
slowdown. The black dotted lines present the results of running the simulations using the original
data. Therefore, models that are closer to this line are morerealistic. Recall that our aim here
is not to improve performance. Rather, it is to produce trustworthy results that are closest to
reality. All the results associated with models that contain a random component (all butX2andf0)
are the average of one hundred different simulation runs employing different seeds. The error-bars
associated with these models display the absolute-deviation (average of absolute value of deviation
from the average).

When examining Fig. 5.13, it is clear the two variants of our algorithm are more realistic,
in that they are closer to the real thing (compare withf -s andΦ). Another observation, which
reaffirms our results from Chapter 3 is that using increasedf -s to model increased user inaccuracy

5.12 Validating the Model 101

(for the sake of realism) is erroneous, asf0 usually produces results that are much closer to the
truth. In fact,f0 is usually comparable to the results obtained by our model with the exception
of the SDSC trace. However, this is limited to the FCFS-basedEASY scenario: if introducing a
certain amount of limited SJF-ness to the scheduler (e.g. asin SJF, SJBF, LXF&W, etc.),f0 yields
considerably better performance results in comparison to the original, whereas our model stays
relatively the same (not shown). Another scenario in whichf0 can’t be used is when evaluating
system-generated runtime predictors that make use of estimates to make predictions (as in Chapter
4). Finally (returning to the context of EASY), unlikef0, our model has room for improvement as
will shortly be discussed, and we believe it has potential to“go the extra mile”.

A key point in understanding the performance results is noticing that the vanilla setting of
our algorithm is surprisingly more successful in being closer to the original than its improved
counterpart. This is troublesome as our entire case is builton the argument that models that are
more accurate would yield results that are closer to the truth. The answer to the riddle is revealed
when examining theshflmodel. The fact of the matter is that one cannot get more accurate than
shfl, as it “generates” a distribution that isidentical to that of the original. Yet it too seems to
be inferior to our vanilla model. This exposes our independence assumption (the random shuffle
algorithm) as the true guilty party which is responsible forthe difference betweenimpr and the
original. The correct comparison betweenimpr andvanl should actually be based on which is
closer toshfl, not to the original, as only withshflcan independence be assumed. Based on this
criterion,impr is consistently better thanvanl.

Once this is understood, we can also explain why the performance ofimpr (in terms of wait and
slowdown) is always better than that ofvanl. Consider the difference between the two models:impr
simply has much more accurate data regardingshorterjobs (e.g. KTH4H’s 25% of 5 minutes jobs).
As short jobs benefit the most from the backfilling optimization, impr consistently outperforms
vanl (in absolute terms).

5.12.4 Repetitiveness is Missing

We are currently not interested in artificially producing worse results by means of “falsely” boost-
ing up estimates (as is done byvanl with respect toimpr). This would be equivalent to, say,
increasing the fraction of jobs that estimate to runEmax, which can arbitrarily worsen results.
Our current goal is creating a reliable model. The above indicates that the problem lies in the
assumption of independence, namely, the manner we assign estimates to jobs. While it is possible
that this is partially because we neglected to enforce the accuracy to be as displayed in Fig. 1.4
(the accuracy histograms of evenshflare dissimilar to that of the original), we conjecture that the
independence assumption is more acute.

It has been known for over a decade that the work generated by users is highly repetitive [48]
(a fact which was exploited in the Chapter 4 to make predictions). Recent work [173, 133, 148]
suggests that the correct way to model a workload is by viewing it as a sequence ofuser sessions,
that is, bursts of very similar jobs by the same user. This doctrine suggests that a correct model
cannot just draw values from a given distribution while disregarding previous values as is done by
most existing parallel workload models (e.g. [30, 77, 21, 99]). The rationale of this claim is that
the repetitive nature of the sequence within the session mayhave a decisive effect on performance
results (as in the example we have given in Sec. 1.3.4, where achange of 30 seconds in one job
resulted in a 8% change in the average performance ofall due to the flurry session).

102 Modeling User Runtime Estimates

Since users tend to submit bursts of jobs having the same estimate value (Fig. 1.6, page 14), the
end result is somewhat similar to that of the existence of estimates modes, but in a more “temporal
sense”: At any time instance, jobs within the wait-queue tend to look the same to the scheduler,
as jobs belonging to the same session usually share the same estimate value. Consequently, the
scheduler has less flexibility in making backfilling decision and the performance is negatively
effected. Ourshfl algorithm, along with all the rest of the models, do not entail the concept of
sessions and therefore result in superior performance in comparison to the original.

To make out model complete, one must first develop a session-based model. This work is
underway, but is far beyond the scope of this dissertation [148, 130].

5.13 Conclusions

For the conclusion of this chapter, we refer the reader to Section 7.2 (page 124).

103

Chapter 6

Workload Flurries and Data Sanitization

6.1 Introduction

Context The performance of a computer systems is a product of the workload to which they are
subjected, as much as it is a product of their design and implementation [40]. Indeed, different
workloads may lead to different absolute performance numbers, and in some cases to different
relative ranking of systems or designs. Using representative workloads is therefore crucial in
order to obtain reliable performance evaluation results. One canonical way to obtain representative
workloads is to use logs that record the activity experienced by real productions systems. These
can then be used as follows

• If a recorded system has a similar functionality to a new system being evaluated, one can
assume that the same workload may apply. One can therefore “play back” the recording to
drive a simulation of the new system and use the results as predictors of performance.

• Even if the new system differs from existing systems, the recorded workloads can be valu-
able: if the new system design is shown to produce good results when applied to a wide
range of recorded workloads, one has strong indication thatthe results are general and rep-
resentative. (This is largely the approach we have taken in this dissertation.)

• Alternatively, recorded workloads can be used as the basis for constructing a workload
model, as was done in the previous chapter. This has two benefits. First, it often reveals
insights and understandings that may lead to a better systemdesign. Additionally, the output
of a model can be put to use within the above two items; in this context, a model allows
a more flexible usage than an actual log, as its parameters canbe easily varied to reflect
different system configurations.

All of the above are standard, heavily used, methodologies.Researchers share many logs of a
wide variety of computer systems and use them to improve those systems in the aforementioned
manner. The logs are routinely used as-is, no questions asked. The fundamental justification for
this approach is the perception that recorded workloads reflect actual events that really did happen.
And if it happened, it is “representative” (of the type of events the associated system must handle),
and therefore must be included in the evaluation. We challenge this perception, and the remainder
of this section is devoted to explaining why.

104 Workload Flurries and Data Sanitization

28000

29000

job size
1 2 4 8 16 32 64 128

nu
m

be
r

of
 jo

bs

0

1000

2000

3000

4000

system
weekend
night
day

Figure 6.1: Histogram of job sizes from the
NASA Ames iPSC/860, showing abnormally
many single-node system jobs.

time of day
0 4 8 12 16 20 24

jo
bs

 p
er

 3
0

m
in

 [%
]

0
1
2
3
4
5
6
7
8
9 LANL CM5

CTC SP2
SDSC SP2
SDSC Blue
SDSC Paragon

Figure 6.2: Daily arrival pattern on 5 parallel
supercomputers, showing abnormal spike at 3:30
AM on the SDSC Paragon.

Bogus System Activity Large-scale systems often require continuous support fromthe vendors
that installed them. In some cases, a vendor employee is evenstationed at the installation site, so as
to be on hand in case of need. Such employees also perform monitoring tasks and take preventative
measures to avert failures before they happen.

Given the presence of such system staff, the workload observed on the system is actually a
mixture of two classes of workload: work submitted by real users (the system’s “payload”), and
work submitted by the system personnel as part of performingtheir tasks. What we do about this
depends on our goals. If we are only interested in user activity, system staff activity should be
filtered out. But if we are interested in the complete system,then monitoring and maintenance
tasks should be left in, because they are indeed part of what the system has to do.

However, sometimes system staff generate extraneous workload that is obviously bogus. One
striking example was reported in the analysis of the workload on the NASA Ames iPSC/860 hy-
percube [48]. The histogram of job sizes on that 128-node machine indicated that more than half
of the jobs were serial; moreover, most of the serial jobs were flagged as being run by the system
support staff (Fig. 6.1). This turned out to be a result of an ad-hoc method used to verify that
the system was operational and responsive by running the Unix pwd command on a single node.
Overall, a full 56.8% of the trace (24025 jobs) were such check-runs. This type of activity was not
observed on any other parallel system. It is site specific. Thus, it is quite obvious that these jobs
should be removed if the trace is used to analyze or evaluate parallel workloads in general.

Non-Representative Robot Activity Another example is shown in Fig. 6.2. This compares
the daily arrival cycle on 5 different parallel supercomputers. All display the expected periodic
behavior, with load peaking during work hours and lower loads at night. But the SDSC Paragon
machine has an additional and much higher peak between 3:30 and 4:00 AM. Upon investigation,
it turned out that a set of 16 jobs with a distinct profile was executed during this time slice every
day. While specific information is not available, it is reasonable to assume that these jobs served
some system administration function and were executed automatically. It is again obvious that they
should be removed when using the log for evaluations, so as toreduce the danger of optimizing for
this abnormal behavior.

Flurries We believe the above are “easy to digest” examples, in that most analysts would agree
that the associated abnormal data should be sanitized before being used. This chapter is largely de-
voted to a previously unknown, less obvious anomaly, called“workload flurries”. Flurries consist

6.2 A Case Study of Instability 105

of rare, huge surges of repetitive activity by single users that dominate the workload for a limited
time (see more precise definition in Section 6.3). They have two types of effects on performance
evaluation. One is in the context of workload modeling, and specifically the fitting of statistical
distributions to workload data. The existence of a flurry mayalter workload statistics, leading to
the use of un-representative values by an unwary analyst. The other is an effect on performance
evaluation results when using the workload trace to drive a simulation. Flurries may cause a sim-
ulation to be very sensitive to fine details of the system configuration or workload, because the
whole flurry reacts to a changeen masseand thereby amplifies its effect. Hence extremely small
modifications may lead to large effects that are not reliablepredictors of real performance.

Roadmap We start in Sec. 6.2 with a detailed example concerning a realworkload trace that
spans two years and records 73,496 parallel jobs. We show that shortening the runtime of asingle
18-hour job by a mere 30 seconds results in an 8% change in the average slowdown ofall the jobs,
solely due to the effect it had on a subsequent 375-job flurry that was submitted by a single user
over a period of 10 hours. This motivates the study of flurriesas unique and important events in
computer workloads in Sec. 6.3. In Sec. 6.4 we show that “cleaning” or “sanitizing” workloads by
deleting the flurries leads to more stable, reliable, and consistent performance evaluation results. In
Sec. 6.5 we show why the removal of flurries is methodologically sound (namely, the correct thing
to do). Flurries also have a detrimental negative effect on modeling activity, as shown in Sec. 6.6,
further motivating their removal. Lastly, in Sec. 6.7, we show that the flurries phenomenon is not
unique to parallel supercomputers and that it is in fact widespread.

6.2 A Case Study of Instability

In this section we present a case study showing how the presence of a flurry leads to unstable
results: very small changes to the workload are amplified by the flurry and lead to an unexpectedly
large change in the results. This example uses the SDSC-SP2 log.

6.2.1 Example of a Butterfly Effect

The largest user runtime estimate (Emax) appearing in the SDSC-SP2 trace is 18 hours, a limit
imposed by the site administrators. Consequently, as jobs are killed once their estimate is reached,
the longest jobs in SDSC-SP2 are limited to 18 hours. However, as we have shown in Fig. 4.2
(page 63), in a real system, it takes some time to propagate the instruction to kill a job to all the
nodes. Therefore the trace indicates that some jobs run for abit more than 18 hours. Of the 73,496
jobs in the trace, only 619 (less than 1%) have runtimes longer than 18 hours.

In a simulation it is possible to change the irregular runtimes to beexactly18 hours. Sur-
prisingly, we found that the average bounded slowdown is rather sensitive to such a change. The
following is a striking example that demonstrates this phenomenon. The attributes of job 64,241
are listed in the left of Fig. 6.3. In our simulation, we have truncated this job’s runtime by a mere
30 seconds, and set it to be exactly 18 hours (a modification of0.0463%). This was theonlychange
we’ve made, that is, we have modified one job out of 73,496 (0.00136%). Remarkably, as a result,
the average bounded slowdown ofall the jobs in the tracechanged from 88.16 to 81.38 — that is,
by about 8%! Moreover, the effect turned out to be dependent on exactly how much the runtime of
this job was changed. Fig. 6.3 shows the effect of different changes to the runtime of job 64,241

106 Workload Flurries and Data Sanitization

 81
 82
 83
 84
 85
 86
 87
 88
 89

+5+4+3+2+118:00:30

-1-2-3-4-5

av
g.

 s
lo

w
do

w
n

job’s runtime [offset given in minutes]

Figure 6.3: Average bounded slowdown (obtained by simulating EASY on the SDSC-SP2 trace) as a
function of the simulated runtime of the specified job. The job’s original runtime is 18:00:30 and so an
offset of +1 means the simulated runtime is 18:01:30.

Attr. Value

ID 64,241

submit 551th day

size 9 nodes

estimate18:00:00

runtime 18:00:30

on the overall average. Note that counterintuitively, the average may change by roughly the same
amount both by enlarging and by reducing the runtime of the job.

6.2.2 The Role of a Flurry in Causing the Effect

In a nutshell, the mechanism leading to the above effect has two components. First, the backfilling
algorithm propagates the small modification to a single job and influences many other jobs. Sec-
ond, a whole flurry of similar jobs are affecteden masse, and their combined weight leads to the
observed change in the global average.

In a batch system, a reduction of 30 seconds in the runtime of ajob has the obvious immediate
(minor) effect of allowing other waiting jobs to obtain the required resources sooner, possibly
allowing them to start earlier by up to 30 seconds. But in the context of a backfill scheduler, a more
important effect is that a modification of 30 seconds is enough to make the difference regarding a
backfilling decision: by terminating 30 seconds earlier, a slightly larger window is opened, and a
job that was previously considered too long to be backfilled may now fit into the available space.
This causes a modification of the schedule down the road. Sucha chain of modifications allows the
effect of one truncated job to accumulate. In our simulation, exactly 2024 jobs were affected by
the truncation of the runtime of job 64,241 (in terms of changed start time). The changes in start
time are depicted in Fig. 6.4, where each affected job is represented by a single point. The rest of
the schedule remained unchanged.

According to the figure, many of the affected jobs have almostzero difference in start time,
and probably reflect the fact that 9 processors became available 30 seconds earlier. The bigger
differences between the original and modified schedules arefocused in two areas: between days
560-570 (10 days after job 64,241), and between days 580-585(a month after), and reflect changes
in backfilling decisions. Nevertheless, the 8% change in theaverage bounded slowdown actually
stems from start-time differences associated with a group of jobs submitted on the 581st day. This
can be seen in Fig. 6.5, that compares between the running averages of the bounded slowdowns
obtained by the two schedules. (The running average at timeT is defined to be the average of

6.2 A Case Study of Instability 107

-60

-40

-20

 0

 20

 40

 60

 550 555 560 565 570 575 580 585st
ar

t-
tim

e
di

ffe
re

nc
e

[h
ou

rs
]

job submission time [days]

Figure 6.4:Shortening job 64,241 by 30 seconds had an effect for more than a simulated month, causing
2,024 subsequent jobs to start earlier or later by up to nearly 60 hours. (Only these jobs are shown.) The Y-
axis indicates the difference between the start time of jobsin the original and truncated simulations (negative
values indicate jobs that started earlier due to the truncation).

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120

 0 200 400 600

ru
nn

in
g

av
g.

 b
sl

d

job submission time [days]

 68

 70

 72

 74

 76

 78

 80

 82

 84

 86

 88

 550 560 570 580

ru
nn

in
g

av
g.

 b
sl

d

job submission time [days]

original

truncated

Figure 6.5:Running average of the bounded slowdown obtained
by the EASY scheduler on the SDSC SP2 trace with/without the
30-second truncation of job 64,241. Left: full trace. Right: zoom
in on the part where start-time differences occur.

-35

-30

-25

-20

-15

-10

-5

 0

 10 11 12 13 14 15 16 17 18 19 20 21

st
ar

t-
tim

e
di

ffe
re

nc
e

[h
ou

rs
]

job submission time [hour of day]

Attr. Value
user 328
jobs 375
submit 581th day
duration10 hours
size 32 nodes
runtime ≈ 1 min
estimate5 min

Figure 6.6:Start-time differences of
the specified flurry jobs by user 328
(X-axis denotes hours on that day).

bounded slowdowns experienced by jobs that were submitted prior to T .) From this figure it is
evident that the major difference in overall average performance was due to changes associated
with jobs that were submitted at the 581th day, and that all the other changes (e.g. between days
560–570) had a negligible effect.

A closer inspection of the data revels that the perceived change is due to a flurry composed of
375 similar jobs that were submitted sequentially over a period of about 10 hours in the 581st day
(exactly one month after the truncated job was submitted). All these jobs were submitted by user
328, required 32 nodes, were estimated to run five minutes, and ran for about one to two minutes;
this is the biggest flurry shown in the right of Fig. 6.9. The running average of the bounded
slowdown of the original and the “truncated” runs were quitesimilar when the first job of this
flurry was submitted (about 1% difference). By the time the last job of the flurry was submitted,
the difference was as high as 9%.

Fig. 6.6 shows the start-time differences associated with the jobs of the flurry (this is a subset
of the data displayed in Fig. 6.4). The jobs’ profile similarity along with the fact that they were

108 Workload Flurries and Data Sanitization

 0

 5

 10

 15

 20

 25

 0 200 400 600 800

pr
oc

es
s

lo
ad

time [days]

weekly avg.

running avg.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800

w
ai

t-
qu

eu
e

le
ng

th

time [days]

Figure 6.7:Evolution of the SDSC SP2 process load and the waiting-queuelength when simulating EASY
on the original trace.

submitted sequentially, explains their tendency to be effected in the same way by changes to the
schedule (in terms of wait time). Note that the effect of shortening the wait time of a job with
runtime of around one minute by 30 hours is a reduction of 1800in its bounded slowdown. This
is a huge figure compared to the average bounded slowdown of the entire trace (less than 90), a
fact that explains the considerable difference between theslowdown averages of the truncated and
original runs.

6.2.3 Explaining the Sensitivity

Truncating the runtime of job 64,241 (which was submitted 30days before the flurry) is only one
of many trivial modifications we have identified that resulted in a significant change in the average
bounded slowdown. These modifications may involve more thanone job, and may be applied to
jobs with different runtimes, different runtime estimates, and different sizes. However, all these
modifications have an effect only when the flurry identified above is scheduled. No other flurry in
this log displayed this type of sensitivity. In particular,similar modifications in the neighborhood
of the huge flurry identified at the beginning of the log (see Fig. 6.8) didn’t produce similar effects,
even though this flurry is an order of magnitude bigger than the flurry above (in terms of the number
of jobs composing it).

The reason that the 375-job flurry is so sensitive is that it induces a very high process-load
on the system. The process load at timeT is defined to be the total number of running or waiting
processes (not jobs) that are present in the system at that time instant, divided by the size of the ma-
chine. For example, if a machine with 10 nodes is currently running 8 processes (leaving 2 nodes
idle), while two jobs of size 6 are waiting in the queue, then its process load is(8 + 6 + 6) /10 = 2.
The left of Fig. 6.7 displays the evolution of the process load associated with the SDSC SP2 trace.
The unequivocal peak in the weekly-average line occurs in the week that contains the 581st day.
The right of Fig. 6.7 shows that this is also reflected in the state of the waiting-queue.

We note in passing that the long-term average process load grows continuously across the trace.
This explains the growth trend of the average bounded slowdown (as seen in the left of Fig. 6.5).
It is tolerated by the users because the majority of the jobs still enjoy a fairly reasonable quality of
service, as indicated by the bounded slowdown median of the SDSC SP2 trace which is 1.8.

Finally, it should be noted that the effect described above depends on the existence of the flurry,
but not only on it. It also depends on the metric being used. When measuring the actual response
time, for example, the difference caused by the flurry jobs isnot significant enough to change the

6.3 The Phenomenon of Workload Flurries 109

overall average, because the average response time is dominated by long jobs [40]. By contrast, the
average slowdown is dominated by short jobs (that typicallyhave higher slowdowns), so a flurry
of short jobs may have a large effect.

6.3 The Phenomenon of Workload Flurries

Having seen the effect that workload flurries may have on performance evaluations, we now turn
to the phenomenon of workload flurries themselves. We define aworkload flurry to be a pattern of
activity with the following characteristics:

1. it causes a level of activity significantly higher than usual, thus dominating the workload,
2. it exists for a limited period of time,
3. it significantly changes the distributions of workload attributes, and
4. it is caused by a single user.

The name “workload flurry” derives from the first and second attributes, and from the fact that
the items constituting the flurry are typically lightweight, because otherwise the system would be
overwhelmed by their numbers. The above definition is derived from observations of such phenom-
ena in the long-term workloads experienced by large-scale production parallel supercomputers, as
demonstrated now. However, we believe that the phenomenon of workload flurries is widespread,
and indeed we have also found such flurries in other system types (see below).

Fig. 6.8 shows the job arrival rate at the granularity of weeks of 6 logs (see details in Chapter
2). In all of them, large flurries are observed. They range in size from double the average activity
to 10 times the average activity, are caused by a single user,and extend from a few days to several
weeks. The flurries in the CTC log and the Blue Horizon log seemsimilar to normal fluctuations,
but nevertheless turn out to have an important effect (at least for CTC), as shown in Section 6.4. It
should be noted that flurries were observed in all the long logs in the Parallel Workloads Archive,
but were not observed in the shorter ones. Indeed, periods several months long with no flurry occur
also in the logs that do include flurries.

Fig. 6.8 shows an especially prominent flurry in the SDSC-SP2data. But this isnot the flurry
that caused the instability described in Section 6.2. Rather, that flurry is a process flurry, i.e. it
includes very many processes but not so many jobs. Fig. 6.9 illustrates the weekly process arrival
rate on two of the machines, showing that process flurries do not necessarily correspond to job
flurries (the largest one in SDSC-SP2 corresponds to the flurry that caused the butterfly effect,
above). In fact, what exactly constitutes a flurry depends onthe context in which the question is
asked. The “high level of activity” (mentioned as part of thedefinition of flurries) can in principle
also be defined in terms of memory usage, disk operations, or network bandwidth consumed.

The statistical nature of the observed flurries is explored in Fig. 6.10 (representative for other
logs as well). This shows the joint distribution of two majorattributes of parallel jobs: the number
of processors they use, and their runtime. The flurries tend to correspond to specific locations in
these scatter plots, indicating that they are largely composed of jobs with fixed characteristics. In
particular, the jobs composing the flurries identified here tend to be small, using few processors
and/or running for a relatively short time, as witnessed by the fact that they concentrate near the
axes (note that both axes use a logarithmic scale). The fact flurry jobs’ attributes are distinct from
that of the other jobs, has a profound affect on modeling, as will be discussed below.

110 Workload Flurries and Data Sanitization

LANL CM−5

JAN
1995

APR JUL OCT JAN
1996

APR JUL
0

4000

8000

12000
user 50

user 31

user 38

210 others

SDSC Paragon

JAN
1995

APR JUL OCT JAN
1996

APR JUL OCT
0

2000

4000

6000
user 66

user 92

user 23

user 61

user 62

138 others

CTC SP2

JUL
1996

OCT JAN
1997

APR

jo
bs

 p
er

 w
ee

k

0

1000

2000

3000
user 135

678 others

DAS−Utrecht

APR
2003

JUL OCT
0

2000

4000

6000
user 26

user 33

38 others

SDSC Blue Horizon

JUL
2000

OCT JAN
2001

APR JUL OCT JAN
2002

APR JUL OCT
0

1000

2000

3000
user 342

user 269

466 others

SDSC SP2

JUL
1998

OCT JAN
1999

APR JUL OCT JAN
2000

APR
0

2000

4000

6000
user 374

427 others

Figure 6.8:Per-week job arrivals in six parallel machines. All exhibitflurries of activity due to single users.

SDSC Blue Horizon

JUL
2000

OCT JAN
2001

APR JUL OCT JAN
2002

APR JUL OCT

pr
oc

. p
er

 w
ee

k
[th

ou
sa

nd
s]

0

100

200

300
user 68

user 269

466 others

SDSC SP2

JUL
1998

OCT JAN
1999

APR JUL OCT JAN
2000

APR
0

5

10

15

user 21

user 374

user 197

user 328

424 others

Figure 6.9:Process arrivals per week also display flurries (can be different from the job-arrival flurries).

SDSC SP2 [procs]

1 2 4 8 16 32 64128
10s
1m

10m
1hr

10hr

SDSC SP2 [jobs]

1 2 4 8 16 32 64128
10s
1m

10m
1hr

10hr

SDSC BLUE [jobs]

16 64 256 1024
10s
1m

10m
1hr

10hr

CTC SP2 [jobs]

job size

1 4 16 64 256

ru
nt

im
e

10s
1m

10m
1hr

10hr

Figure 6.10:Scatter plot showing joint distribution of job size and runtime. The single-user flurries typi-
cally have rather unique characteristics. Color-coding corresponds to flurries shown in Figs. 6.8 and 6.9.

6.4 Impact of Flurries on System Evaluation 111

 0

 20

 40

 60

 80

 100

 50 55 60 65 70 75 80 85 90 95

av
er

ag
e

bo
un

de
d

sl
ow

do
w

n

offered load [%]

raw log
cleaned

Figure 6.11: Simulation of EASY
on CTC. Flurries tend to be sensitive
to exact simulation conditions, lead-
ing to instabilities. Simulations using
a cleaned log are smoother.

-20

 0

 20

 40

 60

 80

 50 60 70 80 90 100

av
er

ag
e

bo
un

de
d

sl
ow

do
w

n

offered load [%]

EASY
conservative

difference

 0

 20

 40

 60

 80

 50 60 70 80 90 100

av
er

ag
e

bo
un

de
d

sl
ow

do
w

n

offered load [%]

Figure 6.12:Comparison of EASY and conservative backfilling,
using the CTC log and accurate user runtime estimates. Left:us-
ing the complete log leads to inconsistent results. Right: removing
the user 135 flurry leads to consistent results showing conservative
backfilling is preferable for this scenario.

6.4 Impact of Flurries on System Evaluation

As we’ve seen, simulations of parallel job scheduling can beextremely sensitive to the exact work-
load conditions. This may also happen in normal evaluations, without any targeted modifications
such as the truncation of job 64,241 as described above.

An example is given in Fig. 6.11, using CTC. This is again a simulation of the performance
of EASY backfilling, this time showing how it depends on the system’s offered load (varied as
described in Chapter 2). As Fig. 6.11 shows, changing the load causes large fluctuations in the
bounded slowdown results when using the raw log. It would be ludicrous to take such effects at
face value, and claim that, say, the expected performance ata load of 77% is much better than at a
load of 76%. In fact, these fluctuations are again examples offlurry amplifications: if the 2000-job
flurry of activity by user 135 shown in Fig. 6.8 is removed (this is 2.5% of the total of 78,500 jobs
in the log) the result becomes a smooth curve similar to thoseproduced in queuing analysis.

Given that results such as these are hard to predict and correlate with the modifications used to
change the offered load, they can also sway the results of evaluations. An example is given in Fig.
6.12. This shows a study comparing EASY backfilling with conservative backfilling (reservation
to only the first, or all of the queued jobs, respectively; seeSec. 1.1.2 for details). The study in
question dealt with the effect that the accuracy of user runtime estimates have on the performance
of the two backfilling schemes [40]. The results shown in Fig.6.12 (left) were obtained by sim-
ulating the CTC workload using accurate runtime estimates,rather than real user estimates. The
results were inconsistent, showing that conservative backfilling produce higher slowdown values
for an offered load of 85% but lower values for 90% and 95%. This inconsistency was traced to the
same flurry identified above: rerunning the simulations on a modified workload where the flurry
was removed led to the cleaner results shown on the right.

We note that the “difference” curve is not the difference between the performanceaverages
obtained by EASY and the conservative algorithm, as this is still not statistically significant (notice
that the associated 90% confidence intervals are still overlapping). Rather, it is the result of a more
sophisticated analysis, using the common random numbers1 variance reduction technique [89]. In

1The name is somewhat of a misnomer in this case, as we use a logged workload rather than generating it using a

112 Workload Flurries and Data Sanitization

 0

 5

 10

 15

 20

 25

 30

 3 3.5 4 4.5 5 5.5

CTC SP2

pe
rc

en
ta

ge
 o

f r
un

s

avg. bounded slowdown

with flurries

without

 0

 2

 4

 6

 8

 10

 12

 14

 70 75 80 85 90 95 100 105

SDSC SP2

pe
rc

en
ta

ge
 o

f r
un

s

avg. bounded slowdown

stddev CTC SDSC
all jobs 0.236 3.616
w/o flurry 0.140 3.235
change -40.7% -10.5%

Figure 6.13:With randomization, simulation results become non-deterministic. Flurries make them spread
out more, reducing the accuracy with which results can be reported.

this analysis, we first compute the difference in slowdowns between the two schedulers on a per-
job basis (which is possible because we are using the same workload trace). We then compute
confidence intervals on these differences. This shows that the flurry indeed makes a big difference
in the quality of the results. When it is present, we cannot say anything definite for most offered
loads, as the confidence intervals for the difference include 0. When it is removed, the advantage
of conservative over EASY is clear across the whole range of offered loads.

A third example is given in Fig. 6.13. This is again part of thestudy of the effect of user
runtime estimates, this time by randomly shuffling the estimates in the log among the jobs (for
details, recall Sec. 5.12.2, page 99). Due to the shuffling, the average slowdown is different in each
run. The figure shows the histogram of these averages over 2000 runs. When flurries are present,
the standard deviation is larger, thereby enlarging the confidence intervals characterizing the result.

6.5 On Why the Removal of Flurries is the Right Thing to Do

A common initial reaction to the notion of referring to the activity of some particular user as non-
representative and unreliable, is of disbelief. The underlying rationale of this view is that one
can’t get more reliable and representative than an activitywhich was actually recorded on a real
system. This section addresses this concern in an incremental manner. It discusses the goals of
the performance evaluation process and the meaning that theterms “representative” and “reliable”
have within this context. It then shows why the removal of flurries inherently coincides with these
goals and ideas.

A party that opposes the removal of flurries acknowledges thefact that the observed instabil-
ity renders the results (of the corresponding performance analysis process) useless. Indeed, with
respect to the overly-sensitive system under consideration, one cannot dispute the fact that a negli-
gible perturbation can sway the results in the other direction, deeming them unreliable and useless.
The opposing party therefore contends that the correct conclusion should simply be that “there are
no valid conclusions”. Alas, no-conclusion is a common and widespread result, as anybody that
ever conducted system research knows too well. The questionis whether this reasoning applies if
the inconclusiveness of the results is due to flurries. We contend it does not.

random number generator.

6.5 On Why the Removal of Flurries is the Right Thing to Do 113

6.5.1 How About Removing Entire Days?

A first “rough” reason why flurries should not be show-stoppers for the performance evaluation
process is that they are temporally confined in relatively short periods of time and have short-
lived impact. Consider, for example, the 24-months SDSC log, which is the log that exhibits the
heaviest load conditions (see Table 2.1, page 32). In Sec. 6.2 we have shown that the instability
and sensitivity is due to the 375-jobs flurry that was submitted during the 581th day. It turns out
that even under SDSC’s heavy load conditions, removing thisflurry has a lasting effect ofonly five
days, namely,

1. the schedule that is produced when using the original SDSCas the simulator’s input, and

2. the schedule that is produced when deleting the aforementioned 375 jobs from SDSC and
using this “cleaned” version as the simulator’s input

are identical in every respect until the 580th day and from the 586th onwards. Thus, a perfectly
legitimate methodology would be to delete days 581-585 entirely from the log and proclaim that the
results of the evaluation only apply to 725 days out of the 730that the log covers. This statement
is sound, and it has real value: it is an accurate performanceanalysis that applies 99.3% of the the
time. It should be obvious that this result is far superior tothe “no-conclusions” alternative that the
opposing party has to offer. Indeed, an important goal of theperformance analysis process is e.g.
to help choose between competing systems. A result that applies 99.3% of the time can be rather
helpful in this respect, especially if the alternative is tonot say anything at all.

Our justification for removing the 5 days is that they are (literally) not “representative” of
the other 725. Since the latter are the vast majority, it is justified to characterize them as “the
norm”. Likewise, it is justified to characterize the 5 days which are affected by the flurry as a
rare short-lived “anomaly”. Finally, the assertion that anevaluation which includes the anomalous
5 days is unreliable, is also well justified; in this sense flurries may indeed be characterized as
an “unreliable” activity. Importantly, one flurry is not representative of another: all the flurries
we have encountered are substantially different from one another (in terms of the number of jobs
that compose them, the attributes of the jobs, and the duration in which they are submitted). We
therefore contend that flurries are very similar in essence to the site-specific anomalies described in
Sec. 6.1, which most analysts would agree to sanitize due to the fact that they are not representative
of the typical workload.

6.5.2 Standard Alternatives are More Aggressive

Deleting a few short periods from the input is actually a verysubtle approach compared to several
other routinely practiced (and much more aggressive) standard methodologies. For example, in
computer architecture, in the interest of shortening simulation time, it is customary to choose a
few dozens of relatively short “representative” instruction sequences of a SPEC application [143],
“stitch” these sequences together, and use the result instead of the original application under the
assumption that the former is reasonably representative ofthe latter [114, 117]. The short version
might be less than 1% of the total. Choosing small fractions of the input to represent the entire input
constitutes a far more aggressive filter than removing only one fraction and explicitly proclaiming
that the result does not apply to the removed part. And so, unlike our methodology by which
one can be sure that the obtained results are representativefor most of the time, with the stitching

114 Workload Flurries and Data Sanitization

approach, one can only hope that the selection is representative. (Also, note that had we randomly
chosen e.g. 1% of supercomputer log, the chances of choosingthe 581th day were rather slim.)

A related acceptable approach from the supercomputing domain is to divide the input (usu-
ally years worth of activity) into relatively short disjoint consecutive sequences (usually individual
months) and to report the results associated with some “representative” subset of these subse-
quences [15] or even with all of them [108, 149]. Using only a subset of the months is obviously
more aggressive than our approach of just deleting a few daysof activity. Using all the months
translates to localizing the effect of the flurry within the month in which it occurred. But reporting
the outcome associated with this month as a reliable result is methodologically erroneous, because
it does in fact contain a flurry that might arbitrarily distort the result as shown above. Thus, the
correct thing to do is single out the result associated with the month that contains the flurry as unre-
liable, which is equivalent to our removing-a-few-days approach, but has the drawback of deleting
some extra “innocent” days instead of just the “contaminated” ones.

Yet another standard methodology (again for the sake of shorter simulations) is to use some
small prefix of the input as representative of the input in itsentirety. This is done both in computer
architecture, as well as in supercomputing related research [81, 123] and is considered acceptable,
even though its actually far less reliable than stitching: Focusing only on the beginning of the input
runs the risk of missing important aspects, and is certainlya more aggressive approach than using
all of the input except a few days.

Finally, many research efforts simply abandon the use of real workload traces altogether [169,
170, 57] and prefer to use workload models [77, 20, 99] (that are based on real traces), even though
the models are overwhelmingly more well-behaved than the real thing [39]; for example, they
generate stationary distributions (even though this is seldom the case; see Fig. 6.7 and [17, 149]),
they lack self similarity (even though this property was shown to consistently exist in real logs
[151]), they often make various unrealistic assumptions [39, 157, 133], and they are certainly not
generating any flurries. Consequently, results obtained through using existing workload models to
drive a simulation is far less reliable than using real logs,even if the latter is a slightly reduced
version of the original. Put in another way, using the outputof models as the input for a simulation
is equivalent to applying sanitization to the real thing that is orders of magnitude more aggressive
than just deleting a few days.

6.5.3 How About Removing Just the Anomalous Part of the Days?

Having established the fact that the removal of some short period from a log (in our case the said
period is at least an order of magnitude shorter than the log)is a valid and sound methodology,
we go on to further refine this methodology and make it even more subtle and even less intrusive.
Note that, with the exception of the flurry jobs, the five days in which the flurry resides consist
of perfectly regular activity. There is nothing which is fundamentally different between the jobs
that reside outside the five days and the non-flurry jobs that reside within them. Importantly, the
flurry activity is completely independent of the non-flurry activity, as it is largely generated by
independent, unrelated, users. Indeed, as the flurry jobs are generated by one user, it is reasonable
to speculate that they could have been submitted during a different period, had the schedule of the
submitting user been somewhat different.

Thus, deleting only the flurry jobs and leaving the rest of thefive-days activity in, is a founded
and well-justified approach. It is certainly as valid as deleting the 5 days in their entirety, and

6.5 On Why the Removal of Flurries is the Right Thing to Do 115

is actually superior in two respects. Firstly, it preservesall the available information which is
reliable and representative and therefore allows the performance analyst to argue for a result that
is somewhat stronger than “99.3% of the time”. The second advantage of removing just the flurry
jobs is that it avoids the issue of determining the exact duration of the period to be deleted: In the
above example, we had to simulate the run with and without theflurry activity, and compare the
results on a per-job basis in order to determine that the lastaffected job resides in the 585th day.
Note that this period can possibly change under different circumstances, e.g. if we used a scheduler
that is different from EASY, if we artificially changed the load, etc. Determining the exact duration
can therefore be even more labor intensive. Consequently, deleting only the flurry jobs is a much
simpler alternative (in fact it’s quite simple even in absolute terms) and therefore it has a viable
chance to actually be adopted, especially if analysts are provided with a clean log to begin with
and are spared all the details.

6.5.4 How About Not Removing Anything and Separate AveragesInstead?

While be believe the above arguments are more than enough to justify the removal of flurries, there
is in fact an even more subtle sanitization methodology we can apply, which yields identical results
to the approach we advocate (of deleting flurries), thereby further strengthening it. It turns out that
we actually don’t have to remove the flurry to eliminate the unwarranted sensitivity. Instead, we
can simulate the input as is, as long as we exclude the flurry jobs from participating in the overall
average performance metric (slowdown in our case). The practice of separating the job population
to disjoint subcategories (wide vs. narrow, short vs. long,backfilled vs. non-backfilled etc.) and
presenting the separate performance averages associated with each, is very popular and heavily
used [125, 115, 141, 39]. Accordingly, we suggest that the subcategories should be flurry vs. non-
flurry jobs. With this approach we do not alter the input sequenceat all. Specifically, the flurry
jobs are simulated along side the rest of the jobs and are allowed to influence them. The only
change we introduce is in the manner by which the performancemetric is computed: we isolate
the performance experienced by flurry jobs in an average slowdown of their own.

Fig. 6.14 illustrates the result of doing this with the average slowdown obtained when repeat-
edly simulating SDSC, such that in each simulation the runtime of job 64,241 is slightly altered.
This is exactly the experiment that was described in relation to Fig. 6.3, only now we add two
curves that are associated with the average slowdown of the flurry and non-flurry jobs, respec-
tively. As can be seen, the non-flurry slowdown average is stable between 79-80, whereas the
flurry average “goes wild” between 450-1450. Indeed, the sensitivity as manifested in the highs
and lows of the “all jobs” curve that is associated with the combined average of the two, is per-
fectly correlated with the highs and lows of the flurry curve.This again highlights the sensitivity
effect as the product of hundreds of (flurry) jobs that react in a similar manner to a minor change
and therefore disproportionally sway the overall average in their direction.

Fig. 6.15 compares the result obtained when systematicallyvarying the load of two versions
of the CTC workload: the raw log and a cleaned version of it (that deletes flurries). Like with
the example given in the previous paragraph, the current example corresponds to an experiment
we conducted earlier in this chapter, the result of which waspresented in Fig 6.11. Once again,
the difference between Fig. 6.11 and Fig. 6.15 is that the latter adds two curves that subdivide the
overall slowdown associated with the raw (non-sanitized) log into two: the average slowdown of
flurry and non-flurry jobs, respectively. (The flurry curve isplotted in the right subfigure only, due

116 Workload Flurries and Data Sanitization

 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89

-5 -4 -3 -2 -1 18:00:30

+1 +2 +3 +4 +5

av
g.

 s
lo

w
do

w
n

job’s runtime [offset given in minutes]

flurry jobs
all jobs

excluding flurry

 400

 600

 800

 1000

 1200

 1400

 1600

-5 -4 -3 -2 -1 18:00:30

+1 +2 +3 +4 +5

Figure 6.14:Separating the overall average slowdown to flurry vs. no-flurry jobs, reveals that the later is
quite stable and highlights the former as solely responsible for the instability. (Associated with Fig. 6.3.)

 0

 20

 40

 60

 80

 100

 50 55 60 65 70 75 80 85 90 95

offered load [%]

av
g.

 b
ou

nd
ed

 s
lo

w
do

w
n

all jobs
flurry excluded
flurry removed

 1

 10

 100

 1000

 50 55 60 65 70 75 80 85 90 95

flurry jobs
all jobs

flurry excluded
flurry removed

Figure 6.15:Averaging only non-flurry jobs (“flurry excluded”) has an identical effect to removing the
flurry altogether (“flurry removed”), implying the latter approach is preferable due to its simplicity. The
perfectly correlated highs and lows of the combined curve (“all jobs”) and the flurry curve (“flurry jobs”)
single out the latter as the exclusive reason for the observed instability. (Associated with Fig. 6.11.)

6.6 Impact of Flurries on Modeling 117

to the limited Y axis scale in the left.) Concentrating on theleft subfigure, we see that there is
virtually no difference between the average associated with the cleaned log (“flurries removed”)
and the one associated with the non-flurry jobs within the rawlog (“flurries excluded”), as the two
curves continuously overlap. Turning to the right subfigure, which introduces a widened log-scaled
Y axis and can therefore add the flurry curve into the picture (“flurry jobs”), we again see that the
latter’s highs and lows correlate with those of the combinedcurve (“all jobs”) and single out the
flurry as the sole cause of instability.

The bottom line is that deleting the flurry jobs has an almost identical effect to leaving them
in while isolating them within an average of their own (the least aggressive methodology). This
result further justifies the flurry-deletion approach, which is preferable over the average-separation
approach, as it is much simpler.

6.5.5 How About Not Separating the Averages and Shake the Input Instead?

A final alternative to dealing with the instability that is generated by flurries is what we callinput
shaking. With this approach we (1) leave the flurries in, and (2) donot separate the averages.
Instead, we substitute a single simulation run with multiple runs, such that for each run we system-
atically introduce negligible random perturbations into the input, e.g. by changing the arrival time
of 10% of the jobs to be±u seconds earlier or later, whereu is e.g. uniformly distributed between
0 to 60. We argue that a slightly perturbed version of a log is as representative and reliable as
the original version. The multiple simulations create a sample space, which can be averaged and
bounded within confidence intervals. In [161] we show that this approach is effective and largely
defeats the instability generated by flurries. But a full description is beyond the scope of this dis-
sertation. Shaking has the clear advantage of not requiringthat flurries would be known. It allows
the use of raw data as is, at the price of deciding upon the shaking specifics and of performing
multiple simulations instead of one.

6.6 Impact of Flurries on Modeling

The above sections focused on the instability induced by flurries on the process of parallel systems
evaluation. This section focuses on flurries’ impact on modeling. As noted above, the fact flurries
have statistical properties that are different from the “normal” background distributions (Fig. 6.10)
has significant implication on this subject. Three examplesare given.

Weekly Cycle The first example that demonstrates this is given in Fig. 6.16, which shows the
weekly cycle of all 16 logs available through the Parallel Workload Archive [110], as listed in
Chapter 2. Naturally, more work is being done on weekdays than on weekends, with the single
exception of DAS-Utrecht. In fact, this is also true for the latter log, with the single exception of
4,297 jobs submitted by user 26 on Saturday Aug 16. (Which actually constitutes the major part of
the associated DAS-Utrecht flurry shown in Fig. 6.8.) Indeed, when deleting this flurry, the weekly
cycle of DAS-Utrecht becomes similar to that of all the otherlogs. Obviously, it is erroneous to
base a workload model that takes into account the weekly cycle on the raw data of DAS-Utrecht,
as throughout all the logs in all Saturdays, but one, the loadis low.

118 Workload Flurries and Data Sanitization

 0

 5

 10

 15

 20

 25

SunSatFriThuWedTueMon

jo
bs

 [%
]

week day

Utrecht U. (DAS)

15 other logs

Figure 6.16: Weekly arrival pattern on 16 par-
allel computers, showing abnormal spike Saturday
within the DAS-Utrecht log.

interarrival time
1s 10s 1m 10m 1hr 10hr

nu
m

be
r

of
 jo

bs

0

2000

4000

6000

8000

24490 15124

base distrib.
additions due
to flurries

Figure 6.17:Flurries turn the lognormal distribu-
tion of interarrival times in the LANL CM-5 log into
a noisy and modal distribution.

Interarrival Times Due to their repetitive nature, flurries tend to modify the workload distri-
butions by adding huge modes. Focusing on the LANL CM-5 interarrival times as an example,
we find that the distribution for the whole log is distinctly modal, with several values that are ex-
tremely common and each come from a different flurry (Fig. 6.17). After the flurry-related data is
removed, the underlying distribution can easily be characterized as lognormal.

Non-Stationarity Flurries are not only different from the normal workload, but also different
from each other. This combination leads to severe non-stationarity, as demonstrated in Fig. 6.18.
The figure compares the distributions of four different workload attributes in the 1995 and 1996
portions of the LANL CM-5 log. For example, in 1996 the log contained a large flurry of activity
by user 38 as seen in Fig. 6.8. The flurry consisted of jobs thatwere about 10 seconds long, arrived
about 12 seconds apart, ran on 128 nodes, and used either verylittle memory or about 1.84 MB
per node. This accounted for 12,344 (29%) of the total of 42,702 jobs in this part of the log, and
thus had a decisive effect on the distributions of these workload attributes.

For comparison, during 1995 the log contained two other flurries, by users 31 and 50, which
accounted for 71,161 (58%) of that year’s total of 123,058 jobs. By comparing the 1995 and 1996
distributions in Fig. 6.18, we see that the workload seems tobe non-stationary, as the distributions
for the two years are quite different (dashed lines). But if the flurries are removed, we find that
in reality the base workloads are actually quite similar to each other (solid lines). Thus the major
differences between 1995 and 1996 are actually the result offlurries introduced by 3 users out of a
total population of 213. Including the flurry data gives the actions of these 3 users significant sway
over the results.

6.7 Generalizing

All of our examples so far come from the supercomputing domain. However, flurries are not unique
to parallel supercomputers. Once we became aware of the phenomenon and began to look for it,
it was rather easy to find it in other systems. Here three examples are provided, based on logs
generated by three different types of departmental servers.

6.7 Generalizing 119

job size
32 128 512

cu
m

ul
at

iv
e

%
 jo

bs

0

0.2

0.4

0.6

0.8

1

all jobs ’95
w/o fluries ’95
all jobs ’96
w/o flurries ’96

job runtime [s]
10s 1m 10m 1hr 10hr

cu
m

ul
at

iv
e

%
 jo

bs

0

0.2

0.4

0.6

0.8

1

memory per node [MB]
0.25 1 4 16

cu
m

ul
at

iv
e

%
 jo

bs

0

0.2

0.4

0.6

0.8

1

interarrival time [s]
1s 30s 5m 1hr

cu
m

ul
at

iv
e

%
 jo

bs

0

0.2

0.4

0.6

0.8

1

Figure 6.18:Changes to the distributions of workload attributes when flurries are removed from the LANL
CM-5 log. Most differences between 1995 and 1996 are attributed to the inclusion of flurries.

CPU Server A large flurry was observed in the session log for March 2004 ofa Unix server used
by students (Fig. 6.19). This turned out to be the result offtp’ing a large directory structure by a
certain student one afternoon; the (MS Windows) implementation automatically opened a new ftp
session for each directory, and this was logged as a distinctuser session. Obviously, this data does
not represent normal user sessions, and would cause misleading results if used as the basis of an
attempt to optimize for interactive user sessions.

Authentication Server Another example is the activity on our departmental authentication server
(Fig. 6.20). In this case data covering a long period was available, and two distinct flurries were
observed. These were traced to a bug in Windows, where an authentication failure led to an infinite
loop of retries. Indeed, it is possible that some of the flurries on supercomputers are also the result
of runaway scripts rather than being intentional. This doesnot detract from the importance of the
phenomenon. On the contrary, situations in which flurries are unintentional add motivation to the
need to identify them before using the workload as representative of normal work.

File Server An important generalization of flurries replaces the sourcecomponent of their def-
inition: instead of being work generated by a single user, wecan consider work generated by a
singular event. Two such events are shown in Fig. 6.21, displaying a file server’s level of activity.
The first high-load event, in September 2002, is attributed to a massive copying due to a hardware
upgrade. The second, during September to December 2003, is attributed to a bug in a new release

120 Workload Flurries and Data Sanitization

day in month
1 5 10 15 20 25 30

se
ss

io
ns

 p
er

 d
ay

0

200

400

600

800
user S

297 others

Figure 6.19:A flurry in the sessions on a Unix
server diverts from users’ normal working patterns.

MAY
2003

AUG NOV FEB
2004

fa
ile

d
at

te
m

pt
s

pe
r

w
ee

k
[th

ou
sa

nd
s;

 lo
g

sc
al

e]

1

10

100
user T

user D

1690 others

Figure 6.20:Flurries on an authentication server
are 2 order of magnitude bigger than the average.

 0

 10

 20

 30

 40

 50

 60

 70

Jan
2004

Jul
2003

Jan
2003

Jul
2002

Jan
2002

N
F

S
 o

pe
ra

tio
ns

 p
er

 h
ou

r
[m

ill
io

ns
]

Figure 6.21:Activity on a departmental NetApp filer.

of the GNU C library2 [154]. Installing the new version is the event that triggered this flurry of
activity, and fixing it ended the flurry.

Refining the Definition of Flurries There are many accounts of flurry-like events on the Inter-
net, provided we generalize the notion of source from a single user to some singular event that
attracts many users (but still a small subset of all Internetusers, and for a limited time). For
example, new releases of software by Microsoft have caused the so called “midnight madness”
phenomenon, where users flocking to download the new version(typically released at midnight)
saturate the network and overwhelm the servers [124]. Otherexamples include the surge of activity
on CNN’s servers on September 11, 2001, and the usage of sitesset up especially to cover sporting
events such as the Olympic games or the World Cup finals [5]. All of these events are singular, and
lead to unique traffic patterns. We claim that it would be wrong to use workload data including

2The bug is that thed off field in thedirent structure isn’t maintained correctly by the auto-mount daemon. Specif-
ically, the 64-bit offset is either 0 or a garbage value. Whenusing a 32-bit file system interface (like the libcreaddir
routine),getdents verifies that only 32 bits are actually used, and therefore fails if the garbage contains more bits. In
trying to handle this error it attempts to seek to the beginning of the erroneous entry, identified using the offset of the
previous one. But this is also a garbage value. And if it is 0, we end up with an endless loop of repeatedly reading the
first entry, which is what caused the surge of activity seen inFig. 6.21.

6.8 Conclusions 121

such singular events to analyze the performance of web servers under normal conditions, just as it
would be wrong to use normal data for an evaluation of how systems would behave under unique
conditions. Of course, in these particular cases, high-load conditions may be more important and
meaningful than normal conditions; if this is the case, theyshould be the focus of study rather than
being eliminated as suggested below. For example, Ari et al.model such activity, which they call
“flash crowds”, with the aim of evaluating schemes to survivethem [4].

Targeted attacks on specific servers also qualify as flurries. In many cases, the nature of the
attack is to flood the server and overwhelm it with a load that is much higher than its capacity.
This load is generated by a small group of machines (relativeto the whole Internet), and lasts for
a limited, well-defined time. In this case, an analysis of theattack workload patterns is not only
useful for evaluation of servers, but also as a tool in identifying such attacks [11].

6.8 Conclusions

For the conclusion of this chapter, we refer the reader to Section 7.4 (page 127).

122 Discussion and Conclusions

Chapter 7

Discussion and Conclusions

The most popular scheduling policy for parallel systems is FCFS with backfilling [53, 37], as intro-
duced by the EASY scheduler [98]. This popularity most probably emanates from the combination
of its attractive properties, being

• simple (easy to implement, understand, and maintain),
• fair (uses FCFS as the basis), and
• effective (yields performance results comparable to much more sophisticated algorithms).

The price of these benefits, however, is that users must supply estimates of how long their jobs will
run. Estimates are utilized by the system to better pack the jobs by means of exploiting scheduling
“holes” to allow short jobs to run ahead of their time, provided they do not delay previously queued
jobs (or at least the first). Jobs attempting to exceed their estimates are killed by the system so as
not to violate subsequent commitments. Surprisingly, a decade of related studies resulted in an
almost overwhelming agreement amongst researchers that inaccurate estimates either do not effect
or, more frequently, improve performance [146, 47, 174, 115, 169, 108, 142, 170, 122, 34, 64].

In light of this background, this work has three major contributions. We begin by showing that
the “inaccuracy helps” common wisdom is merely an unwarranted artifact of the erroneous manner
in which inaccurate estimates have been modeled, and that increased accuracy does in fact improve
performance (Section 7.1). We go on to develop a correct model that, from now on, will allow for
valid performance evaluations (Section 7.2). We then exploit the new insights and understandings
regarding the underlying essence of the workload experienced by parallel systems, to devise a new
scheduler that is able to automatically improve the qualityof estimates and put this into productive
use (Section 7.3). We note that previous attempts to do this [62, 115, 19, 15, 90, 170] yielded
algorithms that are inherently different than native backfilling, and that our solution is the first to
achieve this goal while preserving all the attractive qualities as listed above.

Finally, a fourth contribution of this work is finding a fundamental flow in the standard method-
ology of conducting system-related research based on associated production logs: the inclusion of
“workload flurries” casts a shadow on the validity of the obtained results. Thus, we propose that
workload logs be sanitized to eliminate the problem (Section 7.4).

7.1 Resolving the Misconception of Inaccurate Estimates
The de-facto standard for modeling increasingly inaccurate user estimates has been thef -model
that, given a runtimer, uniformly chooses the associated estimate from[r, r · (f + 1)] at random,

7.1 Resolving the Misconception of Inaccurate Estimates 123

or deterministically sets it to ber · (f + 1). With this, biggerfs imply increased inaccuracy. The
perception that “inaccuracy doesn’t affect or improves performance” is largely based on results
obtained with this model. Studies reporting a performance improvement explained it with the
“holes” argument, claiming that increased overestimationof long jobs opens larger holes in the
schedule for backfilling shorter jobs. In contrast, studiesreporting performance is unaffected have
used the “balance” argument, claiming that larger holes cancel out by the fact backfill candidates
appear proportionally longer. While both arguments make sense, they are contradictory, and in any
case fail to explain the results as reported below.

We found performance is extremely sensitive to minor changes inf , and that within the noisy
results space the two contradictory observations about performance-trends are both possible, when
using only few samples in a non-systematic manner. However,averaging over repeated simulations
revealed that the mean effect of increasingf is usually V- or L-shaped: in both cases average wait
time and slowdown drop at low inaccuracies and then, for V-curves, the trend is gradually reversed
for largerfs (though largefs still yield better results thanf=0).

To explain this, we show that the seemingly contradictory “balance” and “holes” arguments
are both incorrect, or rather, correct to some extent, but miss the key issue that reconciles between
them: Performance improvement due to increasedf is not simply the result of more backfilling
due to more holes in the schedule (in accordance with the “holes” argument), because inflated
runtime estimates not only create holes in the schedule, butalso enlarge potential backfill jobs,
making it harder for them to fit into these holes (in accordance with the “balance” argument).
Rather, it is the result of a “heel-and-toe” dynamic: a distinctive sequence of events where small
backfill jobs continuouslyprevent the holes from closing up, leading to a preference for short jobs
and the automatic production of an SJF-like schedule. Whenf is very small, the proportionally
narrow holes make sure only jobs that are truly short enjoy the effect (explaining the descending
part of the V and L-shapes). However, asf gets bigger, increasingly longer jobs can enjoy it too
(explaining the ascending part). The situation is worse forthe random model, which allows long
jobs to masquerade as short and vice versa (explaining why the deterministic model yields better
performance and is usually inclined to an L-shape). We have directly quantified this by measuring
the “SJFness” as a function off , defined to be the percent of jobs that are the shortest in the
wait-queue at the time they are started. The result was consistentlyΛ-shaped, a kind of mirror
image to the V performance curves. The single L-shaped workload we found (both random and
deterministic models) managed to “escape” the reversal of the performance trend due to the fact the
activity it embodies lacks temporal burstiness, implying an unpopulated wait-queue and therefore
fewer opportunities to mistake long jobs for short. Indeed,when burstiness was artificially added
to this log, the L performance curve turned into a V curve.

Importantly, the heel-and-toe effect means that performance improvements due to multiplying
the estimates are at the expense of the first queued job, whichis repeatedly delayed in favor of
shorter/smaller jobs. Directly quantifying this revealedthat the “unfairness” of the schedule is
proportional tof : the bigger thef , the greater the unfairness. This means that multiplying is
simply trading off fairness for performance(Fig. 1.10, page 19). In fact, this statement is correct
regardless of whether the values being multiplied are actual runtimes (perfect) or were supplied
by users (flawed); it’s just that the more accurate the initial values we multiply, the better the
resulting performance becomes. The bottom line is thatmultiplying is actually a scheduling policy:
it is technically possible as well as legitimate for schedulers to multiply the estimates they use,
exercising the performance/fairness tradeoff; but users’nature and behavior is completely different,

124 Discussion and Conclusions

as will be discussed next.
Fully understanding thef -model highlights its fundamental flaw: it leads to a limitedSJF-like

scheduling, and indeed, SJF is insensitive to multiplying runtimes by some factor as long as the
relative ordering of jobs is preserved. Butreal user estimates provide no such ordering! Rather, as
outlined in the next section, they are inherently modal, with 90% of the jobs using only 20 “round”
estimate values (e.g. 1 hour) and, in particular, 10-27% using Emax — the maximum allowed.1

Any popular estimate is bad for backfilling as the scheduler cannot tell whether the associated
jobs are short or long (e.g. regardless of the estimate, the real runtime is often zero because of the
many jobs that fail on startup). However,Emax is especially bad, as the associated jobs are never
backfilled and thus the more there are jobs that use it, the more the schedule resembles plain FCFS.

We conclude that the popular claim that “increasingly inaccurate estimates improve perfor-
mance” is only correct if “inaccurate” means “multiplied bya factor”, which is far from the truth
when real estimates are involved. Inaccuracy of real estimates manifests itself in the form of modal-
ity, and “increasing it” means making estimates more modal (e.g. by adjusting the number of jobs
associated withEmax from 10% to 20%). In this case,increased inaccuracy actually degrades
performance, as one would intuitively expect. Previous studies that suggested otherwise were
simply unaware their results are dominated by the performance/fairness tradeoff. Put in another
way, we refute the overwhelmingly accepted myth that inaccuracy improves (or doesn’t effect)
performance, on the grounds that it is based on false and unrealistic assumptions.

We demonstrate the correctness of our findings by suggestingthe truncatedf -model, which
adjusts an estimatee that is generated by the vanillaf -model to bemin(Emax, e). This creates
a mode atEmax, such that biggerfs imply more jobs associated withEmax. Indeed, one can
“manufacture” arbitrarily bad performance results by choosing a big enoughf . Importantly, one
can always find anf for which results obtained when using artificial estimates,are equal to those
obtained when real estimates are employed, in contrast to the vanilla model. We view the truncated
model as a simple “quick and dirty” substitute for the vanilla, and contend it should always be
preferred over the latter. Regrettably, the truncated model is still not realistic. For example, it
generates only one mode (atEmax) and only associates longer jobs with it, whereas with real
estimates there are several modes and short jobs are associated with all of them. One consequence
was that each trace/metric combination required a significantly differentf in order to obtain results
comparable to those of real estimates. We therefore advocate the use our accurate estimates model
as suggested in the next section.

This part of our work was published in [159].

7.2 Accurately Modeling User Runtime Estimates
While thef -model is the most popular, other estimate models have been suggested. Together they
have been used to study the impact of inaccurate estimates onperformance (see previous section),
and to complement workloads that lacked estimates data [169, 170, 58]. Collectively examining
all models, we find each of them to be lacking in some respect. Their shortcomings include im-
plicitly revealing too much information about real runtimes, erroneously emulating the accuracy
ratio of runtime to estimate, neglecting to take into consideration the fact that all production instal-
lations have a limit on the maximal allowed estimate (Emax), and that this value is typically the

1Probably due to a combination of the inability of users to accurately predict how long their jobs will run and the
strict backfilling policy of killing underestimated jobs.

7.3 Leveraging System-Generated Predictions for Backfilling 125

most popular. Importantly, two key ingredients are missingfrom existing models: the inherently
modal nature of the estimates caused by users’ tendency to supply “round” values [108, 17, 93],
and the temporal repetitive nature of user estimates, assigning the same value to bursts of jobs (ses-
sions) [173, 133]. The combination of these has a decisive effect on performance results, as low
estimate-variance of currently waiting jobs reduces the effectiveness of backfilling. Consequently,
the outcome of using the existing models in simulation is invalid performance evaluation results
that are unrealistically better than those obtained with real estimates.

Our approach is to develop a model that targets estimates’ modality. We view the estimates
distribution as a sequence of “modes” (each mode is a pair composed of the estimate’s value and
the percent of jobs that used it) and investigate their main characteristics. Our findings include the
aforementioned invariant that 20 “head” estimates are usedby about 90% of the jobs throughout
the entire duration of the log. The “popularity” of head estimates (percentage of jobs using them)
decreases exponentially, whereas the tail obeys a power-law. The few hundred time values that are
used as estimates are well-fitted by a fractional model, while at the same time, 15 out of the 20
head estimates are identical across all the production logswe have examined. The major difficulty
we faced was determining how popular is each head estimate (how many jobs are associated with
each). This was solved by the “pool algorithm”, aimed to capture the many similarities between
profiles of head-estimates within the different productionlogs we analyzed.

We find thatall modeled aspects of the estimates distribution are almost identical across the
logs, and therefore our model defines only two mandatory parameters: the number of jobs and
the maximal allowed estimate (Emax). While considerable variance does in fact exist, it is mostly
encapsulated within the percentage of jobs estimated to runfor Emax (an optional parameter). The
remaining variance (if any) is attributed to another 1-2 very popular modes that sometimes exist,
but are unique to individual logs. When provided this additional information, our model produces
distributions that are remarkably similar to that of the original. Importantly, the ability of our model
to make the resulting distribution more modal through optional parameters, allows for a realistic
evaluation of the impact of increasingly inaccurate estimates on performance.

When put to use in simulation (by replacing real estimates with artificial ones), our model
consistently yields performance results that are closer tothe original than those obtained by other
models. In fact, these results are almost identical to when real estimates are used and are randomly
shuffled between jobs. This pinpoints the temporal repetitiveness of per-user estimates as the
final obstacle separating us from achieving truly realisticresults. Future work therefore includes
developing an assignment scheme of estimates to jobs that preserves this feature, but this requires
the development of a session-based model [148, 130] that is beyond the scope of this work.

Our model can be downloaded from this site [155] within the Parallel Workload Archive [110].
Its interface contains two functions: generating the distribution modes, and assigning estimates to
jobs. (The latter is essentially random shuffling of estimates between jobs, under the constraint that
runtimes are smaller than estimates.) A utility that makes use of this interface, to append estimates
to workloads that are given in Standard Workloads Format [147], is also available for download.

This part of our work was published in [157].

7.3 Leveraging System-Generated Predictions for Backfilling
As noted above, user estimates are inaccurate and modal, a fact that significantly reduces system
performance. The alternative is system-generated predictions based on users’ history, which are

126 Discussion and Conclusions

much more accurate. Despite considerable efforts of researchers [48, 62, 136, 83, 108, 86, 97],
predictions wereneverincorporated into production systems. This part of our workis about iden-
tifying the problems causing this situation, and providingapplicable and easy to use solutions to
all of them. Specifically, we identify three major difficulties and thus the contribution of this part
of our work is threefold.

The first difficulty is of a technical nature. Under backfilling, user estimates are part of the user
contract: jobs that exceed their estimates are killed by thesystem, so as not to violate subsequent
commitments. This makes system-generated predictions unsuitable, as some predictions inevitably
turn out too short, and users will not tolerate their jobs being killed prematurely just because of
erroneous system speculations. Researchers that noted this problem failed to solve it within the
native backfilling framework [62, 115, 108, 15, 90], but our solution is rather simple: (1) use user
estimates exclusively as kill-times, (2) base all other scheduling decisions on system-generated
predictions, and (3) dynamically increase predictions outlived by their jobs, and push back affected
reservations, in order to provide the scheduler with a truthful view of the state of the machine.
Applying this to EASY usually results in a∽25% reduction in average wait time and slowdown.
We call this improved algorithm EASY+.

The second major difficulty is related to the common misconception suggesting inaccuracy
actually improves performance, and therefore implying that good estimates are “unimportant”.
As discussed above in great detail, this relies on a number ofstudies showing significant improve-
ments when deliberately making user estimates even less accurate (e.g. by doubling or randomizing
them [174, 115]). In this respect, our contribution has two parts: (1) explaining this phenomenon
(Section 7.1), and (2) exploiting it. As noted, doubling helps because it induces “heel and toe”
backfilling dynamics that approximates an SJF-like schedule, by repeatedly preventing the first
queued job from being started. Thus doubling trades off fairness for performance and should be
viewed as a property of the scheduler, not the predictor (indeed, we’ve shown that the more accu-
rate predictions are, the better the results that doubling obtains). We exploit this new understanding
to avoid the performance/fairness tradeoff by explicitly using a shortest jobbackfilled first(SJBF)
backfilling order. This leads directly to a performance improvement that was previously incorrectly
attributed to doubling, randomizing and other similar stunts. By still preserving FCFS as the basis,
we manage to enjoy both worlds: a fair scheduler that nevertheless backfills effectively. Applying
this to EASY+ can nearly double the performance (up to 47% reduction in average slowdown).
We call this enhanced algorithm EASY++.

The third and final difficulty is related to the usability of previously suggested prediction algo-
rithms. These all suffer from at least one (and sometimes all) of the following drawbacks: (1) they
require significant memory and complex data structures to save the history of users, (2) they em-
ploy a complicated prediction algorithm (to the point of being off-line), and (3) they pay the price in
terms of computational overheads for maintaining the history and searching it [62, 138, 83, 86, 97].
Here too our contribution is twofold: (1) showing that a verysimple predictor can do an excellent
job, and (2) explaining why. Indeed, the improvements of EASY+ / EASY++ reported above were
obtained by employing a very simple predictor that is both easy to implement and suffers almost
no overheads: the average runtime of the two most recently submitted (and already terminated)
jobs by the same user. We have argued that our predictor’s success stems from the fact it focuses
on recentjobs, in contrast to previous predictors that focused onsimilar ones (in terms of various
job attributes). This claim is supported by our finding that performance degradation is more or less
linearly proportional to the amount of past jobs upon which the prediction is based, suggesting a

7.4 Cleaning Workloads From Flurries and Other Anomalies 127

prediction window of only one or two jobs is optimal (Fig. 1.19, page 26).
Finally, note that while we focus on improving EASY, we have also shown our techniques can

be applied equally well to any other backfilling scheduler. (Indeed, our work has already inspired
researchers working on theeNANOS grid [87] to incorporate runtime predictions using our tech-
niques.) The reason we choose to focus on EASY is its popularity in production systems, which
may be attributed to the combination of conservative FCFS semantics with improved utilization
and performance. Since EASY++ essentially preserves these qualities, but consistently outper-
forms its predecessor in terms of accuracy, predictability, and performance, we believe it has an
honest chance to replace EASY as the default configuration ofproduction systems.

This part of our work was published in [156], and is the basis of a pending patent [158].

7.4 Cleaning Workloads From Flurries and Other Anomalies

All the results presented above exclusively rely on the modeling and performance evaluation,
through simulation, of activity logs from real production systems. This methodology is standard,
and is utilized by numerous computer-systems related papers (e.g. the logs we have used in this
work were also extensively used in dozens of other papers [110]). The underlying assumption of
this methodology is that recordings of production systems are reliable and representative. We chal-
lenge this assumption, demonstrate it is often erroneous, and suggest non-representative anomalies
be “sanitized” or “cleaned” from the logs, before they are used.

Beginning with workload characterization and modeling, wenote that this activity has been
advocated and practiced for many years [55, 1, 12], typically by means of collecting workload
traces and creating a statistical model based on fitting the distributions of workload attributes [89].
But such an approach is questionable if the data is not stationary, as seems to be the case in
the context of parallel supercomputers: we identify flurries as a specific type of deviations from
stationarity that have to be taken into account when creating a workload model.

Continuing with performance evaluations through simulation, we note that this activity is also
heavily practiced for many years and constitutes an indispensable tool for system analysts and
designers [101]. But when unsanitized workloads (or modelsbased upon them) are utilized as the
simulators’ input, the results are questionable and might very well be erroneous or misleading. The
reason is that real workloads are often “multiclass”, meaning they are composed of the “normal”
load (that is truly representative of the system being studied), and anomalies (unique and non-
representative). The problem is that the latter, less important, part might come to dominate the
results of the evaluation, specifically if the anomaly is a “workload flurry”: rare surges of activity
with a repetitive nature, caused by a single user.

We therefore suggest that a workload be separated into “normal” workload and “flurries”. Mod-
eling and the performance evaluation of the normal part can then be performed using current stan-
dard methodologies. With modeling, this was shown to significantly promote stationarity, e.g.
revealing two halves of the same log initially appearing distinctive, are in fact statistically simi-
lar if flurries are removed and only the normal portions are compared. With simulation, this was
shown to make results robust to small and insignificant changes applied to the workload, and to
enable a clear ranking of alternative system designs, whichwas unobtainable when utilizing raw
logs. Thus, sanitization may be expected to lead to reliableand consistent results that are appli-
cable most of the time (during which flurries are not present). Afterwards, comparing evaluation

128 Discussion and Conclusions

results using the cleaned log against those based on the raw log will identify whether the removed
flurries actually have a significant effect in the specific case being studied.

The main justification for removing flurries steams from the fact they are rare, unique, and has
has an effect during a very short period of the time: Using a workload with a flurry in effect em-
phasizes the rare and unique event at the expense of normal conditions. Thusleaving the flurry in
is actually the unjustifiable approach. With respect to performance evaluation, the “flurry removal”
can be as subtle as not including the flurry jobs within the average performance metric; but we have
shown that the much simpler approach of deleting the flurry from the input altogether has exactly
the same effect. To argue for evaluations based on workloadsfrom which flurries arenot removed,
one must argue

1. that the activity of a specific user during a short time should indeed dominate the entire
evaluation results,

2. that the evaluation results are valid even though negligible perturbation applied to the work-
load can significantly change them, possibly swaying them inthe opposite direction, and

3. that the results are satisfactory even though they might considerably change if the span of
time covered by the evaluation is shifted such that the flurryhappens to be excluded.

We speculate most analysts would be reluctant to make such arguments. Likewise, when modeling
unsanitized data and fitting an attribute against the raw log, one must be willing to accept the
following lose-lose situation: on one hand, results are notrepresentative of the “norm” because
they are influenced by the flurries, and do not reflect normal usage; on the other hand results also do
not reflect flurries, because flurries have a specific temporalstructure (they are concentrated within
a limited span of time). In other words, sampling from a distribution that includes a flurry does
not produce a flurry; rather, it spreads the flurry evenly overthe whole duration of the generated
workload. Moreover, any specific flurry is not representative of flurries in general

The question is then how to identify and remove the flurries. The methodology we have used
is to plot activity levels as a function of time. In the case ofparallel jobs, this means job or process
arrivals per unit time. In other contexts, other workload attributes would be appropriate. For
example, when analyzing Internet traffic one can tabulate packets and flows; for storage systems,
one can look at I/O operations and at bytes transferred.

Once a period of time with exceptionally heavy load is identified, this load should be checked
for uniformity and source. The flurries we have identified were all composed of numerous rep-
etitions of the same type of work. Identifying this is the keyfor removing the flurry from the
workload, as the combination of the time frame and the flurry’s specific attributes often provide an
effective filter. As finding flurries is not trivial, this information should be shared together with the
original data. In other words, when workload data is made available, it should be accompanied by
all the accumulated knowledge regarding problems with its use, and specifically, with information
regarding flurries that occur in it. As a first step, we have added our data to the Parallel Workloads
Archive [110], from which our original logs come, and which is used by many researchers for
numerous studies of parallel job scheduling.

We view this as a first step because, somewhat surprisingly, computer systems analysts rarely
verify the integrity of the data on which they rely for their analysis, and the overwhelmingly com-
mon case is to use the data “as is” (e.g. consider all the papers that fit distributions against log
files without even considering whether some sanitation is inorder [54]). This is in disagreement

7.4 Cleaning Workloads From Flurries and Other Anomalies 129

with what is routinely done in every statistical analysis, where data is throughly validated, outliers
are removed when necessary, etc. Rare studies that do attempt to sanitize, tend to have a “local”
or “specific” nature, targeting a single attribute or concept instead of providing a generalization
like we do in this part of our work. For example, in an attempt to model the daily cycle of the
jobs submittal process, Cirne and Berman clustered days, and excluded clusters populated by only
one day from participating in the evaluation [20]. The flurries phenomenon suggests this approach
is problematic because (1) “normal” jobs are also needlessly excluded, and (2) flurries may span
more than one day and thus be erroneously included. Of course, just eliminating flurries is also not
a good solution, as flurries do in fact occur. An open questionis how to model or evaluate the effect
of the flurries on a system designed and optimized for the morecommon non-flurry workload. An
obvious first step is to use specific flurries that occur in recorded workloads and study their effect.
But it is doubtful whether this can predict the effect of other potential flurries. Important future
work is therefore to develop methods to extend and generalize the results obtained with specific
flurries, and try to derive bounds on the effects of other potential flurries.

To summarize, it is extremely important to use real data regarding the workload on computer
systems. But it is equally important to ensure that this is high-quality and representative data.
Using measured workloads indiscriminately risks the introduction of unknown anomalies that may
lead to unknown effects. Workload flurries are such an anomaly, and should be handled with care.

This part of our work was published in [160, 54].

Bibliography

[1] A. K. Agrawala, J. M. Mohr, and R. M. Bryant, “An approach to the workload characterization problem”.
Computer9(6), pp. 18–32, Jun 1976.

[2] K. Aida, H. Kasahara, and S. Narita, “Job scheduling scheme for pure space sharing among rigid jobs”. In Job
Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 98–121, Springer
Verlag, 1998. Lect. Notes Comput. Sci. vol. 1459.

[3] G. S. Almasi and A. Gottlieb,Highly Parallel Computing. Benjamin Cummings Publishing Inc. (Addison
Wesley), 2nd ed., 1994.

[4] I. Ari, B. Hong, E. L. Miller, S. A. Brandt, and D. D. E. Long, “Managing flash crowds on the Internet”. In
11thModeling, Anal. & Simulation of Comput. & Telecomm. Syst., pp. 246–249, Oct 2003.

[5] M. Arlitt and T. Jin, “A workload characterization study of the 1998 world cup web site”. IEEE Network
14(3), pp. 30–37, May/Jun 2000.

[6] M. F. Arlitt and C. L. Williamson, “A synthetic workload model for Internet Mosaic traffic”. In Summer
Comput. Simulation Conf. (SCSC), pp. 852–857, Jul 1995.

[7] R. H. Arpaci, A. C. Dusseau, A. M. Vahdat, L. T. Liu, T. E. Anderson, and D. A. Patterson, “The interaction of
parallel and sequential workloads on a network of workstations”. In SIGMETRICS Conf. Measurement &
Modeling of Comput. Syst., pp. 267–278, May 1995.

[8] J. M. Barton and N. Bitar, “A scalable multi-discipline, multiple-processor scheduling framework for IRIX”.
In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 45–69,
Springer-Verlag, 1995. Lect. Notes Comput. Sci. vol. 949.

[9] A. Batat and D. G. Feitelson, “Gang scheduling with memory considerations”. In 14th Intl. Parallel &
Distributed Processing Symp., pp. 109–114, May 2000.

[10] A. Bayucan, R. L. Henderson, J. P. Jones, C. Lesiak, B. Mann, B. Nitzberg, T. Proett, and J. Utley,Portable
Batch System Administrator Guide, OpenPBS Release 2.3. Altair Engineering, Aug 2000. URL
http://www.cs.huji.ac.il/labs/parallel/workload/pbs2swf/OpenPBSAG 2.3.pdf.

[11] M. Burgess, H. Haugerud, S. Straumsnes, and T. Reitan, “Measuring system normality”. ACM Trans. Comput.
Syst.20(2), pp. 125–160, May 2002.

[12] M. Calzarossa and G. Serazzi, “Workload characterization: a survey”. Proc. IEEE81(8), pp. 1136–1150, Aug
1993.

[13] N. Carriero, E. Freeman, and D. Gelernter, “Adaptive parallelism on multiprocessors: preliminary experience
with Piranha on the CM-5”. In Languages and Compilers for Parallel Computing, U. Banerjee, D. Gelernter,
A. Nicolau, and D. Padua (eds.), pp. 139–151, Springer-Verlag, Aug 1993. Lect. Notes Comput. Sci. vol. 768.

[14] N. Carriero, E. Freeman, D. Gelernter, and D. Kaminsky,“Adaptive parallelism and Piranha”. Computer
28(1), pp. 40–49, Jan 1995.

[15] S-H. Chiang, A. Arpaci-Dusseau, and M. K. Vernon, “The impact of more accurate requested runtimes on
production job scheduling performance”. In 8th Workshop on Job Scheduling Strategies for Parallel
Processing (JSSPP), D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn (eds.),pp. 103–127,
Springer-Verlag, Jul 2002. Lect. Notes Comput. Sci. vol. 2537.

BIBLIOGRAPHY 131

[16] S-H. Chiang, R. K. Mansharamani, and M. K. Vernon, “Use of application characteristics and limited
preemption for run-to-completion parallel processor scheduling policies”. In SIGMETRICS Conf.
Measurement & Modeling of Comput. Syst., pp. 33–44, May 1994.

[17] S-H. Chiang and M. K. Vernon, “Characteristics of a large shared memory production workload”. In Job
Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 159–187, Springer
Verlag, 2001. Lect. Notes Comput. Sci. vol. 2221.

[18] S-H. Chiang and M. K. Vernon, “Dynamic vs. static quantum-based parallel processor allocation”. In Job
Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 200–223,
Springer-Verlag, 1996. Lect. Notes Comput. Sci. vol. 1162.

[19] S-H. Chiang and M. K. Vernon, “Production job scheduling for parallel shared memory systems”. In 15th
IEEE Int’l Parallel & Distributed Processing Symp. (IPDPS), Apr 2001.

[20] W. Cirne and F. Berman, “A comprehensive model of the supercomputer workload”. In 4th Workshop on
Workload Characterization, Dec 2001.

[21] W. Cirne and F. Berman, “A model for moldable supercomputer jobs”. In 15th Intl. Parallel & Distributed
Processing Symp., Apr 2001.

[22] W. Cirne and F. Berman, “Using moldability to improve the performance of supercomputer jobs”. J. of
Parallel & Distributed Comput. (JPDC)62(10), pp. 1571–1601, Oct 2002.

[23] W. Cirne and F. Berman, “When the herd is smart: aggregate behavior in the selection of job request”. IEEE
Trans. on Parallel & Distributed Syst. (TPDS)14(2), pp. 181–192, Feb 2003.

[24] Platfrom Computing,Administering Platform LSF, version 6.2. Feb 2006. URL
www.platform.com/Support/Documentation.htm.

[25] J. Corbalán, X. Martorell, and J. Labarta, “Performance-driven processor allocation”. In 4th Symp. Operating
Systems Design & Implementation, pp. 59–71, Oct 2000.

[26] M. E. Crovella, “Performance evaluation with heavy tailed distributions”. In Job Scheduling Strategies for
Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 1–10, Springer Verlag, 2001. Lect. Notes
Comput. Sci. vol. 2221.

[27] X. Deng and P. Dymond, “On multiprocessor system scheduling”. In 8th Symp. Parallel Algorithms &
Architectures, pp. 82–88, Jun 1996.

[28] X. Deng, N. Gu, T. Brecht, and K. Lu, “Preemptive scheduling of parallel jobs on multiprocessors”. In 7th
SIAM Symp. Discrete Algorithms, pp. 159–167, Jan 1996.

[29] J. J. Dongarra, H. W. Meuer, H. D. Simon, and E. Strohmaier, “Top500 supercomputer sites”. URL
http://www.top500.org/. (updated every 6 months).

[30] A. B. Downey, “A parallel workload model and its implications for processor allocation”. In 6th Intl. Symp.
High Performance Distributed Comput., pp. 112–124, Aug 1997.

[31] A. B. Downey, “Predicting queue times on space-sharing parallel computers”. In 11th IEEE Int’l Parallel
Processing Symp. (IPPS), pp. 209–218, Apr 1997.

[32] K. Dussa, K. Carlson, L. Dowdy, and K-H. Park, “Dynamic partitioning in a transputer environment”. In
SIGMETRICS Conf. Measurement & Modeling of Comput. Syst., pp. 203–213, May 1990.

[33] Altair Engineering,PBS Professional 7.1 Administrator’s Guide. Aug 2005. Editor: Anne Urban. URL
http://www.cs.huji.ac.il/labs/parallel/workload/pbs2swf/PBSProAG7.1.pdf.

[34] D. England, J. Weissman, and J. Sadago-pan, “A new metric for robustness with application to job
scheduling”. In 14th IEEE Int’l Symp. on High Performance Distributed Comput. (HPDC), pp. 135–143, Jul
2005.

132 BIBLIOGRAPHY

[35] C. Ernemann, V. Hamscher, and R. Yahyapour, “Economic scheduling in grid computing”. In Job Scheduling
Strategies for Parallel Processing, D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn (eds.),pp. 128–152,
Springer Verlag, 2002. Lect. Notes Comput. Sci. vol. 2537.

[36] C. Ernemann, M. Krogmann, J. Lepping, and R. Yahyapour,“Scheduling on the top 50 machines”. In 10th
Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP), pp. 17–46, Springer-Verlag, Jun
2004. Lect. Notes Comput. Sci. vol. 3277.

[37] Y. Etsion and D. Tsafrir,A Short Survey of Commercial Cluster Batch Schedulers. Technical Report 2005-13,
The Hebrew University of Jerusalem, May 2005.

[38] J. J. Evans, C. S. Hood, and C. S. Hood, “Exploring the relationship between parallel application run-time and
network performance in clusters”. In IEEE Int’l Conf. on Local Comput. Networks (LCN), pp. 538–547, Oct
2003.

[39] D. G. Feitelson, “Experimental analysis of the root causes of performance evaluation results: a backfilling case
study”. IEEE Trans. on Parallel & Distributed Syst. (TPDS)16(2), pp. 175–182, Feb 2005.

[40] D. G. Feitelson, “Metric and workload effects on computer systems evaluation”. Computer36(9), pp. 18–25,
Sep 2003.

[41] D. G. Feitelson, “Metrics for mass-count disparity”. In Modeling, Anal. & Simulation of Comput. &
Telecomm. Syst., pp. 61–68, Sep 2006.

[42] D. G. Feitelson, “On the interpretation of Top500 data”. Int’l J. of High Performance Comput. Apps.
(IJHPCA)13(2), pp. 146–153, Summer 1999.

[43] D. G. Feitelson, “The supercomputer industry in light of the Top500 data”. IEEE Comput. in Sci. & Eng.7(1),
pp. 42–47, Jan/Feb 2005.

[44] D. G. Feitelson,A Survey of Scheduling in Multiprogrammed Parallel Systems. Research Report RC 19790
(87657), IBM T. J. Watson Research Center, Oct 1994.

[45] D. G. Feitelson, A. Batat, G. Benhanokh, D. Er-El, Y. Etsion, A. Kavas, T. Klainer, U. Lublin, and
M. A. Volovic, “The ParPar system: a software MPP”. In High Performance Cluster Computing, Vol. 1:
Architectures and Systems, R. Buyya (ed.), pp. 754–770, Prentice-Hall, 1999.

[46] D. G. Feitelson and M. A. Jette, “Improved utilization and responsiveness with gang scheduling”. In Job
Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 238–261, Springer
Verlag, 1997. Lect. Notes Comput. Sci. vol. 1291.

[47] D. G. Feitelson and A. Mu’alem Weil, “Utilization and predictability in scheduling the IBM SP2 with
backfilling”. In 12th IEEE Int’l Parallel Processing Symp. (IPPS), pp. 542–546, Apr 1998.

[48] D. G. Feitelson and B. Nitzberg, “Job characteristics of a production parallel scientific workload on the NASA
Ames iPSC/860”. In 1st Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP),
D. G. Feitelson and L. Rudolph (eds.), pp. 337–360, Springer-Verlag, Apr 1995. Lect. Notes Comput. Sci.
vol. 949.

[49] D. G. Feitelson and L. Rudolph, “Distributed hierarchical control for parallel processing”. Computer23(5),
pp. 65–77, May 1990.

[50] D. G. Feitelson and L. Rudolph, “Evaluation of design choices for gang scheduling using distributed
hierarchical control”. J. Parallel & Distributed Comput.35(1), pp. 18–34, May 1996.

[51] D. G. Feitelson and L. Rudolph, “Metrics and benchmarking for parallel job scheduling”. In Workshop on Job
Scheduling Strategies for Parallel Processing (JSSPP), D. G. Feitelson and L. Rudolph (eds.), pp. 1–24,
Springer-Verlag, Mar 1998. Lect. Notes Comput. Sci. vol. 1459.

[52] D. G. Feitelson and L. Rudolph, “Toward convergence in job schedulers for parallel supercomputers”. In Job
Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 1–26,
Springer-Verlag, 1996. Lect. Notes Comput. Sci. vol. 1162.

BIBLIOGRAPHY 133

[53] D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn, “Parallel job scheduling — a status report”. In 10th
Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP), D. G. Feitelson, L. Rudolph, and
U. Schwiegelshohn (eds.), pp. 1–16, Springer-Verlag, Jun 2004. Lect. Notes Comput. Sci. vol. 3277.

[54] D. G. Feitelson and D. Tsafrir, “Workload sanitation for performance evaluation”. In IEEE Int’l Symp.
Performance Analysis of Syst. & Software (ISPASS), pp. 221–230, Mar 2006.

[55] D. Ferrari, “Workload characterization and selection in computer performance measurement”. Computer5(4),
pp. 18–24, Jul/Aug 1972.

[56] E. Frachtenberg, D. G. Feitelson, J. Fernandez, and F. Petrini, “Parallel job scheduling under dynamic
workloads”. In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson, L. Rudolph, and
U. Schwiegelshohn (eds.), pp. 208–227, Springer Verlag, 2003. Lect. Notes Comput. Sci. vol. 2862.

[57] E. Frachtenberg, D. G. Feitelson, J. Fernandez-Peinador, and F. Petrini, “Parallel job scheduling under
dynamic workloads”. In Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP),
pp. 208–227, Springer-Verlag, 2003. Lect. Notes Comput. Sci. vol. 2862.

[58] E. Frachtenberg, D. G. Feitelson, F. Petrini, and J. Fernandez, “Adaptive parallel job scheduling with flexible
coscheduling”. IEEE Trans. Parallel & Distributed Syst.16(11), pp. 1066–1077, Nov 2005.

[59] H. Franke, J. Jann, J. E. Moreira, P. Pattnaik, and M. A. Jette, “An evaluation of parallel job scheduling for
ASCI Blue-Pacific”. In Supercomputing ’99, Nov 1999.

[60] H. Franke, P. Pattnaik, and L. Rudolph, “Gang scheduling for highly efficient distributed multiprocessor
systems”. In 6th Symp. Frontiers Massively Parallel Comput., pp. 1–9, Oct 1996.

[61] W. Gentzsch, “Sun grid engine: towards creating a compute power grid”. In IEEE Int’l Symp. on Cluster
Comput. & the Grid (CCGrid), pp. 35–36, May 2001.

[62] R. Gibbons, “A historical application profiler for use by parallel schedulers”. In 3rd Workshop on Job
Scheduling Strategies for Parallel Processing (JSSPP), D. G. Feitelson and L. Rudolph (eds.), pp. 58–77,
Springer-Verlag, Apr 1997. Lect. Notes Comput. Sci. vol. 1291.

[63] B. Gorda and R. Wolski, “Time sharing massively parallel machines”. In Intl. Conf. Parallel Processing,
vol. II, pp. 214–217, Aug 1995.

[64] F. Guim, J. Corbalán, and J. Labarta,Impact of Qualitative and Quantitative Errors of the Job Runtime
Estimation in Backfilling Based Scheduling Policies. Technical Report, Computer Architecture Department,
Technical University of Catalonia (UPC)., 2006. Submittedfor publication.

[65] A. Gupta, A. Tucker, and S. Urushibara, “The impact of operating system scheduling policies and
synchronization methods on the performance of parallel applications”. In SIGMETRICS Conf. Measurement
& Modeling of Comput. Syst., pp. 120–132, May 1991.

[66] M. W. Hall and M. Martonosi, “Adaptive parallelism in compiler-parallelized code”. Concurrency — Pract. &
Exp.10(14), pp. 1235–1250, Dec 1998.

[67] W. Händler, “Simplicity and flexibility in concurrent computer architecture”. In High-Speed Computation,
J. S. Kowalik (ed.), pp. 69–88, Springer-Verlag, 1984. NATOASI Series Vol. F7.

[68] R. L. Henderson, “Job scheduling under the portable batch system”. In 1st Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP), D. G. Feitelson and L. Rudolph (eds.), pp. 279–294,
Springer-Verlag, 1995. Lect. Notes Comput. Sci. vol. 949.

[69] A. Hori, H. Tezuka, and Y. Ishikawa, “Highly efficient gang scheduling implementation”. In Supercomputing
’98, Nov 1998.

[70] S. Hotovy, “Workload evolution on the Cornell Theory Center IBM SP2”. In Job Scheduling Strategies for
Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 27–40, Springer-Verlag, 1996. Lect. Notes
Comput. Sci. vol. 1162.

134 BIBLIOGRAPHY

[71] C. Isci, G. Contreras, and M. Martonosi, “Live, runtime phase monitoring and prediction on real systems with
application to dynamic power management”. In 39th IEEE/ACM Int’l Symp. on Microarchit. (MICRO),
pp. 359–370, Dec 2006.

[72] M. Islam, P. Balaji, P. Sadayappan, and D. K. Panda, “QoPS: a QoS based scheme for parallel job scheduling”.
In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn
(eds.), pp. 252–268, Springer Verlag, 2003. Lect. Notes Comput. Sci. vol. 2862.

[73] N. Islam, A. L. Prodromidis, M. S. Squillante, L. L. Fong, and A. S. Gopal, “Extensible resource management
for cluster computing”. In 17th Intl. Conf. Distributed Comput. Syst., pp. 561–568, May 1997.

[74] D. Jackson, “Maui/Moab default configuration”. Jan 2006. Personal communication (with CTO of Cluster
Resources).

[75] D. Jackson, Q. Snell, and M. Clement, “Core algorithms of the Maui scheduler”. In 7th Workshop on Job
Scheduling Strategies for Parallel Processing (JSSPP), D. G. Feitelson and L. Rudolph (eds.), pp. 87–102,
Springer-Verlag, Jun 2001. Lect. Notes Comput. Sci. vol. 2221.

[76] R. Jain,The Art of Computer Systems Performance Analysis. John Wiley & Sons, 1991.

[77] J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, andJ. Riodan, “Modeling of workload in MPPs”. In Job
Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 95–116, Springer
Verlag, 1997. Lect. Notes Comput. Sci. vol. 1291.

[78] M. Jette, D. Storch, and E. Yim, “Timesharing the Cray T3D”. In Cray User Group, pp. 247–252, Mar 1996.

[79] J. P. Jones and B. Nitzberg, “Scheduling for parallel supercomputing: a historical perspective of achievable
utilization”. In 5th Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP), D. G. Feitelson
and L. Rudolph (eds.), pp. 1–16, Springer-Verlag, Apr 1999.Lect. Notes Comput. Sci. vol. 1659.

[80] L. V. Kalé, S. Kumar, and J. DeSouza, “A malleable-job system for timeshared parallel machines”. In 2nd
IEEE Int’l Symp. on Cluster Comput. & the Grid (CCGrid), p. 230, May 2002.

[81] G. B. Kandiraju and A. Sivasubramaniam, “Characterizing thed-tlb behavior of spec cpu2000 benchmarks”.
In ACM SIGMETRICS Int’l Conf. on Measurement & Modeling of Comput. Syst.), pp. 129–139, Jun 2002.

[82] S. Kannan, M. Roberts, P. Mayes, D. Brelsford, and J. F. Skovira,Workload Management with LoadLeveler.
IBM, 1st ed., Nov 2001. URL http://www.redbooks.ibm.com/abstracts/sg246038.html.

[83] N. H. Kapadia, J. A. B. Fortes, and C. E. Brodley, “Predictive application-performance modeling in a
computational grid environment”. In 8th IEEE Int’l Symp. on High Performance Distributed Comput.
(HPDC), p. 6, Aug 1999.

[84] J. Krallmann, U. Schwiegelshohn, and R. Yahyapour, “On the design and evaluation of job scheduling
algorithms”. In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.),
pp. 17–42, Springer Verlag, 1999. Lect. Notes Comput. Sci. vol. 1659.

[85] E. Krevat, J. G. Castaños, and J. E. Moreira, “Job scheduling for the BlueGene/L system”. In Job Scheduling
Strategies for Parallel Processing, D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn (eds.),pp. 38–54,
Springer Verlag, 2002. Lect. Notes Comput. Sci. vol. 2537.

[86] S. Krishnaswamy, S. W. Loke, and A. Zaslavsky, “Estimating computation times of data-intensive
applications”. IEEE Distributed Syst. Online (DS Online)5(4), Apr 2004.

[87] J. Labarta, J. Corbalán, F. Guim, and I. Rodero, “The eNANOS grid”. URL http://www.bsc.es/grid/enanos.

[88] J. Labarta, S. Girona, and T. Cortes, “Analyzing scheduling policies using Dimamas”. Parallel Comput.
23(1-2), pp. 23–34, Apr 1997.

[89] A. M. Law and W. D. Kelton,Simulation Modeling and Analysis. McGraw Hill, 3 ed., 2000.

[90] B. G. Lawson and E. Smirni, “Multiple-queue backfilling scheduling with priorities andreservations for
parallel systems”. In 8th Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP),
D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn (eds.), pp. 72–87, Springer-Verlag, Jul 2002. Lect. Notes
Comput. Sci. vol. 2537.

BIBLIOGRAPHY 135

[91] B. G. Lawson and E. Smirni, “Power-aware resource allocation in high-end systems via online simulation”. In
19thACM Int’l Conf. on Supercomput. (ICS), pp. 229–238, Jun 2005.

[92] B. G. Lawson, E. Smirni, and D. Puiu, “Self-adapting backfilling scheduling for parallel systems”. In Int’l
Conf. on Parallel Processing (ICPP), pp. 593–592, Aug 2002.

[93] C. B. Lee, Y. Schwartzman, J. Hardy, and A. Snavely, “Are user runtime estimates inherently inaccurate?”. In
10thWorkshop on Job Scheduling Strategies for Parallel Processing (JSSPP), D. G. Feitelson, L. Rudolph,
and U. Schwiegelshohn (eds.), pp. 253–263, Springer-Verlag, Jun 2004. Lect. Notes Comput. Sci. vol. 3277.

[94] C. B. Lee and A. Snavely, “On the user-scheduler dialogue: studies of user-provided runtime estimates and
utility functions”. Int’l J. of High Performance Comput. Apps. (IJHPCA), 2006. To appear.

[95] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman, M. N. Ganmukhi, J. V. Hill, W. D. Hillis,
B. C. Kuszmaul, M. A. St. Pierre, D. S. Wells, M. C. Wong-Chan,S-W. Yang, and R. Zak, “The network
architecture of the Connection Machine CM-5”. J. Parallel & Distributed Comput.33(2), pp. 145–158, Mar
1996.

[96] H. Li, D. Groep, J. Templon, and L. Wolters, “Predicting job start times on clusters”. In 6th IEEE Int’l Symp.
on Cluster Comput. & the Grid (CCGrid), May 2004.

[97] H. Li, D. Groep, and L. Walters, “Workload characteristics of a multi-cluster supercomputer”. In Job
Scheduling Strategies for Parallel Processing, D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn (eds.),
pp. 176–193, Springer-Verlag, 2004. Lect. Notes Comput. Sci. vol. 3277.

[98] D. Lifka, “The ANL/IBM SP scheduling system”. In 1st Workshop on Job Scheduling Strategies for Parallel
Processing (JSSPP), D. G. Feitelson and L. Rudolph (eds.), pp. 295–303, Springer-Verlag, Apr 1995. Lect.
Notes Comput. Sci. vol. 949.

[99] U. Lublin and D. G. Feitelson, “The workload on parallel supercomputers: modeling the characteristics of
rigid jobs”. J. Parallel & Distributed Comput.63(11), pp. 1105–1122, Nov 2003.

[100] W. Ludwig and P. Tiwari, “Scheduling malleable and nonmalleable parallel tasks”. In 5th SIAM Symp.
Discrete Algorithms, pp. 167–176, Jan 1994.

[101] M. H. MacDougall,Simulating Computer Systems: Techniques and Tools. MIT Press, 1987.

[102] C. McCann, R. Vaswani, and J. Zahorjan, “A dynamic processor allocation policy for multiprogrammed
shared-memory multiprocessors”. ACM Trans. Comput. Syst.11(2), pp. 146–178, May 1993.

[103] C. McCann and J. Zahorjan, “Processor allocation policies for message passing parallel computers”. In
SIGMETRICS Conf. Measurement & Modeling of Comput. Syst., pp. 19–32, May 1994.

[104] C. McCann and J. Zahorjan, “Scheduling memory constrained jobs on distributed memory parallel
computers”. In SIGMETRICS Conf. Measurement & Modeling of Comput. Syst., pp. 208–219, May 1995.

[105] E. Medernach, “Workload analysis of a cluster in a grid environment”. In Job Scheduling Strategies for
Parallel Processing, Jun 2005.

[106] Sun microsystems,N1 Grid Engine 6 Administration Guide. May 2005. URL
http://docs.sun.com/app/docs/doc/817-5677.

[107] J. E. Moreira and V. K. Naik, “Dynamic resource management on distributed systems using reconfigurable
applications”. IBM J. Res. Dev.41(3), pp. 303–330, May 1997.

[108] A. W. Mu’alem and D. G. Feitelson, “Utilization, predictability, workloads, and user runtimeestimates in
scheduling the IBM SP2 with backfilling”. IEEE Trans. Parallel & Distributed Syst.12(6), pp. 529–543, Jun
2001.

[109] J. K. Ousterhout, “Scheduling techniques for concurrent systems”. In 3rd Intl. Conf. Distributed Comput.
Syst., pp. 22–30, Oct 1982.

[110] “Parallel Workloads Archive”. URL http://www.cs.huji.ac.il/labs/parallel/workload/.

136 BIBLIOGRAPHY

[111] K-H. Park and L. W. Dowdy, “Dynamic partitioning of multiprocessor systems”. Intl. J. Parallel
Programming18(2), pp. 91–120, Apr 1989.

[112] E. W. Parsons and K. C. Sevcik, “Benefits of speedup knowledge in memory-constrained multiprocessor
scheduling”. Performance Evaluation27&28, pp. 253–272, Oct 1996.

[113] E. W. Parsons and K. C. Sevcik, “Coordinated allocation of memory and processors in multiprocessors”. In
SIGMETRICS Conf. Measurement & Modeling of Comput. Syst., pp. 57–67, May 1996.

[114] E. Perelman, G. Hamerly, M. V. Biesbrouck, T. Sherwood, and B. Calder, “Using SimPoint for accurate and
efficient simulation”. In ACM SIGMETRICS Int’l Conf. on Measurement & Modeling of Comput. Syst.),
pp. 318–319, Jun 2003.

[115] D. Perkovic and P. J. Keleher, “Randomization, speculation, and adaptation in batch schedulers”. In
ACM/IEEE Supercomputing (SC), p. 7, Sep 2000.

[116] J. Pruyne and M. Livny, “Parallel processing on dynamic resources with CARMI”. In 1st Workshop on Job
Scheduling Strategies for Parallel Processing (JSSPP), D. G. Feitelson and L. Rudolph (eds.), pp. 259–278,
Springer-Verlag, Apr 1995. Lect. Notes Comput. Sci. vol. 949.

[117] M. K. Qureshi, M. A. Suleman, and Y. N. Patt, “Line distillation: increasing cache capacity by filtering unused
words in cache lines”. In IEEE Int’l Symp. on High-Performance Comput. Archit. (HPCA), pp. 250–259, Feb
2007.

[118] Cluster Resources,Moab Wokload Manager Administrator’s Guide. 2006. Version 4.5.0. URL
http://www.clusterresources.com/moabdocs/MoabAdminGuide450.pdf.

[119] E. Rosti, G. Serazzi, E. Smirni, and M. S. Squillante, “The impact of I/O on program behavior and parallel
scheduling”. In SIGMETRICS Conf. Measurement & Modeling of Comput. Syst., pp. 56–65, Jun 1998.

[120] E. Rosti, E. Smirni, L. W. Dowdy, G. Serazzi, and B. M. Carlson, “Robust partitioning schemes of
multiprocessor systems”. Performance Evaluation19(2-3), pp. 141–165, Mar 1994.

[121] E. Rosti, E. Smirni, G. Serazzi, and L. W. Dowdy, “Analysis of non-work-conserving processor partitioning
policies”. In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.),
pp. 165–181, Springer-Verlag, 1995. Lect. Notes Comput. Sci. vol. 949.

[122] G. Sabin and P. Sadayappan, “On enhancing the reliability of job schedulers”. In High Availability &
Performace Computing Workshop (HAPCW), Oct 2005.

[123] G. Sabin and P. Sadayappan, “Unfairness metrics for space-sharing parallel job schedulers”. In 11th Workshop
on Job Scheduling Strategies for Parallel Processing (JSSPP), D. G. Feitelson, E. Frachtenberg, L. Rudolph,
and U. Schwiegelshohn (eds.), pp. 238–256, Springer-Verlag, Jun 2005. Lect. Notes Comput. Sci. vol. 3834.

[124] E. Schooler and J. Gemmel,Using multicast FEC to solve the midnight madness problem. Technical
Report MS-TR-97-25, Microsoft Research, Sep 1997.

[125] B. Schroeder and M. Harchol-Balter, “Evaluation of task assignment policies for supercomputingservers: the
case for load unbalancing and fairness”. In IEEE Int’l Symp. on High Performance Distributed Comput.
(HPDC), p. 211, Aug 2000.

[126] S. Setia, M. S. Squillante, and V. K. Naik, “The impact of job memory requirements on gang-scheduling
performance”. Performance Evaluation Rev.26(4), pp. 30–39, Mar 1999.

[127] S. K. Setia, “The interaction between memory allocation and adaptive partitioning in message-passing
multicomputers”. In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.),
pp. 146–164, Springer-Verlag, 1995. Lect. Notes Comput. Sci. vol. 949.

[128] S. K. Setia, M. S. Squillante, and S. K. Tripathi, “Processor scheduling on multiprogrammed, distributed
memory parallel computers”. In SIGMETRICS Conf. Measurement & Modeling of Comput. Syst.,
pp. 158–170, May 1993.

[129] S. Shankland, “Power could cost more than servers, Google warns”. CNET news.com, URL
http://news.com.com/2100-10103-5988090.html, Dec 2005.

BIBLIOGRAPHY 137

[130] E. Shmueli,Leveraging feedback in evaluating parallel system schedulers. PhD thesis, The Hebrew University
of Jerusalem, Israel, 200? In preparation.

[131] E. Shmueli and D. G. Feitelson, “Backfilling with lookahead to optimize the packing of parallel jobs”. J. of
Parallel & Distributed Comput. (JPDC)65(9), pp. 1090–1107, Sep 2005.

[132] E. Shmueli and D. G. Feitelson, “Backfilling with lookahead to optimize the performance of parallel job
scheduling”. In 9th Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP), D. G. Feitelson,
L. Rudolph, and U. Schwiegelshohn (eds.), pp. 228–251, Springer-Verlag, Jun 2003. Lect. Notes Comput. Sci.
vol. 2862.

[133] E. Shmueli and D. G. Feitelson, “Using site-level modeling to evaluate the performance of parallel system
schedulers”. In Modeling, Anal. & Simulation of Comput. & Telecomm. Syst., pp. 167–176, Sep 2006.

[134] E. Smirni, E. Rosti, G. Serazzi, L. W. Dowdy, and K. C. Sevcik, “Performance gains from leaving idle
processors in multiprocessor systems”. In Intl. Conf. Parallel Processing, vol. III, pp. 203–210, Aug 1995.

[135] K. A. Smith and M. I. Seltzer, “File system aging—increasing the relevance of file system benchmarks”. In
SIGMETRICS Conf. Measurement & Modeling of Comput. Syst., pp. 203–213, Jun 1997.

[136] W. Smith, I. Foster, and V. Taylor, “Predicting application run times using historical information”. In 4th
Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP), D. G. Feitelson and L. Rudolph
(eds.), pp. 122–142, Springer-Verlag, Mar 1998. Lect. Notes Comput. Sci. vol. 1459.

[137] W. Smith, I. Foster, and V. Taylor, “Scheduling with advanced reservations”. In 14th IEEE Int’l Parallel &
Distributed Processing Symp. (IPDPS), pp. 127–132, May 2000.

[138] W. Smith, V. Taylor, and I. Foster, “Using run-time predictions to estimate queue wait times andimprove
scheduler performance”. In 5th Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP),
D. G. Feitelson and L. Rudolph (eds.), pp. 202–219, Springer-Verlag, Apr 1999. Lect. Notes Comput. Sci.
vol. 1659.

[139] Q. O. Snell, M. J. Clement, and D. B. Jackson, “Preemption based backfill”. In Job Scheduling Strategies for
Parallel Processing, D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn (eds.),pp. 24–37, Springer Verlag,
2002. Lect. Notes Comput. Sci. vol. 2537.

[140] M. S. Squillante, “On the benefits and limitations of dynamic partitioning in parallel computer systems”. In
Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 219–238,
Springer-Verlag, 1995. Lect. Notes Comput. Sci. vol. 949.

[141] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan, “Selective reservation strategies for backfill
job scheduling”. In 8th Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP),
D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn (eds.), pp. 55–71, Springer-Verlag, Jul 2002. Lect. Notes
Comput. Sci. vol. 2537.

[142] S. Srinivasan, R. Kettimuthu, V. Subrarnani, and P. Sadayappan, “Characterization of backfilling strategies for
parallel job scheduling”. In Int’l Conf. on Parallel Processing (ICPP), pp. 514–522, Aug 2002.

[143] “Standard performance evaluation corporation”. URL http://www.spec.org.

[144] A. Streit, “A self-tuning job scheduler family with dynamic policy switching”. In Job Scheduling Strategies
for Parallel Processing, D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn (eds.),pp. 1–23, Springer
Verlag, 2002. Lect. Notes Comput. Sci. vol. 2537.

[145] V. Subramani, R. Kettimuthu, S. Srinivasan, and P. Sadayappan, “Distributed job scheduling on computational
grids using multiple simultaneous requests”. In 11th IEEE Int’l Symp. on High Performance Distributed
Comput. (HPDC), p. 359, Jul 2002.

[146] T. Suzuoka, J. Subhlok, and T. Gross,Evaluating Job Scheduling Techniques for Highly Parallel Computers.
Technical Report CMU-CS-95-149, School of Computer Science, Carnegie Mellon University, Aug 1995.

[147] “The standard workload format (SWF”. URL http://www.cs.huji.ac.il/labs/parallel/workload/swf.html.

138 BIBLIOGRAPHY

[148] D. Talby,User Modeling of Parallel Workloads. PhD thesis, The Hebrew University of Jerusalem, Israel, 200?
In preparation.

[149] D. Talby and D. G. Feitelson, “Improving and stabilizing parallel computer performance using adaptive
scheduling”. In 19th Intl. Parallel & Distributed Processing Symp., Apr 2005.

[150] D. Talby and D. G. Feitelson, “Supporting priorities and improving utilization of the IBMSP scheduler using
slack-based backfilling”. In 13th Intl. Parallel Processing Symp., pp. 513–517, Apr 1999.

[151] D. Talby, D. G. Feitelson, and A. Raveh, “A co-plot analysis of logs and models of parallel workloads”. ACM
Trans. on Modeling & Comput. Simulation (TOMACS), 2007. To apper.

[152] D. Talby, D. Tsafrir, Z. Goldberg, and D. G. Feitelson,Session-Based, Estimation-less, and Information-less
Runtime Prediction Algorithms for Parallel and Grid Job Scheduling. Technical Report 2006-77, The Hebrew
University of Jerusalem, Aug 2006.

[153] P. Terry, A. Shan, and P. Huttunen, “Improving application performance on HPC systems with process
synchronization”. Linux Journal2004(127), pp. 68–73, Nov 2004. URL
http://portal.acm.org/citation.cfm?id=1029015.1029018.

[154] D. Tsafrir, “Bug (+fix) in getdents() [glibc-2.3.2/linux-2.4.22/i686]”. URL
http://sources.redhat.com/ml/bug-glibc/2003-12/msg00028.html, Dec 2003.

[155] D. Tsafrir, Y. Etsion, , and D. G. Feitelson, “A model/utility for generating user runtime estimates and
appending them to a standard workload format (SWF) file”. URL
http://www.cs.huji.ac.il/labs/parallel/workload/mtsafrir05, Feb 2006.

[156] D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Backfilling using system-generated predictions rather than user
runtime estimates”. IEEE Trans. on Parallel & Distributed Syst. (TPDS), 2007.

[157] D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Modeling user runtime estimates”. In 11th Workshop on Job
Scheduling Strategies for Parallel Processing (JSSPP), D. G. Feitelson, E. Frachtenberg, L. Rudolph, and
U. Schwiegelshohn (eds.), pp. 1–35, Springer-Verlag, Jun 2005. Lect. Notes Comput. Sci. vol. 3834.

[158] D. Tsafrir, Y. Etsion, D. Talby, and D. G. Feitelson, “System and method for backfilling with system-generated
predictions rather than user runtime estimates”. Patent Application PCT/IL2006/000199, Feb 2006. Pending.

[159] D. Tsafrir and D. G. Feitelson, “The dynamics of backfilling: solving the mystery of why increased inaccuracy
may help”. In 2nd IEEE Int’l Symp. on Workload Characterization (IISWC), Oct 2006.

[160] D. Tsafrir and D. G. Feitelson, “Instability in parallel job scheduling simulation: the role of workload
flurries”. In 20th IEEE Int’l Parallel & Distributed Processing Symp. (IPDPS), p. 10, Apr 2006.

[161] D. Tsafrir, K. Ouaknine, and D. G. Feitelson,Reducing Performance Evaluation Sensitivity and Variability by
Input Shaking. Technical Report 2007-24, School of Computer Science and Engineering, the Hebrew
University of Jerusalem, May 2007. Submitted.

[162] G. Utrera, J. Corbalán, and J. Labarta, “Another approach to backfilled jobs: applying virtual malleability to
expired windows”. In 19th Intl. Conf. Supercomputing, pp. 313–322, Jun 2005.

[163] S. Vasupongayya, S-H. Chiang, and B. Massey, “Search-based job scheduling for parallel computer
workloads”. In IEEE Int’l Conf. on Cluster Comput. (Cluster), Sep 2005.

[164] R. Vaswani and J. Zahorjan, “The implications of cache affinity on processor scheduling for multiprogrammed,
shared memory multiprocessors”. In 13th Symp. Operating Systems Principles, pp. 26–40, Oct 1991.

[165] M. Wan, R. Moore, G. Kremenek, and K. Steube, “A batch scheduler for the Intel Paragon with a
non-contiguous node allocation algorithm”. In Job Scheduling Strategies for Parallel Processing,
D. G. Feitelson and L. Rudolph (eds.), pp. 48–64, Springer-Verlag, 1996. Lect. Notes Comput. Sci. vol. 1162.

[166] J. William A. Ward, C. L. Mahood, and J. E. West, “Scheduling jobs on parallel systems using a relaxed
backfill strategy”. In 8th Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP),
pp. 103–127, Springer-Verlag, Jul 2002. Lect. Notes Comput. Sci. vol. 2537.

BIBLIOGRAPHY 139

[167] C. Yu and C. R. Das, “Limit allocation: an efficient processor management schemefor hypercubes”. In Intl.
Conf. Parallel Processing, vol. II, pp. 143–150, Aug 1994.

[168] K. K. Yue and D. J. Lilja, “Loop-level process control: an effective processor allocation policy for
multiprogrammed shared-memory multiprocessors”. In Job Scheduling Strategies for Parallel Processing,
D. G. Feitelson and L. Rudolph (eds.), pp. 182–199, Springer-Verlag, 1995. Lect. Notes Comput. Sci. vol. 949.

[169] Y. Zhang, H. Franke, J. Moreira, and A. Sivasubramaniam, “Improving parallel job scheduling by combining
gang scheduling and backfilling techniques”. In 14th IEEE Int’l Parallel & Distributed Processing Symp.
(IPDPS), pp. 133–142, May 2000.

[170] Y. Zhang, H. Franke, J. Moreira, and A. Sivasubramaniam, “An integrated approach to parallel scheduling
using gang-scheduling, backfilling, and migration”. IEEE Trans. on Parallel & Distributed Syst. (TPDS)
14(3), pp. 236–247, Mar 2003.

[171] Y. Zhang, H. Franke, J. E. Moreira, and A. Sivasubramaniam, “An integrated approach to parallel scheduling
using gang-scheduling, backfilling, and migration”. In Job Scheduling Strategies for Parallel Processing,
D. G. Feitelson and L. Rudolph (eds.), pp. 133–158, SpringerVerlag, 2001. Lect. Notes Comput. Sci. vol.
2221.

[172] S. Zhou, X. Zheng, J. Wang, and P. Delisle, “Utopia: a load sharing facility for large, heterogeneous
distributed computer systems”. Software — Pract. & Exp. (SPE)23(12), pp. 1305–1336, Dec 1993.

[173] J. Zilber, O. Amit, and D. Talby, “What is worth learning from parallel workloads? A user and session based
analysis”. In 19th Intl. Conf. Supercomputing, pp. 377–386, Jun 2005.

[174] D. Zotkin and P. J. Keleher, “Job-length estimation and performance in backfilling schedulers”. In 8th IEEE
Int’l Symp. on High Performance Distributed Comput. (HPDC), p. 39, Aug 1999.

