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Abstract

The file-system API of contemporary systems makes pro-
grams vulnerable to TOCTTOU (time of check to time of
use) race conditions. Existing solutions either help users
to detect these problems (by pinpointing their locations
in the code), or prevent the problem altogether (by mod-
ifying the kernel or its API). The latter alternative is not
prevalent, and the former is just the first step: program-
mers must still address TOCTTOU flaws within the limits
of the existing API with which several important tasks can
not be accomplished in a portable straightforward man-
ner. Recently, Dean and Hu addressed this problem and
suggested a probabilistic hardness amplification approach
that alleviated the matter. Alas, shortly after, Borisov etal.
responded with an attack termed “filesystem maze” that
defeated the new approach.

We begin by noting that mazes constitute a generic way
to deterministically win many TOCTTOU races (gone are
the days when the probability was small). In the face of
this threat, we (1) develop a new user-level defense that
can withstand mazes, and (2) show that our method is un-
defeated even by much stronger hypothetical attacks that
provide the adversary program with ideal conditions to
win the race (enjoying complete and instantaneous knowl-
edge about the defending program’s actions and being
able to perfectly synchronize accordingly). The fact that
our approach is immune to these unrealistic attacks sug-
gests it can be used as a simple and portable solution to a
large class of TOCTTOU vulnerabilities, without requir-
ing modifications to the underlying operating system.

1 Introduction

The TOCTTOU (time of check to time of use) race condi-
tion was characterized in 1974 by McPhee as the situation
which occurs

“if there exists a time interval between a validity-
check and the operation connected with that validity-
check [such that], through multitasking, the validity-
check variables can deliberately be changed during
this time interval, resulting in an invalid operation
being performed by the control program.”[25]

Dissecting a 1993 CERT advisory [7], Bishop was the first
to systematically show that file-systems with weak consis-
tency semantics (like Unix and Windows) are inherently
vulnerable to TOCTTOU races [3, 4]: First, a program
checks the status of a file using the file’s name. Then, de-
pending on the status, it applies some operation to the file,
unjustifiably assuming the status has not changed since
it was checked. This error is caused by the fact that the
mapping between file names and file objects (“inodes”) is
mutable by design, and might therefore change between a
status check and a subsequent operation.

Researchers have put a lot of effort into trying to solve
or alleviate the problem, (1) developing compile-time
tools to pinpoint locations in the source code that are sus-
pect of suffering from a TOCTTOU race [4, 37, 10, 8, 30],
(2) modifying the kernel to log all relevant system calls
and analyzing the log, postmortem, to detect TOCTTOU
attacks [20, 16, 21, 19, 39, 1], (3) having the kernel specu-
latively identify offending processes and temporarily sus-
pend them or fail their respective suspected system calls
[11, 34, 27, 35, 28], and finally (4) designing new file-
system interfaces to make it easier for programmers to
avoid the races. [3, 29, 24, 40].

None of the above helps programmers to safely and
portably accomplish a TOCTTOU-prone task onexist-
ing systems, as kernels that prevent races are currently
an academic exercise, whereas new-and-improved file-
systems are unfortunately not prevalent (and certainly not
standard). Thus, regardless of how programmers become
aware of the problem, whether through compile-time tools
or just by being careful, they must still face the problem
with the existing API.

At the same time, resolving a TOCTTOU race is not
as easy as, e.g., fixing a buffer overflow bug, because the
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Figure 1: NVD reports 450 “symlink attack” vulnerabilities,
as of September 5, 2007. (In 2001 and 2005 there were 73 and
106 reports, respectively; the associated bars are truncated.)

programmer must somehow achieve atomicity of two op-
erations using an API that was not designed for such a pur-
pose. In fact, overcoming TOCTTOU races in a portable
manner is notoriously hard, sometimes even for experts
(see Section 2.3). Hence, it is probably impractical to
expect average programmers to successfully accomplish
such tasks (or attempt them) on a regular basis.

Indeed, to date, TOCTTOU races pose a significant
problem, as exemplified by Wei and Pu, which analyzed
CERT [36] advisories between 2000 and 2004 and found
20 reports concerning the issue, 11 of which provided
the attacker with unauthorized root access [39]. Figure 1
shows the yearly number of TOCTTOU “symlink attack”
vulnerabilities reported by NVD (National Vulnerability
Database) [26]. These affect a wide range of mainstream
applications and tools (e.g., bzip2, gzip, FireFox, make,
OpenOffice, OpenSSL, Kerberos, perl, samba, sh), envi-
ronments (e.g., GNOME, KDE), distributions (e.g., De-
bian, Mandrake, RedHat, SuSE, Ubuntu), and operating
systems (e.g., AIX, FreeBSD, HPUX, Linux, Solaris).

We contend that the situation can potentially be greatly
improved if programmers are able to use some portable,
standard, generic, user-modecheck use utility function
that, given a ’check’ operation and a ’use’ operation,
would perform the two as a kind of “transaction”, in a way
that appears atomic for all relevant purposes. This paper
takes a significant step towards achieving such a goal.

The first step in this direction was taken in 2004 by
Dean and Hu, which implemented a transaction-likeac-
cess open routine that set out to solve a single race [12]:
the one which occurs between theaccess system call
(used by root to check if a user has adequate privileges
to open a file) and the subsequentopen. Their idea (later
termedK-race [5]) was to usehardness amplificationas
found in the cryptology literature [41], but applied to sys-
tem calls rather than cryptologic primitives. In a nutshell,
if an adversary has a probabilityp < 1 to win a race, then
the probabilitypK to win K races can be made negligi-
ble by choosing a big enoughK. Indeed, by mandating
attackers to winK consecutive races before agreeing to
open the file,access open seemingly accomplished its
“transactional” goal of aggregatingaccess andopen into

a single “atomic” operation.
But the new and intriguingK-race defense did not

stand the test of time. In 2005, Borisov et al. orchestrated
theirfilesystem mazeattack and showed that an adversary
can in fact wineveryrace (hence making the assumption
thatp < 1 wrong) [5]. Roughly speaking, the adversary is
able to slow down, and effectively “single step”, the pro-
posed algorithm by feeding it with a carefully constructed
file name (the “maze”) and polling the status of certain
components within the name. This induces perfect syn-
chronicity between the adversary and theK-race, thereby
enabling the adversary to win all races (p ≈ 1). Indeed,
in his on-line publication list, adjacent to his 2004 paper
[12], Alan Hu concedes that

“The scheme proposed here has been beautifully and
thoroughly demolished by Borisov, Johnson, Sastry,
and Wagner [5]. The theory is, of course, still valid,
but it relies on an assumption of the attacker having
a non-negligible probability of losing races. Borisov
et al. came up with ingenious means (1) to force the
victim to go to disk on each race, thereby allowing
plenty of time for the attacker to win races, and (2)
to determine precisely what protocol operation the
victim is doing at any point in time, thereby foiling
the randomized delays. The upshot is that they can
win these TOCTTOU races with almost complete cer-
tainty.” [17]

Dean and Hu were only concerned with finding a way
to correctly use theaccess system call; likewise, the ex-
plicit goal of Borisov et al. was to prove thataccess
should never be used. But the consequences of the filesys-
tem maze attack are much more general. In fact, mazes
constitute a generic way to consistently win a large class
of TOCTTOU races. This is true because any ’check’ op-
eration can be slowed down and single-stepped, if pro-
vided with a filesystem maze as an argument. Conse-
quently, the common belief that “TOCTTOU vulnerabili-
ties are hard to exploit, because they [...] rely on whether
the attacking code is executed within the usually narrow
window of vulnerability (on the order of milliseconds)”
[39] is no longer true: With filesystem mazes, the attacker
can often proactively prolong the vulnerability window,
while simultaneously finding out when it opens up.

Motivated by the alarmingly wide applicability of the
filesystem maze attack, we set out to search for an effec-
tive defense, with the long-term goal of providing pro-
grammers with a generic and portablecheck use util-
ity function that would allow for a pseudo-atomic trans-
action of the ’check’ and ’use’ operations. Importantly
this should work on existing systems, without requiring
changes to the kernel or the API it provides.

This paper is structured as follows: After exemplifying
the TOCTTOU problem in detail, surveying the existing
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root attacker
mkdir(“/tmp/etc”)

creat(“/tmp/etc/passwd”)
readdir(“/tmp”)
lstat(“/tmp/etc”)
readdir(“/tmp/etc”)

rename(“/tmp/etc”,“/tmp/x”)
symlink(“/etc”,“/tmp/etc”)

unlink(“/tmp/etc/passwd”)

(a) garbage collector

root attacker
lstat(“/mail/ann”)

unlink(“/mail/ann”)
symlink(“/mail/ann”,“/etc/passwd”)

fd = open(“/mail/ann”)
write(fd,...)

(b) mail server

root attacker
access(filename)

unlink(filename)
link(sensitive,filename)

fd = open(filename)
read(fd,...)

(c) setuid

Figure 2: Three canonical file TOCTTOU examples. The Y-axis denotes the time (future is downwards). The left-justified
operations, performed by root, suffer from a TOCTTOU vulnerability. The right-justified operations show how an attacker can
exploit this vulnerability to circumvent the system’s protection mechanisms and to gain illegal access.

solutions, and pointing out their shortcomings and the elu-
siveness of a contemporary practical solution (Section 2),
we go on to explain how hardness amplification was ap-
plied to solve file TOCTTOU races, and why it has failed
(Section 3). We then show how to turn this failure to suc-
cess (Section 4) and experimentally evaluate our solution
by subjecting it to a hypothetical attack far more powerful
than filesystem mazes (Sections 5–6). We discuss how to
generalize our solution, its limitations, and how/when its
probabilistic aspect can be eliminated (Section 7). Finally,
we present our conclusions (Section 8).

2 Motivation

Much of the administrative and security-crucial tasks of
Unix-like systems is performed by root-privileged pro-
grams. Since such programs often interact with and affect
the system by means of file manipulation, they are suscep-
tible to TOCTTOU vulnerabilities. A successful exploita-
tion of these vulnerabilities would allow a non-privileged
user to circumvent the system’s normal protection mech-
anisms and unlawfully execute some operation as root.

2.1 Classic Examples

For example, many sites periodically delete files residing
under the/tmp directory. If a file was not accessed for
a certain amount of time, the “garbage collection” script
deletes it. Maziéres and Kaashoek noted that this policy
might contain a TOCTTOU window between the ’check’
statement (of the file access time) and the subsequent ’use’
statement (the file removal); if a name/inode mapping
changes within this window, the script can be tricked into
deleting any arbitrary file, even if it attempts to prevent
this from happening by explicitly ignoring symbolic links
[24]. This is illustrated in Figure 2a: The garbage collec-
tor useslstat to verify that/tmp/etc is not a symbolic

link. But as with all TOCTTOU flaws, this check is fruit-
less in case/tmp/etc is manipulated just after.

Another well known TOCTTOU example, initially
documented by Bishop, is that of a mail server which
appends a new message to the corresponding user’s In-
box file [3, 4]. Beforeopen-ing the Inbox, the server
lstat-s it to rule out the possibility the user has replaced
it with some symbolic link pointing to a file that lies else-
where. Figure 2b shows how the inevitable associated
TOCTTOU race can be exploited to add arbitrary data to
the/etc/passwd file, providing the attacker with the
ability to obtain permanent root access.

A third example concerns thesetuid bitthat Unix-like
systems associate with an executable to indicate it should
run with the privileges of itsowner, rather than the user
thatinvokedit (as is the normal case). Of course just hand-
ing off root privileges is not a good idea, which is why the
access system call conveys setuid programs the ability to
check whether an invoker has adequate privileges:

if( access(filename,R_OK) == 0 )
fd = open(filename,O_RDONLY);

Alas, the access/open idiom constitutes the archetypal,
and arguably the most infamous, TOCTTOU flaw.1 Fig-
ure 2c illustrates how this race can be exploited to access
any file; access was therefore deemed unusable, as e.g.
indicated by its FreeBSD manual, explicitly stating that
“the access system call is a potential security hole due to
race conditions andshould never be used.” [22]

2.2 Existing Solutions

Considerable research effort have been put into providing
solutions for TOCTTOU vulnerabilities like the ones de-
scribed above. In order to highlight the contribution of

1This race was reported by what is believed to be the first formal
documentation of a file TOCTTOU vulnerability [7]; it is described by
almost all papers that address the TOCTTOU issue (see Section 2.2)
when exemplifying the problem.
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this paper we first survey this work, which can be subdi-
vided into four categories:

Static Detection Some groundbreaking work has been
done in recent years to statically analyze the source code
of programs and pinpoint the locations of nontrivial vul-
nerabilities and bugs [14, 15, 2, 13]. This type of analysis
is rooted in Bishop’s work, which used pattern match-
ing to locate pairs of TOCTTOU system calls in root-
privileged programs on a per-function basis [3, 4]. The
toolsITS4 [37], Eau Claire [10], andMOPS [8, 30] have
later superseded Bishop’s work by being more general,
accurate, and scalable.

Dynamic Detection Static analysis can be very effec-
tive and has the advantage of (1) not incurring runtime
overheads, (2) covering all the code (in a reasonable
amount of time), and (3) locating the bugs before the sys-
tem is deployed. But the code is not always available, and
even if it is, the static doctrine is inherently missing key
information that is often only available at runtime, which
might result in many false positives. To solve this, Ko and
Redmond patched the kernel to log the required informa-
tion and utilized it, postmortem, to feed a model that de-
tects TOCTTOU flaws [20]. A similar approach was later
adopted by many following projects [16, 21, 19, 39, 1].
Notable of these is the work by Wei and Pu [39] that ex-
haustively enumerated all of Linux’s TOCTTOU pairs2

and the revolutionaryIntroVirt tool by Joshi et al. [19]
that made ubiquitous virtual-machine checkpointing and
replaying a realistic alternative that can e.g. be used to
identify TOCTTOU attacks, postmortem.

Dynamic Prevention The kernel can be modified to
apply the principles of dynamic detection on-the-fly, as
discovering TOCTTOU attacks while they occur allows
for on-line prevention. This approach was first taken by
Cowan et al. in 2001, when implementing “RaceGuard”
[11]. Their technique tackles one TOCTTOU flaw that oc-
curs between (1) a check if a candidate name for a tempo-
rary file doesn’t match an exist file, and (2) the new file’s
creation (stat/open). They modify the kernel to maintain a
cache of files that have beenstated and found not to exist;
if a subsequentopen finds an existing file, it fails.

In 2003, Tsyrklevich and Yee developed a more gen-
eral approach that was capable of generically preventing
most TOCTTOU attacks [34]. They patched the kernel to

2Wei and Pu (and later Lhee and Chapin [21]) augmented the defini-
tion of check/use TOCTTOU pairs to also refer to use/use pairs. With
this, they found a bug inrpm that (1) generated a script that was writable
by all (first use ofopen), and (2) executed it with root privileges (sec-
ond use ofopen). While such bugs can be very hard to detect, they are
nevertheless very easy to fix and therefore are of no interestin this paper.

suspend any process that interferes with a “pseudo trans-
action” (check/use pair that agree on the target file), such
that the worst outcome of a false-positive detection is a
temporary suspension of the corresponding process. Sev-
eral similar solutions followed [27, 35, 28]; the latter of
which, by Pu and Wei, was argued to be “complete”, be-
ing based on their aforementioned earlier work [39].

New API All of the above are solutions that respect the
existing file-system API so as to accommodate existing
applications and operating systems. The complementary
approach is to augment or change the API, such that tasks
that currently suffer from TOCTTOU issues are made eas-
ier to safely accomplish. For example, to resolve the ac-
cess/open race, Dean and Hu suggested thatopen would
accept anO RUID flag, which would instruct it to use
the real (rather than effective) user ID of the process [12];
alternatively, Bishop suggested to add a newfaccess sys-
tem call that would operate on a file-descriptor rather than
a file name [3].3 Likewise, theO NOFOLLOW flag sup-
ported by Linux and FreeBSD makesopen fail if its argu-
ment refers to a symbolic link, which may help in certain
cases (e.g. Figure 2b). However, aside from being non-
portable, it relates only to the last component of the file
path: earlier components may still be symbolic links, and
hence be juggled by an attacker (e.g. Figure 2a).

To obtain a more general solution, a bigger change is
needed, such as replacing (or augmenting) Unix semantics
with that of a transactional file-system [29, 40]: Atomicity
would then insure that a check/use pair that was annotated
by the programmer as a single transaction would be exe-
cuted with no interference.

A more radical approach was suggested by Maziéres
and Kaashoek [24]. They proposed to use the fact that the
binding between file descriptors and inodes is immutable
(and thus cannot be exploited) to devise a safer program-
ming paradigm that would make it harder for the program-
mer to make mistakes. By this paradigm,

1. all access checks would be done on file descriptors
rather than on names,

2. users would be given explicit control of whether
symlinks are followed when files are opened, and

3. each system call invocation would be provided with
the user credentials with which the system call
should operate.

We contend that some of this vision can be realized in
user-mode on current systems.

3 We note in passing that even though this suggestion was raised
again by Dean and Hu , we contend it is impossible: the corresponding
inode can possibly be refereed to by multiple paths, among which some
are accessible to the user and some are not.
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2.3 The Problem

Notice that all the existing solutions surveyed abovedo
not help programmers in resolving a known TOCTTOU
flaw within existing systems. Static detection techniques
are invaluable in locating such flaws, but what are pro-
grammers to do if/once they are aware of the vulnera-
bility? Surely they cannot wait until all contemporary
kernels employ dynamic prevention (if ever, as signifi-
cant complexity and performance penalty might be in-
volved). Likewise, programmers cannot wait until all con-
temporary OSs portably support transactional file-systems
(or constructs like the aforementioned API suggested by
Maziéres and Kaashoek).

The fact of the matter is that, in order to achieve a
portable solution, programmers are bound to handling the
matter with a decades-old API. Importantly, as mentioned
earlier, a portable user-mode solution to a given TOCT-
TOU race (if exists) is often much harder and more elu-
sive than e.g. fixing a buffer overflow bug: even experts
that explicitly target a specific TOCTTOU problem are
prone to getting it wrong.

Consider for example the access/open race depicted in
Figure 2c. Tsyrklevich and Yee suggested two solutions to
this flaw [34]. The first argues that “to avoid this race con-
dition, an application should change its effective id [with
set∗uid system calls] to that of a desired user and then
make theopen system call directly.” However, after care-
fully evaluating this suggestion, Dean and Hu found that

“Unfortunately, the setuid family of system calls is its
own rats nest. On different Unix and Unix-like sys-
tems, system calls of the same name and arguments
can have different semantics, including the possibil-
ity of silent failure [9]. Hence, a solution depending
on user id juggling can be made to work, but is gen-
erally not portable.” [12]

The second suggestion by Tsyrklevich and Yee was “to
use fstat after theopen instead of invokingaccess”.
As the input offstat is a file descriptor, the latter is per-
manently mapped to the underlying inode and hence can
never be abused by an attacker; the user is then expected
to inspect the ownership information returned byfstat and
check if the invoker was indeed allowed toopen the file.
But this will not work, as file access permissions cannot
be deduced in such a way; rather, they are the conjunc-
tion of all the (inode) permissions associated with each
component in the respective path. For example, if a file’s
name isx/y such thatx is solely accessible by its owner,
then other users are forbidden from readingy even iffstat
indicates it is readable by all (which may very well be the
case when root invokes thefstat).

A third alternative is tofork a child that permanently
drops all extra privileges and then attempts toopen the

file; if successful, the child can then pass the open file de-
scriptor across a Unix-domain socket andexit. Borisov et
al. [5] have mistakingly attributed the claim that this ver-
sion is portable, to Dean and Hu [12]. But the latter have
actually argued the contrary, stating that, with respect to
the Unix-domain approach, “some of the above [user id
juggling] caveats still apply”. Indeed, as mentioned ear-
lier, dropping privileges is a non-portable operation [9].
(Regardless of whether it is being done by a parent or a
forked child.) Furthermore, we find that passing an open
descriptor alone, even without dropping privileges, suffers
from serious portability issues.4

A fourth failed attempt will be discussed next.

3 Failure of Hardness Amplification

In 2004, noting that no prior art helps programmers
to portably resolve TOCTTOU vulnerabilities on exist-
ing systems, Dean and Hu took the first step towards a
portable solution [12], explicitly focusing their effortson
the aforementioned access/open TOCTTOU race.

3.1 TheK-Race Technique

Their solution, termed “K-race”, was inspired by the
hardness amplification technique that is commonly used
in cryptology contexts [41]. The idea underlying hard-
ness amplification is to use a problem which is compu-
tationally “somewhat hard”, in order do devise another
computational problem that is “really hard”. In a TOCT-
TOU access/open scenario, the “somewhat hard” problem
is timing and completing the attack (removing one file and
linking another) within the exact window of opportunity
delimited by theaccess andopen calls (see Figure 2c).
The “really hard” problem is requiring the attacker to suc-
ceed in doing this for2K + 1 consecutive times.

The K-race routine, shown in Figure 3, starts with a
standard call toaccess, followed by anopen, followed
by K strengthening rounds. Each round consists of an ad-
ditional access check and a correspondingopen, which
are then followed by a statement that verifies that the cur-
rentlyopened file is the same file that wasopened in the
previous round. Note that whenK = 0, the routine de-
generates to the standard access/open TOCTTOU race.

4 This is the result of changes related to themsghdr structure, which
is used by thesendmsg and recvmsg system calls to pass an open
descriptor through a Unix domain socket. Specifically, (1) in the mid
1990s, POSIX replaced themsg accrights field with themsg control
array (but commercial OSes such as Solaris and HPUX preferred to keep
the earlier version as the default) and (2) more recently, RFC 3542 de-
fined a set of macros to be exclusively used when accessing / manipu-
lating themsg control array (but despite being mandated by OSes like
Linux, some of the macros are not yet standard) [33]. The end result is
lack of portability and source code that is littered withifdefs and condi-
tional compilation tricks [32, 42, 31, 6].
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#define DO_SYS(call) if((call)==-1) return -1
#define DO_CHK(expr) if( !(expr) ) return -1
#define DO_CMP(x,y) \

( ((x)->st_ino == (y)->st_ino) && \
((x)->st_dev == (y)->st_dev) )

int access_open_2004(char *fname)
{

int fd1, fd2, i;
struct stat s1, s2;

// 1- the access/open idiom
DO_SYS( access(fname, R_OK ) );
DO_SYS( fd1 = open (fname, O_RDONLY) );
DO_SYS( fstat (fd1 , &s1 ) );

// 2- the strengthening rounds
for(i=0; i<K; i++) {

DO_SYS( access(fname, R_OK ) );
DO_SYS( fd2 = open (fname, O_RDONLY) );
DO_SYS( fstat (fd2 , &s2 ) );
DO_SYS( close (fd2 ) );
DO_CHK( DO_CMP(&s1 , &s2 ) );

}

return fd1;
}

Figure 3: The K-race routine employs hardness amplifica-
tion to probabilistically solve a TOCTTOU race. Specifically, on
each strengthening round, it checks that the caller still has ap-
propriate access permissions and that the underlying file-object,
as represented by the inode (st ino) and IO device (st dev), re-
mains the same. This attempts to provide programmers with a
way to invokeaccess andopen in an “atomic” manner.

To be successful, an attacker must indeed win2K + 1
races: This is true because, on each round, theaccess
check must be applied to some user accessible file, or else
permission is denied; On the other hand, everyopen must
be applied to the same inaccessible target file, or else the
verification that all file-descriptors refer to the same file-
object would fail. Thus, assuming each race is an indepen-
dent random event with some probabilityp < 1 for the at-
tacker to win, the overall probability of tricking aK-race
is p2K+1. (Independence of events is supposedly obtained
by introducing short random delays between successive
system call invocations: as delays are randomized, an ad-
versary wouldn’t be able to synchronize with theK-race.)
After measuring several systems (among which are SMP
systems), Dean and Hu concluded thatK=7 is enough to
make the probability of success negligible for all practical
purposes.

3.2 Filesystem Mazes

In 2005, Borisov et al. defeated theK-race technique [5].
They have done so by refuting the (then widely accepted)
assumption that the probabilityp for an attacker to win a

chain6/d/d/d/···/d/lnk

chain5/d/d/d/···/d/lnk

absolute link

relative link

sentry

chain4/d/d/d/···/d/lnk

absolute link

chain3/d/d/d/···/d/lnk

absolute link

chain2/d/d/d/···/d/lnk

absolute link

chain1/d/d/d/···/d/lnk

absolute link

chain0/d/d/d/···/d/lnk

absolute link

exit

absolute link

relative link to target file

Figure 4: The structure of a six-chains filesystem maze. Ar-
rows represents symbolic links. (Originally published in [5];
reprinted with permission.)

race is significantly smaller than one. In fact, they have
managed to effectively make it a certainty (p ≈ 1). The
heart of the attack consists of afilesystem maze, which, in
simple terms, is the longest and most nested filepath a user
can pass as an argument to a system call, without causing
it to fail due to hardcoded kernel limits.

Constructing a Maze The basic building block of a
maze is achain, defined to be (nearly) the deepest
nested directory tree one can define without violating
the PATHMAX constraint imposed by the kernel on the
length of file paths (4KB is a typical value). Thus,chain0

would bechain0/d/d/d/.../d such that the associ-
ated number of characters is a bit less than PATHMAX.
Likewise,chain1 is chain1/d/d/d/.../d, etc.

To form a maze, the attacker connects chains by placing
a symbolic link at the bottom ofchaini+1 that points to
chaini. The final symlink, at the bottom ofchain0, points
to anexit symlink which, in turn, points to the actual
target file. Finally, the entry point to the maze,sentry,
is a symlink pointing to the highest chain. This is illus-
trated in Figure 4.

Unix systems impose a limit on the total number of
symlinks that a single filename lookup can traverse, e.g.,
Linux 2.6 limits this number to 40. This places a limit
on the number of chains composing the maze. Still, even
with this limit, a maze can be composed of nearly 80,000
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directories which may require loading about 300MB from
the disk, just to resolve the associated name.

Importantly, if even one of the corresponding direc-
tory entries is not found in-memory, in the filesystem
cache, the process that invoked the system call on behalf
of which the path resolution is performed would be put to
sleep, blocked-waiting for IO.

The Attack We now describe how to trick theK-race
routine (Figure 3) into opening a private inaccessible file.
The routine invokesaccess andopen K+1 times. For
these total of 2K+2 invocations, we create 2K+2 directo-
riesdir1, dir2, ..., dir2K+2, each containing a new
maze. We arrange thing such thatexit points of odd
mazes point to some public accessible file, whereasexit
points of even mazes point to the inaccessible protected
file we are about to attack. Finally, we generate a new
symlink calledactivedir to point todir1.

The attack is started by invoking theaccess open K-
race routine with the following filepath as an argument

activedir/sentry/lnk/lnk/.../lnk

This filepath is then passed along to the initialaccess
call, which forces theK-race routine into the first maze.
As a result, two things occur

1. The kernel updates the atime (access time) of ev-
ery symbolic link it traverses during the name res-
olution, so by repeatedly examining the atime of
activedir/sentry the attacker can learn that
the respectiveaccess invocation is already in flight.

2. As mentioned earlier, the filepath being resolved (the
maze) is big enough to insure that the kernel would
have no choice but to fetch some of the relevant di-
rectory entries from disk; whenever this occurs the
K-race routine would be suspended and put to sleep,
and the attacker would get a chance to run and poll
the atime ofactivedir/sentry.

Upon noticing that the atime has been updated, the at-
tacker knows that the firstaccess has begun. The attacker
therefore switchesactivedir to point todir2, and
begins polling the atime ofdir2/sentry. The initial
access call is not affected by the change toactivedir
because it has already traversed that part of the path.

Eventually, the IO operations complete and theaccess
finishes successfully. When theK-race calls the subse-
quentopen, the exact same scenario occurs: the kernel
updates the atime ofdir2/sentry, theK-race routine
sleeps on IO when loading parts of the respective maze
that are not cached, the attacker consequently resumes and
notices the updated atime ofdir2/sentry, the attacker
switchesactivedir to point todir3, and theK-race
routine completes theopen successfully. This sequence

of events repeats itself until all the system calls compos-
ing theK-race complete, and the attacker has managed to
fool theK-race and open the protected file.

Enhancements In order to increase the confidence that
some directory entries are not cached by the filesystem
while the name resolution takes place, an attacker can run
in parallel various unrelated IO intensive activities to wipe
out the cache. A recursive string search in the filesystem

grep -r anystring /usr > /dev/null 2>&1

was found to be especially effective in this respect.
Finally, for completeness, Borisov et al. considered a

K-race version that randomly flips the order of the calls
to access andopen within the strengthening loop (this is
a valid and technically sound defense against their maze
attack). They defeated this approach as well, by deduc-
ing which system call is currently being executed with
the help of various kernel variables exported through the
/proc file-system. For example, in Solaris 9, any pro-
cess can read the current system call number of any other
process from/proc/pid/psinfo.

4 Making Amplification Work

The maze attack is a generic way to systematically win
TOCTTOU races. By utilizing complex file names, an
attacker can slowdown the victim application, effectively
single-step it, and gain a decisive advantage, which allows
it to defeat the probabilisticK-race approach. In this sec-
tion we show that this advantage is in factnot inherent.
Defenders need not play by the rules that are dictated by
the attacker. Rather, they can impose new rules that make
it practically impossible for an attacker to win.

The key observation is simple and well known: sys-
tem calls likeopen, stat, chdir, access, chown etc. that
operate on a specified file name, are in factO(n) algo-
rithms, wheren is the number of components composing
the name (n also embodies symlinks that are part of the
name as well as the components of the soft links that must
be recursively traversed). And so, in order to resolve ann-
component name, the associated system call must sequen-
tially iterate throughn inodes. In the case of theK-race
approach this is doneK times, so the number of traversed
inodes is actuallyn · K. The order in which the traver-
sal is performed is crucial for the success of the maze at-
tack; assuming a file name of the form/f1/f2/f3 (with
no symbolic links along the way) and assumingK = 2,
this order would be:

/, f1, f2, f3, /, f1, f2, f3

The general case is illustrated in Figure 5 (left); due to
this type of a visualization we call this orderrow-oriented.
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Figure 5: The original row-orientedK-race traversal sug-
gested by Dean and Hu (left) vs. our newly proposed column-
oriented traversal (right). While Dean and Hu traverse the en-
tire path on each access/open invocation, we traverse the path
component by component, iterating through each specific ele-
mentK times.

The success of theK-race approach relies on the assump-
tion that the rows remain identical from round to round.
In contrast, the principle underlying the file-maze attack
is to maken so big such that the time period between two
“consecutive visits” in the inode associated withfi would
be relatively long; long enough to make it easy to violate
the said assumption.

Our approach contends that row-orientated traversal,
while seemingly dictated by the system call API, is not
carved in stone. There is actually no technical difficulty
preventing us from doing a different inode traversal that
would better suit our needs. Specifically, column-oriented
traversal is perfectly aligned with our intent to make it
harder for an adversary to win a race. This approach is
illustrated in Figure 5 (right). The idea is to resolve a
path one component at a time, atom by atom, such that
on each step we effectively conduct a kind of “short race”
or “atom race”, as part of theK-strengthening doctrine.
This approach provides a clear advantage: an adversary
no longer has control over the duration of the elapsed time
between consecutive visits atfi, e.g. the traversal order in
the above example would be:

/, /, f1, f1, f2, f2, f3, f3

Thus, the race is made “fair” again and the respective in-
ode would most probably be continuously present in the
cache throughout theK-race, and almost certainly at least
once during two consecutive iterations (which would be
enough to defeat an attacker). The next section will show
that even under the theoretical scenario where the attacker
is completelyand instantaneouslysynchronized with the
defender, the attacker would have to wait tens to millions
of years in order to subvert aK = 9 column-oriented de-
fense.

We will now describe our algorithm in a bottom-up
fashion (all source code included, as an indication of its
simplicity). Doing a column-oriented traversal entails a
price, which is having to handle the parsing of the file

path ourselves when splitting it into atoms. For our pur-
poses, however, thechop 1st function (as listed in Figure
6) was all that was needed in this respect. This function
gets a relative path and “chops off” the first component
while returning the remainder to the caller. By repeat-
edly invoking this function (using the remainder of the
path from the previous invocation as the input to the cur-
rent invocation), we gradually consume the file path in a
column-oriented manner.

A second difficulty one faces when doing a user-level
path resolution is having to handle atom components that
are in fact symbolic links. To handle this caveat we used
the simpleis symlink function (listed in Figure 7) that
gets as input the atom that was just chopped off the prefix
of the full file path. Note that by applying thelstat system
call upon the given atom we make sure that the invoker
is not forced to go through a maze. If this atom happens
to be a symbolic link, thenis symlink copies the name of
the target file to the memory pointed to by the appropriate
argument; this would be later processed recursively. How-
ever, if the atom is a hard link (read: not a symlink), then
the result of thelstat operation (as recorded by the given
stat structure) will be used as a reference point within the
race, when inodes are compared, as described next.

Having dealt with all the low-level details, we go on to
consider how a race would actually be conducted when
a hard link is finally encountered. Recall that the access
permissions of a file are more than just the per-inode ac-
cess bits (user/group/all read/write/execute etc.): theyare
the conjunction of all the permissions of each and every
directory component along the path. For example, even if
an inode indicates it is readable by all, if it nevertheless
resides within a private directory, then obviously no one
should be able to access the associated file. Therefore,
before descending into the next directory component, the
algorithm must verify that the invoker has the appropri-
ate permissions. However, since this entails a TOCTTOU
vulnerability, each such check must beK-strengthened.

Figure 8 shows how a per-atomK-race is conducted.
Note that the security of our algorithm is reduced to the
security ofatom race (all other functions are completely
safe). The information encapsulated by thestat structure
input was placed there by theis symlink function that has
just been invoked using the very same atom. Thus, it is
likely that the inode (that is associated with the atom) is
still in the cache. Further, since the atom is in fact an
“atom” (one component file) that has just now been veri-
fied to be a hard link, it is also likely that the initial call
to access andopen would operate on the same inode.
However, since there is a chance the attacker has managed
to (1)unlink the previouslylstated atom, and to (2)sym-
link it to a maze, strengthening steps are still required. The
algorithm therefore continues into aK-loop that is almost
identical to the one suggested by Dean and Hu (Figure 3).
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char* chop_1st(char *path)
{

// Find the end of the first component and
// null-teminate it
char *p = strchr(path,’/’);

if( p == NULL )
return NULL;

*p++ = ’\0’;

// Handle multiple consecutive occurrences
// of ’/’. This ensures that the remainder
// of the path is returned in a "relative"
// form (without preceding slashes)
for(; *p == ’/’; ++p)

;

// Returning NULL to indicate end of path
return *p ? p : NULL;

}

Figure 6: All the parsing is encapsulated in the above function,
which gets a relative path as input, chops of the first component,
and returns the reminder as a relative path. (A null return value
indicates the entire path was consumed and so there is no re-
minder.)

int is_symlink(const char *atom,
char target[],
struct stat *s,
bool *answer)

{
int nb, l=PATH_MAX;

DO_SYS( lstat(atom,s) );

if( S_ISLNK(s->st_mode) ) {
DO_SYS( nb = readlink(atom,target,l) );
target[nb] = ’\0’;

*answer = true;
}
else {

*answer = false;
}

return 0;
}

Figure 7: We retrieve the name of the target file in case an atom
is a symbolic link. Otherwise, the atom is a hard link in which
case we record its inode information in the suppliedstat struc-
ture for future reference. The return value indicates whether the
lstat operations succeeded.

All the original operations are still present. The difference
is that now, on each iteration, the algorithm also verifies
that the atom is still a hard link. This check is necessary in
order for the defense to recover, if the attacker somehow
managed to win the first race and to force the algorithm
into a maze while doing theaccess andopen operations.
Since thelstating of an atom is an operation that is not af-
fected in any way by the target that a symbolic link might
have, our algorithm is not vulnerable in this respect. The
only other additions we have made are (1) to check that
fstating the initial file we open (fd1) yields identical in-
formation to that pointed to bys0, as theK strengthen-
ing rounds utilizes0 for the verification checks, and (2) to
check that thelstated inode matches the initial inode, sim-
ilarly to the original check with regard to the information
that is retrieved byfstat.

Note that the two invocations ofDO CMP within the
strengthening loop insures that all threestat structures are
equal (s0 = s1 = s2), a check that is needed for the fol-
lowing reasons. By verifying thats1 is equal tos2, we
know for a fact that thelstated and theopened files are
one and the same, which means we deterministically force
an adversary to win a race involving a non-symlink atom,
on each round. This by itself, however, is not enough,
as we must also make sure thats1 ands2 are equal to
s0: failing to do so would make theK-loop meaningless,
allowing an attacker to unlawfully open the file after win-
ning only two races, as follows

1. The attacker creates a non-symlink file,myfile.
2. After is symlink determines thatmyfile is not a

symlink through thes0 stat structure,atom race is
invoked withmyfile ands0 as arguments.

3. After the initialaccess in atom race, the attacker
must switchmyfile to be a symlink to the file he
wishes to unlawfully access. (Race #1)

4. After the initial open in atom race, the attacker
must switch back to its original file. (Race #2)

5. All the strengthening rounds can now execute with-
out any further effort from the attacker.

We now have everything we need in order to implement
a column-orientedK-race traversal. Theaccess open
procedure we implement does this in a straightforward
manner, as is shown in Figure 9. The first chunk of code
simply makes sure that the traversal is only conducted
with the help of relative names (that do not start with a
slash). The second chunk is the traversal per-se. This part
simply iterates through the atom components, one com-
ponent at a time, and takes the necessary action according
to whether the atom is a symbolic link or not. The latter is
the simpler alternative: if the atom is a hard link, a short
atom race is conducted and the atom is directlyopened.
However, if the atom is a symbolic link, the algorithm
calls itself recursively to handle the newly encountered
composite path. In both cases, if a valid file descriptor is
returned, the algorithm is allowed to continue to the next
step afterfchdiring to the current directory component.
This strategy ensures us that there is a high probability
that all relevant inodes reside in the cache during the time
in which this is critical: when theK-race takes place.
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int atom_race(const char *atom,
struct stat *s0)

{
int i, mode;
int fd1, fd2;
struct stat s1 , s2;

mode = S_ISDIR(s0->st_mode)
? X_OK /* directory */
: R_OK /* regular */ ;

// 1- The initial access/open
DO_SYS( access(atom, mode ) );
DO_SYS( fd1 = open (atom, O_RDONLY ) );
DO_SYS( fstat (fd1 , &s1 ) );
DO_CHK( DO_CMP(s0 , &s1 ) );

// 2- The k strengthening rounds
for(i=0; i<K; i++) {

DO_SYS( lstat (atom, &s1 ) );
DO_CHK( ! S_ISLNK(s1.st_mode ) );
DO_SYS( access (atom, mode ) );
DO_SYS( fd2 = open (atom, O_RDONLY ) );
DO_SYS( fstat (fd2 , &s2 ) );

DO_SYS( close (fd2 ) );
DO_CHK( DO_CMP (s0 , &s1 ) );
DO_CHK( DO_CMP (s0 , &s2 ) );

}

return fd1;
}

Figure 8: The given atom was justlstated and found to be a
hard link, thus it is unlikely that an attacker would manage to set
things up such that above would be thrown into a maze. If this
has nevertheless happened, an additionallstat upon each itera-
tion allows the algorithm to recover (compare with Figure 3).

int access_open_2008(char *fname)
{

int fd;
char *suffix, target[PATH_MAX];
struct stat s;
bool is_sym;

// 1- Handle the case where ’fname’
// is an absolute path.
if( *fname == ’/’ ) {
DO_SYS( chdir("/") );
do { ++fname; } while(*fname == ’/’);
if( *fname == ’\0’ ) // fname is rootdir...

return open("/",O_RDONLY);
}

// 2- ’fname’ is now relative
while( true ) {

suffix = chop_1st(fname);
DO_SYS( is_symlink(fname,target,&s,&is_sym) );

DO_SYS( fd = (is_sym
? access_open_2008(target)
: atom_race(fname,&s)) );

if( suffix ) {
DO_SYS( fchdir(fd) );
DO_SYS( close (fd) );
fname = suffix;

}
else

break;
}

return fd;
}

Figure 9: A one-component-at-a-time column-oriented traver-
sal preventsaccess open from being abused and insures a fair
atom-race is conducted when necessary. The heart of the func-
tion is the “? :” construct that decides whether to recurse over
the next component (symlink) or to consume it (hard link).

4.1 Implementation Notes

For brevity, the presented algorithm does not handle sev-
eral minor details that should be addressed in a real im-
plementation:

First, it lacks a defense mechanism against circular
symbolic links. This can be easily incorporated within the
procedure shown in Figure 9 in the exact same manner as
it is done within the kernel, that is, by counting the num-
ber of traversed symbolic links and aborting the procedure
if the count violates some predefined threshold.

Second, our algorithm opens a file for reading only.
It does not allow the caller to specify other / additional
flags to be passed along toopen (such asO RDWR,
O APPEND, etc). There is no technical difficulty pre-
venting us from adding a “flags” parameter that allows
this, as long as we provide special treatment for file trun-
cation (O TRUNC) and forbid file creation (O CREAT).

Truncation is problematic as the firstopen would trun-
cate the file regardless of whether the real user has ade-
quate permissions to do so; the solution is to access/open
the file withoutO TRUNC and, if successful, toftrun-
cate the resulting descriptor. File creation raises other
(independent and well-known) TOCTTOU issues that are
commonly associated with the problem of creating tem-
porary files [11]; these are outside the scope of this paper.

Additional details that should be handled are (1) set-
ting errno to EACCES when appropriate, namely, when
DO CMP andDO CHK fail, (2) closing already opened
file descriptors (if exist) upon errors, e.g., whenfstat fails
in Figure 8, and (3) saving and restoring the working di-
rectory before and after the invocation of access/open, to
undo the effect of usingfchdir.

The final item raises an important point we wish to
make explicit: our access/open implementation is inad-
equate for multithreaded applications if some other thread
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(different than the one performing the access/open) re-
quires the working directory to remain unchanged, as this
directory is shared by all threads. We note in passing
that the relatively new system callopenat (which opens
a filepath relative to a given directory file descriptor [23])
would solve this problem, as it will eliminate the need for
usingfchdir; openat is proposed for inclusion in the next
revision of POSIX [18].

5 Crafting the Hypothetical Attack

It should come as no surprise that the newaccess open
algorithm is completely immune from the maze attack,
as the latter completely lost its timing ability: the attacker
colossally fails to synchronize with the activities of the de-
fender, and has no clue about when it would be most ben-
eficial to unlink/link the targeted file in order to fool the
defense. Nevertheless, while we believe it is improbable,
it is still possible that somebody someday would come
up with some surprising approach that would allow an at-
tacker to achieve synchronicity once again. Hence, we
seek a much stronger result.

To this end, we run an experiment in which the defender
is completely “exposed”: any attacker would be able to
precisely knowwhich actions are taken by the defender
andwhen. In other words, our experiment fully reinstates
the synchronicity capabilities to potential attackers, make
these capabilities orders of magnitude more powerful and
precise, and measures the probability attackers have to
win a single round in light of the new approach; the big-
ger question being: Do file TOCTTOU races still pose a
problem in the face of a column-oriented traversal? And
if so, to what extent?

5.1 Exposed Defender

To answer this question we have implemented a defender
program that provides information regarding its activities
to any interested party through a shared-memory integer
variable (instated with the help of SysV IPC facilities).
The code of the defender is listed in Figure 10. It essen-
tially does all of the defense-steps that are listed in Figure
8, but now each step is executed only after the defender
publishes (through the shared integer) the next action to
be performed. Note that theDO SYS macro is redefined
to record a system-call failure (instead of returning). This
is done so that the defender process will not terminate.
But it also means the defender maintains a fixed order of
operations and thereby simplifies the code of the attacker
(which is exempt from considering various corner cases).
Importantly, an attacker may safely assume that the de-
fender performs the same exact operations in the same
exact order within each iteration.

In accordance to the column-oriented doctrine, the de-
fender is operating on a file which is an atom, namely,
composed of only one component that is arbitrarily called
“target”. Upon each iteration, after the operation sequence
is over, the defender checks whether the attack was suc-
cessful, and if so increments its losses count to be printed
at the end of the run. The conditions that are asserted
at theendof each iteration are identical to those that are
checkedon the flywithin Figure 8, with only one addition:
the defender is made aware beforehand of the inode of the
private file that the attacker wants to read; obviously, an
attack is successful only if it managed to fool the defender
into opening this file.

5.2 Synchronized Attacker

We now go on to review the attacker’s code, as given in
Figure 11. Initially, the attacker must make sure that the
file to belstated is not a symbolic link. Additionally, since
the defender is going to compare the inode of thelstated
file to that of theopened file (which is the private file if
the attacker gets his way), the ’target’ file should point
to the private file at this point. The attacker then waits
until the defender is ready tolstat. As explained, the at-
tacker’s interest dictates that the defender would be able to
successfullylstat the private file, and so the attacker must
give it enough time to do so. This is also the reason for the
next ’while’ loop that ends when the defender finishes the
lstat, or before, depending on the heuristic we have cho-
sen to prematurely terminate the busy-waiting: We have
evaluated a wide range ofT 1 values (see next section);
Note that whenT 1 = 0, the busy wait period continues
until the shared variable changes. But whenT 1 > 0 wait-
ing may be shorter, asT 1 bounds the number of busy-wait
iterations and so the smaller it is, the shorter the wait.

After the defenderlstats the private file, the real race is
on, as the defender is about to checkaccess and so the
attacker must arrange things such that ’target’ will point to
an appropriate location. Additionally, the attacker aspires
to slow down the defender by forcing him into a maze, in
order to have a better chance of winning future races. The
attacker thereforesymlinks the target to a maze. Much
like with the initial lstat operation, the attacker must now
speculate when theaccess operation is already in flight.
Once again, it may be advisable to end the busy waiting
before the shared variable changes, and so another timer
limit – T 2 – is employed; We allow for two different limits
so as to maximize the chances of success. The attacker is
now hopeful that the defender has been forced into the
maze, which would mean he can safely prepare towards
the nextopen by linking to the private file. But even if
the attacker was not successful, this is the correct thing
to do in preparation for the defender’s nextlstat at the
beginning of the next round.
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bool sysfail;
#define DO_SYS( syscall ) \

if( (syscall)==-1 ) \
sysfail = true

void exposed_defender(ino_t private)
{

struct stat s1, s2;
int fd;

sleep(1); // grace period for the attacker

while( true ) {

sysfail = false;

*shared=LSTAT ; DO_SYS( lstat ("target", &s1 ));

*shared=ACCESS ; DO_SYS( access("target", R_OK ));

*shared=OPEN ; DO_SYS(fd=open ("target", O_RDONLY));

*shared=FSTAT ; DO_SYS( fstat (fd , &s2 ));

*shared=CLOSE ; DO_SYS( close (fd ));

// The attacker is victorious only if all the
// following conditions hold
if( (! sysfail ) &&

(! S_ISLNK(s1.st_mode) ) &&
( s1.st_ino == s2.st_ino ) &&
( s1.st_dev == s2.st_dev ) &&
( s2.st_ino == private ) )

defender_loss++;
}

}

Figure 10: The defender publicizes the operations about to be performed
using a shared variable accessible to all.

void synchronized_attacker()
{

volatile int timer1, timer2;

unlink( "target" );
link ( "private", "target" );

while( true ) {

timer1 = timer2 = 0;

// must wait for attacker to
// lstat private file
while( *shared != LSTAT )

;

while( *shared == LSTAT )
if(T1 && (++timer1 >= T1))

break;

// now we’re really racing...
// defender is about to access
unlink ( "target" );
symlink( "maze", "target" );

while( *shared == ACCESS )
if(T2 && (++timer2 >= T2))

break;

unlink( "target" );
link ( "private", "target" );

}
}

Figure 11: The attacker achieves syn-
chronicity by polling the shared variable.

6 Experimental Results

Our goal is to find out whether the column-oriented traver-
sal technique is effective against the above hypothetical
attack. (If this turns out to be the case, we can be reason-
ably sure that our solution would be effective in real-life
scenarios where the defender is not exposed.)

6.1 Methodology

We obtain our goal by quantifying the expected time that
a hypothetical attack should run in order to achievek con-
secutive wins. Let this time be denotedBk. If p is the
probability for an attacker to win one round (iteration)
within the exposed defender’s loop, andt is the time it
takes to conduct one round, then

Bk = t · p−k (1)

becausepk is the probability for “success”, and thus,
1/pk is the mean of the geometric random variable that
counts the number of trials until success is observed for
the first time. For example, if a round takes one millisec-
ond (t = 1ms), and the probability to win a round is 1/10
(p = 0.1), thenB2, B3, B4, andB5 are 100 millisecond,

1 second, 167 minutes, and 28 hours, respectively. We
approximatet andp by running the attack scenario and,
upon termination, outputting (1) the duration of the attack,
(2) the number of rounds conducted, and (3) the number
of rounds lost. (We sett to be the average round duration,
andp to be the ratio of rounds-lost to rounds-conducted.)

In order to increase the attackers’ chances to win, we
run the experiments on multiprocessors only. This way,
attackers will have processors of their own to continu-
ously and repeatedly attempt to fool the defender. In an
effort to generalize the results, the experiments are con-
ducted on older and recent machines, from different ven-
dors, running different operating systems, as follows

Processor Operating system CPUs Clock Mem
UltraSPARC-II Solaris 8 4 448 MHz 2 GB
Pentium-III Linux 2.4.26 4 550 MHz 1 GB
Power4 AIX 5.3 8 1450 MHz 16 GB
Dual Core AMD Linux 2.6.22 4 2200 MHz 8 GB
Intel Core 2 Duo Linux 2.6.20 2 2400 MHz 4 GB

The ’maze’ file we use is constructed to be the biggest
that is possible on the respective OS, considering the
aforementioned limits on the size of a filepath and the
number of symbolic links it entails. Like Dean and Hu
[12] and Borisov et al. [5] before us, we use a local file
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Figure 12:The probabilityp for a synchronized-attacker to win a single round within theloop executed by the exposed-defender
(top), the timet it takes an exposed-defender to complete a single round (middle), and the connection between the two (bottom).

system for our experiments. These are the results we
next describe; Afterwords, we also describe our additional
findings from when running the experiments across NFS.

All the machines we use have a relatively big mem-
ory (that is, relative to the size of mazes), which as ar-
gued by Borisov et al., works against the attacker (more
inodes can reside in core). However, we had appropri-
ate permissions to change the Linux kernel running on the
Pentium-III machine to one that only utilizes 256MB of
the available memory. Other techniques we have experi-
mented with in an attempt to increase the chances of the
attacker to win are to simultaneously run multiple recur-
sivegrep-s during attacks in accordance to the suggestion
by Borisov et al. [5], to launch attacks from within a huge
directory that contains tens of thousands of files in accor-
dance to Maziéres and Kaashoek’s suggestion [24], and
to simultaneously run several exposed-defenders on the
same machine. We found that none of these techniques
had a significant affect on the results, and therefore we do
not report them here.

Conversely, Wei and Pu have recently shown that si-
multaneously running multiple identical attackers (attack-

ing the same file) on a multiprocessor system, dramati-
cally increases the chance of a TOCTTOU attack to pre-
vail [38]. This technique turned out to be rather successful
(from the attackers’ perspective) and is therefore explic-
itly addressed below.

6.2 Results

Recall that the synchronized attacker has two tunable pa-
rameters —T 1 andT 2 — that place an upper bound on
the two busy-wait loops the attacker must employ. We
have independently set each of these two values to be ei-
ther zero (no upper bound) or2j , wherej = 0, 1, 2, ..., 20.
This means that we conduct 484 (= 222) experiments
for any specified number of simultaneous attacker (1–6),
amounting to a total of 2,904 runs, per machine.

Local FS The top of Figure 12 shows the per-machine
probability (expressed as percents) for multiple simulta-
neous synchronized attackers to win a single round. This
is plotted as a function of the number of attackers, such
that each point represents one of the aforementioned 2,904
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Figure 13: The expected runtime of an exposed-defender loop untilk consecutive rounds are won by the attacker (Bk), for k

values of 7 (top), 8 (middle), and 9 (bottom).

per-machine runs. Evidently, the probability can be quite
high, culminating at nearly 6% on Sparc/Solaris (with
three attackers) and on Power4/AIX (with two). Indeed,
engaging more than one attacker appears beneficial, at
least for these two machines.

The probabilityp to win a round is only one of two
factors that determine the expected timeBk until a suc-
cessful attack, as shown in Equation 1; The other factor
is the timet it takes to complete the round, such that the
biggert is, the longer it would take to accomplish a suc-
cessful attack. The middle of Figure 12 plots the values
of t and shows that they too can be rather high with top
values typically at tens of milliseconds, and outrageously,
a few seconds in the case of Sparc/Solaris.

Importantly, the time to complete a round and the prob-
ability to win it are far from being independent variables.
In fact, as shown at the bottom of Figure 12, there is a
distinct linear connection between the two, which means
the bigger the probability to win the round, the longer
the round takes. Indeed, this makes perfect sense, as the
prime objective of an attacker is to slow down the de-
fender by throwing it into a maze. These are the two op-
posing side effects of the attacker’s actions: maximizingp
immediately translates to maximizingt, and so whatever
ends up happening, the attacker inevitably contributes, to
some extent, to makingBk larger.

Figure 13 assigns thet andp values of each of our ex-
periments into Equation 1 in order to finally computeBk,
namely, the expected number of years an attack should ex-
ecute untilk consecutive rounds are won, for three differ-
entk values. When usingk = 7 (the value recommended
by Dean and Hu [12]) we see that a successful attack is
potentially possible after a bit more than a month, in the
case of Power4/AIX. Increasingk to be 8 and 9 raises
the minimal expected duration to be more than 2.5 and 53
years, respectively, making the latter a safer choice in the
face of our theoretical attack.

NFS Dean and Hu constrained theirK-race evaluation
to a local filesystem, saying that they did

“run some limited experiments attacking files across
NFS and observed substantial numbers of successes.
We chose not to continue these experiments, however,
because NFS-accessed files are usually not the most
security-critical, root privileges typically don’t ex-
tend across NFS, the data displayed enormous vari-
ance depending on network and fileserver load.”[12]

But the set of attack experiments we conducted across
NFS reveals that, while individual machines behave dif-
ferently, the overall conclusion regarding the value ofk
does not dramatically change. The following table com-
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Figure 14:Overheads ofaccess open (AMD / Linux 2.6).

pares between minimalBk values devised when running
the attack on local and a networked filesystems (each ta-
ble entry is the minimal result obtained across the 2,904
respective runs; values denote years, and, if bigger than
1000, are rounded down to the closest power of ten):

Platform Local FS NFS
k=8 k=9 k=10 k=8 k=9 k=10

SPARC Solaris 8 5.8 103 10
3 0.3 2.6 21

P-III Linux 2.4 10
9

10
11

10
13 0.1 0.8 5.8

Power4 AIX 5.3 2.5 53 951 10
8

10
11

10
13

AMD Linux 2.6 10
3

10
4

10
6
∞ ∞ ∞

Intel Linux 2.6 10
6

10
8

10
9 9.9 129 10

3

We see that machines can become less or more vulnera-
ble to the hypothetical attack when it is conducted across
NFS. The Pentium-III machine demonstrates the most
notable change, being the least susceptible to the attack
within a local file system (see also Figure 13) and be-
coming the most vulnerable with NFS. Conversely, with
the Power4 machine, it’s exactly the opposite, as it tran-
sitioned from being the most vulnerable to being nearly
the least, second to only the AMD machine for which no
attacker wins were observed with NFS.

Robustness We note that our evaluation methodology
does not constitute a proof that the proposed solution is
robust. Recall, however, that the attack described here is
purely hypothetical, as defenders are not likely to pub-
lish their actions through shared memory for the sake of
helping attackers. We therefore argue that it is reasonable
to expect that real attackers will not do better. The as-
sumption underlying this rationale is the following: Un-
der the newly purposed access/open idiom, where system
calls are repeatedly applied to a single-component rela-
tive filepath, attackers will be unable to systematically and
consistently slow down the defender. If this assumption is
true, then our method is robust, even in the face of slow
devices and multiple attackers.

Overhead Figure 14 compares the overhead of the new
access open to that of Dean and Hu’s, as a function of
the opened file’s number of components. The overhead is
unsurprisingly linear. Clearly the older version is faster,
due to the fewer system calls it invokes. But we contend
that this is tolerable, considering the older solution is un-
safe and that no other portable alternative exists.

7 Generalizing

A Check-Open Utility While the above ideas were
demonstrated through the access/open race, their appli-
cability is broader. The maze attack is a general method
to deterministically win TOCTTOU races: given a check-
use pair, if an attacker can manipulate the filename be-
ing checked (or any of its components), the attacker can
utilize a maze to (1) synchronize with and (2) slowdown
the defender, generating the ideal conditions for the attack
to succeed. Conversely, the Column-orientedK-Race
(CKR) is a general method to prevent this from happening
by executing the check-use pair “atomically”.

Nevertheless, programmers can not be expected to tai-
lor a CKR for every legitimate check-use scenario. We
therefore aspire to devise a generic utility function that
can e.g., be added to libc. A first immediate step is to con-
vert ouraccess open into acheck open function, by al-
lowing the caller to pass the check operation as a pointer-
to-function argument (getting an atom hardlink filename
and returning zero upon success.) This operation would
replace the call toaccess in Figure 8, allowing program-
mers to pass alongaccess, or stat, or any other conceiv-
able filename check operation they may require.

Note that the focus onopen as the ’use’ operation is not
as limited as might initially seem: Recall that bindings of
file descriptors to file objects are immutable and therefore
completely immune from TOCTTOU attacks. Thus, once
a valid file descriptor is safely opened and returned, the
programmer can securely use the wealth of system calls
that operate on file descriptors (fchown, fchmod, fchdir,
fstat, ftruncate, etc.), rather than their respective insecure
TOCTTOU-prone counterparts that operate on file names
(chown, chmod, chdir, stat, truncate etc.).

A Check-Use Utility A completely different approach
would be to convertaccess open into a general purpose
check use utility. Here is how such an approach might
work: Hardness amplification would be removed from the
core algorithm and turned into a pluggable policy to be
used by programmers at will. The part that remains is a
user-mode path resolution traversal. As before, the algo-
rithm would consume one component at time,fchdiring
from component to component, and recursing on sym-
links. The algorithm woulddeterministicallymake sure

15



it fchdirs to atom hard-links only (never directly to sym-
links), by lstating the next atom directory (s1), opening
it, fstating the returned file descriptor (s2), and making
sure thes1 ands2 point to the same file object.

In addition to the filepath,check use would get four
pointer-to-function argumentsF dir

chk, F link
chk , F last

chk , and
F last

use . The first three are ’check’ operations, respectively
applied to each directory, symlink, and the last compo-
nent in the given filepath, at the time the associated atom
component is consumed by the path resolution traversal.
Their input arguments are the atom name and the respec-
tive ’stat’ structure and file descriptor (-1 for symlinks);
their return value is zero to indicate the path-resolution
may continue, or nonzero to indicate it should fail. The
F last

use encapsulates the ’use’ operation, but otherwise has
the same input and output as of the ’check’ operations.
All operations are invoked while the working directory
of check use is that of the atom that is currently being
processed. Finally, the return value ofcheck use is the
return value of the last operation that has failed, or that of
F last

use if all other operations succeeded.
With this design it is trivial to solve e.g., the race in

Figure 2a. The garbage collector definesF dir
chk andF last

chk

to always return 0,F link
chk to always return -1, andF last

use

to unlink the atom file; thus, any symlink that is encoun-
tered along the way would makecheck use fail, thereby
insuring all deleted files are under the/tmp/ directory,
as required. Importantly, it does not matter whether the
last (unlinked) atom is juggled by the attacker (sym-
link/hardlink to some sensitive file), as in this case the
outcome would merely be that some link created by an at-
tacker is deleted, a fact that does not affect the target file.

Eliminating the Probabilistic Aspect To reapply the
probabilistic access/open solution under thecheck use
design, one would simply defineF link

chk to always return
0, F last

use to return the file descriptor it gets as input, and
F dir

chk and F last
chk to be (a slightly modified version of)

atom race from Figure 8. Notice, however, that there
is actually no technical difficulty preventing us from go-
ing the extra mile and providing programmers with a li-
brary function that fully implements a deterministic and
completely safeaccess check, in user mode: While the
filepath is traversed, the associated ’stat’ structure of each
component, which is handed to the ’check’ functions, con-
tains the user and group ownership information as well as
the user/group/world access permissions. Thus, given an
arbitrary user and an atom’s ’stat’ structure (which is asso-
ciated with an already opened file descriptor), we can de-
terministically decide whether the user has appropriate ac-
cess permissions. While possibly a tedious task, portably
implementing such a routine is nonetheless straightfor-
ward; as a library function, a single implementation would
be shared by all and may have an additional benefit of

potentially being more efficient than the probabilistic ap-
proach, which involves anO(K) linear loop per filepath
component. We are currently in the process of evaluating
this alternative (as well as the one mentioned in the fol-
lowing paragraph) and expect to publish the results in the
near future.

Adding Credentials to the Interface In contrast to the
access/open race that has a satisfactory probabilistic so-
lution, the race depicted in Figure 2b can only be solved
with the help of a deterministic user-modeaccess (as was
just described), since there is no system-call equivalent
to access that a non-setuid program can use.5 Indeed,
defining F dir

chk and F last
chk to make use of the user-mode

access and return 0 only if user “ann” has adequate per-
mission, would suffice. Alternatively, instead of requiring
the ’check’ predicates to handle these details,check use
can be augmented to optionally get another parameter —
a user id — and fail the path resolution process when an
atom that the user is not allowed to open is encountered.

Summary By trading off some performance, we are
able to devise a simple, yet powerful and expressive, inter-
face that enables programmers to intuitively and securely
combine a check-use pair into a single pseudo transaction,
executed atomically for all practical purposes. While the
entire implementation is straightforward portable user-
mode, we effectively accomplish the vision of Maziéres
and Kaashoek (Section 2.2) regarding a new “flexible”
filesystem [24]. Notably, programmers gain explicit con-
trol of whether symlinks are followed when a file is
opened, and are able to specify the credentials with which
relevant system calls would operate.

A facility similar to thecheck use function suggested
above, if made a standard library function, would serve
three purposes. First, it will allow programmers and
designers to make conscientious decisions regarding the
efficiency-safety tradeoff, e.g., between insecurely open-
ing a file with a singleopen call, or doing it in user-mode,
component by component, while enforcing repeated cre-
dential checks to avoid TOCTTOU races, or maybe mak-
ing the effort to develop another alternative. Second, a
well-designedcheck use facility would encapsulate the
execution of vulnerable check-use pairs. When the time
comes and e.g. transactional filesystems (or other rele-
vant improvements) are made more prevalent, the internal
implementation can be replaced with a more efficient al-
ternative. Thirdly, the inclusion of acheck use routine
in the standard API would serve educational purposes, as
new programmers get familiar with the API and through
it become aware of the TOCTTOU problem.

5An attacker can choose tolink /mail/ann to /etc/passwd,
rather than tosymlink. Thus, not following symlinks will not help.
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Limitations Like the maze-attack, our approach works
on already-existing-files only. The TOCTTOU problem
associated with creating new files (notably, when wanting
to create a new temporary file [11]) is still unresolved.

8 Conclusions

The POSIX API is broken: Its semantics inherently pro-
mote TOCTTOU races between check-use operations and
make systems vulnerable to malicious attacks. Existing
solutions can help locate these problems, but otherwise
relate to future non-prevalent systems, leaving program-
mers to individually come up with solutions from scratch,
to numerous variants of what is provably a hard and elu-
sive problem. We suggest to alleviate the situation by pro-
viding programmers with standard generic abstractions
that effectively bind check-use pairs into a single pseudo-
atomic transaction. We further show that this goal can be
obtained, to a large extent, in a portable manner, in user-
mode, without changing the kernel.
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[24] D. Maziéres and F. Kaashoek, “Secure applications need
flexible operating systems”. In IEEE Workshop on Hot
Topics in Operating Syst. (HOTOS), p. 56, 1997.

[25] W. S. McPhee, “Operating system integrity in OS/VS2”.
IBM Systems Journal13(3), pp. 230–252, 1974. URL
http://www.research.ibm.com/journal/sj/133/ibmsj1303D.pdf.

[26] “National vulnerability database (NVD)”. URL
http://nvd.nist.gov/. (Accessed Sep 2007).

[27] J. Park, G. Lee, S. Lee, and D-K. Kim, “RPS: an extension
of reference monitor to prevent race-attacks”. In 5th
Advances in Multimedia Information Processing (PCM),
pp. 556–563, 2004. Lect. Notes Comput. Sci. vol. 3331.

[28] C. Pu and J. Wei, “A methodical defense against
TOCTTOU attacks: the EDGI approach”. In IEEE Int’l
Symp. on Secure Software Engineering (ISSSE), Mar
2006.

[29] F. Schmuck and J. Wylie, “Experience with transactions
in QuickSilver”. In ACM Symp. on Operating Syst.
Principles (SOSP), pp. 239–253, 1991.

[30] B. Schwarz, H. Chen, D. Wagner, J. Lin, W. Tu,
G. Morrison, and J. West, “Model checking an entire
linux distribution for security violations”. In Ann.
Comput. Security Applications Conf. (ACSAC), pp. 13–22,
IEEE, Dec 2005.

[31] T. Sirainen, “fdpass.c — File descriptor passing between
processes via UNIX sockets”. URL
http://code.softwarefreedom.org/projects/backports/
browser/external/standalone/dovecot/current/src/lib/fdpass.c,
2002–2004. (Accessed Dec 2007).

[32] W. R. Stevens and B. Fenner,UNIX Network
Programming Volume 1: The Sockets Networking API.
Addison Wesley, 3rd ed., Nov 2003. Section 15.7.

[33] W. R. Stevens, M. Thomas, E. Nordmark, and T. Jinmei,
“RFC 3542 – advanced sockets application program
interface (API) for IPv6”. URL
http://www.faqs.org/rfcs/rfc3542.html, May 2003.
(Accessed Dec 2007).

[34] E. Tsyrklevich and B. Yee, “Dynamic detection and
prevention of race conditions in file accesses”. In 12th
USENIX Security Symp., pp. 243–256, Aug 2003.

[35] P. Uppuluri, U. Joshi, and A. Ray, “Preventing race
condition attacks on file-systems”. In ACM Symp. on
Applied Comput. (SAC), pp. 346–353, Mar 2005.

[36] “United states computer emergency readiness team
(US-CERT)”. URL http://www.kb.cert.org/vuls.
(Accessed Sep 2007).

[37] J. Viega, J. Bloch, Y. Kohno, and G. McGraw, “ITS4: A
static vulnerability scanner for C and C++ code”. In Ann.
Comput. Security Applications Conf. (ACSAC),
pp. 257–267, IEEE, Dec 2000.

[38] J. Wei and C. Pu, “Multiprocessors may reduce system
dependability under file-based race condition attacks”. In

37thIEEE/IFIP Ann. Int’l Conf. on Dependable Syst. &
Networks (DSN), Jun 2007.

[39] J. Wei and C. Pu, “TOCTTOU vulnerabilities in
UNIX-style file systems: an anatomical study.”. In 4th
USENIX Conf. on File & Storage Technologies (FAST),
pp. 155–167, Dec 2005.

[40] C. P. Wright, R. Spillane, G. Sivathanu, and E. Zadok,
“Extending ACID semantics to the file system”. ACM
Trans. on Storage (TOS)3(2), p. 4, Jun 2007.

[41] A. C. Yao, “Theory and applications of trapdoor
functions”. In 23rd IEEE Symp. on Foundations of
Computer Science, pp. 80–91, 1982.

[42] K. Zeilenga, H. Chu, and P. Masarati,
“ libraries/libutil/getpeereuid.c”. OpenLDAP source code
URL http://www.openldap.org/devel/cvsweb.cgi,
2000–2007. (Accessed Dec 2007).

18


	Introduction
	Motivation
	Classic Examples
	Existing Solutions
	The Problem

	Failure of Hardness Amplification
	The K-Race Technique
	Filesystem Mazes

	Making Amplification Work
	Implementation Notes

	Crafting the Hypothetical Attack
	Exposed Defender
	Synchronized Attacker

	Experimental Results
	Methodology
	Results

	Generalizing
	Conclusions

