
Experience with the Parallel Workloads Archive

Dror G. Feitelson1∗ Dan Tsafrir2 David Krakov1

1Dept. Computer Science, The Hebrew University, 91904 Jerusalem, Israel
2Computer Science Dept., Technion – Israel Institute of Technology, 32000 Haifa, Israel

Abstract

Workload traces from real computer systems are invaluable for research purposes but regularly suffer from quality
issues that might distort the results. As uncovering such issues can be difficult, researchers would benefit if, in
addition to the data, the accumulated experience concerning its quality and possible corrections is also made available.
We attempt to provide this information for the Parallel Workloads Archive, a repository of job-level usage data from
large-scale parallel supercomputers, clusters, and grids, which has been used extensively in research on job scheduling
strategies for parallel systems. Data quality problems encountered include missing data, inconsistent data, erroneous
data, system configuration changes during the logging period, and unrepresentative user behavior. Some of these may
be countered by filtering out the problematic data items. In other cases, being cognizant of the problems may affect
the decision of which datasets to use.

Keywords: Workload, Data quality, Parallel job scheduling

1. Introduction

The study and design of computer systems requires good data regarding the workload to which these systems
are subjected, because the workload has a decisive effect onthe observed performance [1, 12, 27]. As an example,
consider the question of scheduling parallel jobs on a large-scale cluster or supercomputer. As each job may require
a different number of processors, this is akin to bin packing[5, 19, 25, 35]. Hence the best scheduling algorithm may
depend on the distribution of job sizes, or on the possible correlation between job size and runtime [21].

But how can we know what the distribution is going to be? The common approach is to collect data logs from
existing systems and to assume that future workloads will besimilar. The Parallel Workloads Archive, whose data is
the focus of this paper, is a repository of such logs; it is accessible at URLwww.cs.huji.ac.il/labs/parallel/workload/.
The archived logs (see Table 1) contain accounting data about the jobs that executed on parallel supercomputers and
clusters, which is necessary in order to evaluate schedulers for such systems. These logs have been used in many
research papers since the archive was started in 1999. Figure 1 shows the accumulated number of hits that the parallel
workload archive gets when searching for it in Google Scholar (supplemented by the number of hits associated with
the Grid Workloads Archive [17], which serves a similar purpose). The high citation count bears witness to the need
for such data in the research community, and it highlights the importance of using the data judiciously.

At first blush it seems that accounting logs should provide reliable and consistent data. After all, this is just a
mechanistic and straightforward recording of events that happened on a computer system (as opposed to, say, genome
data, which is obtained via complex experimental procedures that lead to intrinsic errors [23]). But upon inspection,
we find that the available logs have myriad deficiencies. Thisis not a specific problem with the data that is available to
us. All such logs have data quality problems, and in fact the logs available in the Parallel Workloads archive actually
represent relatively good data. We have additional logs that were never made public in the archive because an initial
investigation found the data contained in them to be so lacking.

The issue of data quality has a long history (the International Conference on Information Quality has been held
annually since 1996). The most general definition of data quality is “fitness for use”, implying that it is not an objective

∗ Contact information: email feit@cs.huji.ac.il, phone/fax +97225494555.

Preprint submitted to Elsevier October 7, 2012

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

<=2000
 2001

 2002
 2003

 2004
 2005

 2006
 2007

 2008
 2009

 2010
 2011

 2012

ac
cu

m
ul

at
ed

 r
ef

er
en

ce
s

year:

both

31 41 62 82 104
157

224

313

432

554

708

843

922
PWA
GWA

Figure 1:Accumulated yearly number of hits received when searching for the Parallel Workloads Archive (PWA) and the Grid Workloads Archive
(GWA) in Google Scholar as of September 6, 2012. GWA containsthose logs from PWA that pertain to Grid systems, as well as a few other Grid
logs. The query used was “Parallel Workload(s) Archive” (both singular and plural) and the archive’s URL, and likewise for the grid archive. Papers
that cite both archives are only counted once in “both”.

Table 1:Main logs in the Parallel Workloads Archive. (Some additional logs with only serial jobs or low utilizations are not listed.)
log period months PEs users jobs util. file cleaned
NASA iPSC 10/93–12/93 3 128 69 42,264 0.47 NASA-iPSC-1993-3.swf yes
LANL CM5 10/94–09/96 24 1024 213 201,387 0.75 LANL-CM5-1994-4.swf yes
SDSC Par95 12/94–12/95 12 400 98 76,872 0.72 SDSC-Par-1995-3.swf yes
SDSC Par96 12/95–12/96 12 400 60 38,719 0.76 SDSC-Par-1996-3.swf yes
CTC SP2 06/96–05/97 11 338 679 79,302 0.85 CTC-SP2-1996-3.swf yes
KTH SP2 09/96–08/97 11 100 214 28,489 0.70 KTH-SP2-1996-2.swf
SDSC SP2 04/98–04/00 24 128 437 73,496 0.84 SDSC-SP2-1998-4.swf yes
LANL O2K 11/99–04/00 5 2048 337 122,233 0.70 LANL-O2K-1999-2.swf
OSC cluster 01/00–11/01 22 178 254 80,714 0.14 OSC-Clust-2000-3.swf yes
SDSC Blue 04/00–01/03 32 1152 468 250,440 0.77 SDSC-BLUE-2000-4.swf yes
Sandia Ross 11/01–01/05 37 1524 204 85,355 0.50 Sandia-Ross-2001-1.swf
HPC2N 07/02–01/06 42 240 258 527,371 0.70 HPC2N-2002-2.swf yes
SDSC Datastar 03/04–04/05 13 1664 460 96,089 0.63 SDSC-DS-2004-2.swf
SHARCNET 12/05–01/07 13 6828 412 1,195,242 n/a SHARCNET-2005-2.swf
LLNL uBGL 11/06–06/07 7 2048 62 112,611 0.56 LLNL-uBGL-2006-2.swf
LLNL Atlas 11/06–06/07 8 9216 132 60,332 0.64 LLNL-Atlas-2006-2.swf yes
LLNL Thunder 01/07–06/07 5 4008 283 128,662 0.88 LLNL-Thunder-2007-1.swf yes
MetaCentrum 12/08–06/09 7 806 147 103,656 0.36 METACENTRUM-2009-2.swf
ANL Intrepid 01/09–09/09 8 163,840 236 68,936 0.60 ANL-Intrepid-2009-1.swf
PIK IPLEX 04/09–07/12 40 2560 225 742,965 0.38 PIK-IPLEX-2009-1.swf
RICC 05/10–09/10 5 8192 176 447,794 0.87 RICC-2010-2.swf
“PEs” was nodes or CPUs in old logs, today it typically represents cores.
“util” is the system utilization, i.e. the fraction of the resources that were allocated to jobs. It is not computed for SHARCNET because
this is a grid system, and the constituent clusters became available at different times.
File names include a version number, as most logs were re-converted to swf when errors were found or new considerations were
introduced.
“cleaned” specifies whether a cleaned version exists, whereproblematic data has been filtered out.

2

but rather a context-sensitive attribute [33]. Indeed, work on data quality has identified no less than 20 dimensions of
data quality, the top five of which are accuracy, consistency, security, timeliness, and completeness [2]. In the context
of computer systems, practically all considerations have been about the quality of data handled by the system, e.g. the
data contained in enterprise databases. Low quality data has been blamed for bad business decisions, lost revenue,
and even implicated in catastrophes leading to the loss of human life [13, 14, 24]. The quality of data in scientific
repositories, such as biological genome data, has also beenstudied, both to assess the quality of existing repositories
and to suggest ways to improve data quality [15, 20, 23].

At the same time, there has been little if any work on the quality of data describing computer systems, such as
workload data. In this paper we report on our experience withthe data available in the Parallel Workloads Archive. We
start the discussion by considering log formats in Section 2. The main problem here is representational aspects of data
quality, where the same field in different logs may have slightly different semantics. The bulk of the paper is contained
in Section 3, which lists and classifies known problems in thedifferent logs. These are mainly intrinsic correctness
problems, such as inconsistency (redundant data fields should not contradict each other), errors (data should not imply
that the number of processors being used at a certain instantis more than the number available in the machine), and
missing data in certain records and fields. Due to the data quality problems we have found, using log data as-is (even
as input to a statistical analysis) might lead to unreliableresults. Section 4 then outlines actions that we have taken
to improve data quality and make the logs more useful. The conclusions are presented in Section 5, and include a
perspective of our work in relation to the work on data quality in other domains.

The main contribution of this work is to record the considerations behind the procedures that were used to handle
the data made available in the Parallel Workloads Archive. These represent over a decade of research on data quality
issues in these logs, including the identification of many unexpected problems. They are also important in order to
provide context for the many other papers that use this data,and validate the data on which they are based. It should
be noted that the procedures we use are non-trivial and not self evident. By publicizing them, we hope to also initiate
a debate about data quality and data cleaning in experimental computer systems research, a subject which has not
received sufficient attention so far.

2. Log Formats

A pre-requisite for analyzing logs is being able to parse them. In some classes of systems, such as web servers,
standard log formats have been defined. Regrettably, there is no such standard for parallel job schedulers, and each one
has defined its own format with its own idiosyncrasies. To ease work with the logs, we defined a Standard Workload
Format1 for use in the archive [4]. This format was proposed by David Talby and refined through discussions with
James Patton Jones and others.

The considerations applied in designing the standard format included the following.

• It should be easy to parse. The chosen format is an ASCII file with one line per job, space-separated fields, and
exclusive use of numerical values (that is, no strings and special date or time formats). Fields for which data is
unavailable are given as−1.

• It should be well defined. We sacrificed extensibility in the interest of standardization, and require that data be
expressed in given units. Regrettably, this also means thatsometimes data that is actually available in a log does
not have a corresponding field in the format, and is thereforelost in the conversion process. For example, this
happens for the data about suspending and resuming jobs thatis available in the SHARCNET log. It is therefore
important to also maintain the original log file.

• It should be general. In particular, the same format is suitable both for logs from production machines and for
statistical models. For example, this consideration favors the use of the time triplet〈submit, wait, run〉 over
the triplet〈submit, start, end〉, because wait and run times better separate the effect of thescheduler and the
application. When used for the output of a model, the wait time can be left undefined.

1Files in thestandardworkloadformat were naturally denoted by the suffix .swf. Unfortunately, this suffix was later also adopted forshockwave
flash files.

3

• It should be safe. To preserve privacy, users and applications are replaced by numerical codes that are allocated
in order of first appearance.

Of course, striving for consistency does not mean that it canalways be achieved. An example in point is the very
basic data about runtime, typically expressed in logs by thecombination of start time and end time. The problem is
that the precise semantics of these fields are usually ill-defined. Thus start time may refer to the time that the scheduler
decided to start the job, or the time when the first process wasstarted, or the time when the last process was started, or
perhaps the time when the logging facility was notified that the job was started. Likewise, end time may refer to the
time that the first process terminated, the time that the lastone terminated, or the time when this was recorded.

For example, the KTH SP2 log includes a field called uwall giving the used wallclock time, which intuitively
seems to correspond to the runtime. However, uwall is definedto be the interval from the last node allocation to the
first node deallocation. Note that this may be negative if processes fail immediately, and there is no period of time
when they are all actually running in parallel. Therefore, in the conversion to the standard format, we elected to use
the more commonly used start and end times (even though theirprecise semantics are unknown). Another problem in
the KTH SP2 log is that the system administrators sometimes faked the submit times in order to boost a job’s priority.
Such cases were identified by comparing the submit time field with the submit time that was encoded in the job ID. A
similar problem occurs in the LANL O2K log format, which doesnot contain an explicit field specifying the job end
time. The field specifying the time that the job-terminationevent was logged was used instead.

Another notoriously problematic field is the job status. In many cases a successful completion status is recorded
only if the job terminated with a 0 exit code. While this has been the convention on Unix systems since their inception,
there is no guarantee that applications indeed follow it. Incases where jobs do not have a “success” status, we
interpret “failed” as jobs that started to run but suffered from some problem or exception condition, and “canceled” as
jobs that were killed by the user. In the latter case, a job could have been canceled before it started to run, in which
case its runtime and allocated processors may be undefined. However, there is no guarantee that logs indeed use the
terminology in the same way we interpret it. Thus it is dangerous to filter jobs based on their recorded status.

The Standard Workload Format was established when the main concerns were the arrivals of jobs and their basic
resource requirements, namely processors and compute time. It serendipitously included a field used to specify the
partition used to run the job, which has since been found to beuseful to represent data about grids including multiple
clusters (e.g. SHARCNET and MetaCentrum). However, it cannot handle more complex data requirements. For
example, it has been suggested that information about specific job requirements and specific capabilities of different
clusters may lead to involved and limiting constraints, which induce significant complexity on the scheduling, and
lead to greatly reduced performance [18]. This cannot be expressed using the current version of the standard format.
Likewise, the standard format does not include facilities for distinguishing between nodes, processors, and cores.
However, this is believed not to be very important, because allocating a full node to a task rather than just a single core
is usually a disguise for allocating all the node’s memory tothe task. It is better to express this directly as an allocation
of memory, which is possible in the standard format.

3. Problems with Log Data

Over the years, the logs available at the Parallel WorkloadsArchive have been found to contain various problems.
This is not unique to this repository — collected data in practically all fields are known to have problems. It also does
not detract from the importance and usefulness of the data. However, it is definitely desirable to be cognizant of the
problems and deal with them when possible.

3.1. Incomplete Data

One problem that we sometimes encounter is that the data is incomplete. This means that some important infor-
mation is simply missing. As a result the usability of the available data is limited. In the following we provide some
examples.

The vast majority of parallel supercomputers and clusters dedicate processors to jobs. This means that when a job
is scheduled, a certain partition of the machine is carved out for it. The job is then run on the processors in this partition
until it terminates. Upon termination, the processors become free and can then be allocated to another job. But it is also
possible to use time slicing. The Connection Machine CM-5 was one of the only commercial parallel supercomputers

4

Table 2:Occurrences of incomplete or inconsistent data in the different logs.

missing zero negative more than req. CPU
log jobs submit start end proc run CPU mem wait run run proc mem >run
NASA iPSC 42,264 n/a – n/a – – n/a n/a n/a – n/a n/a n/a n/a
LANL CM5 201,387 3 3 – – – 37,199 19,517 – 1 36,198 1,212 21,036 17
SDSC Par 115,591 1,608 23 14 – – 6,181 n/a 27 15 – – n/a 3,073
CTC SP2 79,302 – – – – 6 4 n/a – – 1,380 – n/a 155
KTH SP2 28,490 – – – – – n/a n/a – – 64 219 n/a n/a
SDSC SP2 73,496 – 2 – – – 1,731 – – – 463 – – 3
LANL O2K 122,233 – – – – – 21,156 221 – – – – – 1,886
OSC cluster 80,714 – 1 – – – 6,177 n/a 1 – – – n/a 27,596
SDSC Blue 250,440 – 262 – 2 – 4,203 n/a 28 – 8,167 458 n/a 2
Sandia Ross 85,355 – – – 1 – 807 1,548 – – 3,069 – –
HPC2N 527,371 – – 77 – – 73,483 5,646 12 3 6,784 767 2,548 60,608
SDSC Datastar 96,089 – 4 149 – – 8,976 n/a 12 87 1,044 – n/a 149
SHARCNET 1,195,242 – 26 12,389 – – 78 16,231 – – – – – 1237
LLNL Atlas 60,332 n/a – – – – n/a n/a – – – 19 n/a n/a
LLNL Thunder 128,662 n/a 1208 1,208 – – n/a n/a – – – 155 n/a n/a
ANL Intrepid 68,936 – – – – – n/a n/a – – 9,096 30,948 n/a n/a
MetaCentrum 103,656 – – – – – n/a 8 – – – – – n/a
RICC 447,794 – – – – – n/a n/a – – 2,581 – n/a n/a
“–” means that there were no such inconsistencies. “n/a” means not applicable, e.g. if the log does not contain such data at all. For runtime
and wait time, more than requested or negative is by a margin of 1 minute or more to allow for clock skew or notification delays. Missing
start time and 0 processors/CPU/memory are counted only forjobs that had a “success” status (but missing start time withCPU>0 is noted).

5

to support gang scheduling [29]. This meant that it could context switch from one parallel job to another. And indeed
the LANL CM5 log includes an indication of whether jobs ran ondedicated nodes or not. In those cases where jobs
did not run on dedicated nodes, the implication is that they did not run for the full duration from their start time to their
end time. However, there is no indication of precisely what fraction of the time was actually used. As a result the real
runtimes are actually unknown. Naturally this makes the data practically unusable for simulations of job scheduling
and for analyzing utilization. However, it can still be usedto study the arrival process, user behavior, memory usage
[6], etc.

Another example comes from the SDSC Paragon logs. The data here is given as two separate logs: one for 1995,
and the other for 1996. In the interest of preserving privacy, user names were replaced by random numbers in the
original log. Regrettably, this user numbering was inconsistent in 1995 and 1996, and the mapping from the 1995
numbers to the 1996 numbers is not available. Hence the logs cannot be united into a single longer log, but each can
be used in isolation.

A third example is provided by the NASA iPSC log. This log simply does not include submit times at all —
only start times and run times. Similarly, the LLNL Atlas andThunder logs include only start and end times. In
the conversion to the standard format we therefore use starttimes to also represent arrival times. Obviously, this data
cannot be used to study the arrival process, as the recorded start times reflect the combined effect of the original arrivals
and the wait time. Wait times distort arrival data because they may be influenced by priorities of the scheduling policy.
They may also reflect a smoothing out of load [9]. However, thelogs can still be used to obtain a lot of useful data,
and in fact the NASA iPSC log was the first log to be analyzed in detail [10].

Other fields that are often missing from logs are memory usage, CPU time, and requested resources (in distinction
from the resources that were actually used). These are important for studies that need this data, but are not needed for
the simplest scheduling studies that consider only processors and runtime.

In addition to fields that are totally absent, it is not uncommon for data to be missing only for a subset of the
jobs. Table 2 shows that in most cases submit, start, and end times are missing only for a small fraction of the jobs
(except for those logs where submit times are just not available at all). Fields like CPU time or memory used tend to
be missing much more often.

3.2. Inconsistent Data

Another type of problem is inconsistent data. This means that the data in the log contradicts itself, and does not
pass some simple sanity check.

Table 2 lists several circumstances that are easily identified as inconsistent. For example, if a job ran successfully
then various resource-usage metrics must be positive or at least non-negative: the wait time, the runtime, the number
of processors used, the amount of memory used, etc. Likewise, the average CPU time used per processor cannot be
larger than the wallclock running time of the whole job. In some cases it also does not make sense for a job to receive
more resources than it had asked for, but such an inconsistency is merely puzzling but not impossible.

It should be noted that timing inconsistencies do not necessarily indicate a real problem. Some cases of zero
runtime, for example, could be the result of a resolution problem, e.g. when runtime is measured in seconds and the
job’s runtime is smaller than half a second. This is unlikely, however, because the distribution of runtimes usually starts
at several seconds, and sometimes at tens of seconds. Shorter runtimes cannot be recorded simply due to the delay
associated with setting up all the parallel processes and receiving notifications regarding their terminations. (Notethat
in distinction from measured runtime,requestedruntime should not be 0, so this is considered an error and notan
inconsistency or a resolution problem.)

Negative times may result from clock skew or from notification delays between node daemons and a frontend
workstation. Therefore we report only differences of more than 1 minute in Table 2. This filtering may be very
meaningful. For example, in the SDSC-SP2 log 4291 jobs got more runtime than they requested, but in only 463 of
these the difference was larger than 1 minute. A negative runtime occurred 1 time and negative wait times occurred
183 times, and these were all smaller than 1 minute and therefore considered insignificant.

Inconsistent data is of course not limited to time fields. In the SDSC Blue log, 253 jobs got less processors than
they requested. This may look very strange, as it is unclear how a job could run on less processors than it requires.
However, parallel jobs are often coded in a style that can useany given number of nodes, and receive the number
actually used in a certain run as a parameter.

6

ANL Intrepid

requested procs
1 32 256 2K 8K 128K

al
lo

ca
te

d
pr

oc
s

1

256

2K

8K

128K

>1000
101−1000
51−100
11−50
3−10
1−2
0

Figure 2: Allocation of processors on the ANL Intrepid machine. Allocating more than the number requested may result from fragmentation
(rounding up to a possible partition size) or from the need toallocate all the memory in a node to a single process, rather than sharing it among
processes running on multiple cores.

The opposite may also occur, but often this is not a real problem. On many parallel machines processors are
allocated in predefined partitions, and there is a minimal partition size. In some cases this corresponds to the number
of processors (or cores) in a node. In other cases the minimalpartition may include many nodes. For example,
the ANL Intrepid machine consists of 40 racks, housing 40,960 quad-core nodes, and partition sizes are powers of
two. Moreover, in 8 racks the minimal partition size is 64 nodes (256 cores), and in the rest the minimal size is 512
nodes (2048 cores). Jobs that require less are neverthelessallocated these sizes, and the extra processors are lost to
fragmentation. Similar rounding up is done on other machines as well. But in many logs we don’t know how many
are actually used and how many are lost.

In addition to partition size restrictions, over-allocation of processors may be a by-product of allocating memory.
Using the Intrepid machine again as an example, each node on that machine has 2 GB of memory, implying 512 MB
per core. If a job requires more than that, allocating the required memory will imply that cores will remain unused.
Evidence that this happens is shown in Fig. 2. This depicts the correlation between the requested number of processors
and the allocated number. The high values (dark shading) on the main diagonal imply that most jobs indeed get what
they requested. But note that high values also appear on a second diagonal where allocations are four times higher
than requests. This most probably reflects requests where the required memory forces a full node to be allocated to
each process, even though it will use only one of the four available cores.

In the above examples examining the value of a single field immediately showed that the data is problematic. Logs
may also include redundant data, that allows for sanity checks by comparing the values in several related fields. For
example, the HPC2N log uses the Maui scheduler, which records copious data. In particular, the following fields are
included:

2 Nodes Requested (nodesReq)

3 Tasks Requested (tasksReq)

22 Tasks Allocated (tasksAlloc)

23 Required Tasks Per Node (tasksPerNode)

32 Dedicated Processors per Task (procPerTask)

38 Allocated Host List (nodesList)

In principle, it may happen that not all requested tasks are actually allocated, sotasksAlloc 6= tasksReq. However,
in this log this only happens for 767 jobs, which are 0.14%, soin effect we may take these fields as equal. Likewise,
we find thatnodesReq = |nodesList| for all but one job. This allows for the following checks:

7

Table 3:Example of possible actions when facing inconsistent timing data.

action submit wait run
none unchanged -55:34m 59:05m
start=submit unchanged 0 03:35m
submit=start changed 0 59:05m
start=submit
end+=submit-start

}

unchanged 0 59:05m

RICC

M
2010

J J A S O

ut
ili

za
tio

n

0

0.5

1

1.5

2

2.5

3

3.5
RICC (w/o cancelled)

M
2010

J J A S O

ut
ili

za
tio

n

0

0.5

1

1.5

2

2.5

3

3.5

Figure 3:Strange effect of canceled jobs.

• Calculate number of nodes based on task requirements astasksReq/tasksPerNode. This turns out not to
match the actual number of nodes in 6,428 cases. This is worsethan it seems becausenodesReq is actually
specified in only 89,903 cases (in 437,468 jobsnodesReq is 0, so there is nothing to compare with). Also, in
30,357 jobstasksPerNode is given as 0, so the check is undefined.

• Compare the number of processors in the allocated nodes (each node has 2 processors) with the number calcu-
lated based on task requirements, which istasksReq ∗ procsPerTask (or tasksReq ∗ procsPerTask + 1 in
case it is odd). These do not match in 6,250 cases.

When inconsistencies are discovered, one has to decide which of the competing data to use. Oftentimes it is unclear
what to do. As a simple example, consider the following record from the SDSC Paragon 1995 log, with had a submit
time of 05/27/95 13:59:38, a start time of 05/27/95 13:04:08, and an end time of 05/27/95 14:03:13. The problem here
is that the start time is before the submit time, so when calculating the wait and run times the wait is negative. The
options of how to handle this are listed in Table 3. Setting the start time to the submit time without changing anything
else reduces the runtime from nearly an hour to3 1

2
minutes, which is a big change. We can also do the opposite, and

move the submit time back to the start time. An alternative based on using the〈submit, wait, run〉 triplet is to just
set the wait time to 0. This effectively means setting the start time to the submit time, and changing the end time to
maintain the original runtime. Any of these options may or may not reflect what had actually happened in reality.

Another example of such a dilemma is provided by the RICC log.In this log the maximal momentary utilization
is erratic, and often surpasses 100%, which should not happen (more on this in the next section). But if we filter out
jobs that were marked as canceled, the utilization results are much more reasonable (Fig. 3). This is still troubling,
however, because the canceled jobs are in fact recorded as having used time on the processors.

3.3. Erroneous Data

A third type of problem is when the recorded data is downrightwrong. For example, the LLNL Atlas and Thunder
logs contain jobs with a recorded time limit of 4294967294 seconds. This is most probably the result of mishandling
a signed value of -2 by placing it in an unsigned variable. In the SDSC Blue log, timestamps are given in human-
readable form in the format 2000-12-23–19:52:38. However,when these are tabulated they lead to a daily cycle that
peaks from the evening hours to midnight, and achieves a minimum from 10 to 11 AM. This is most probably due
to mishandling of UTC timestamps and using the gmtime function rather than the localtime function that corrects for
time zones.

8

SDSC Par95

D
1994

J
1995

F M A M J J A S O N D J
1996

ut
ili

za
tio

n

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

SDSC Par96

D
1995

J
1996

F M A M J J A S O N D J
1997

ut
ili

za
tio

n

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

CTC SP2

J
1996

J A S O N D J
1997

F M A M J

ut
ili

za
tio

n

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

SDSC Blue

A
2000

J A O D F
2001

A J A O D F
2002

A J A O D F
2003

ut
ili

za
tio

n

0

0.2

0.4

0.6

0.8

1

1.2

1.4
HPC2N

J
2002

O J
2003

A J O J
2004

A J O J
2005

A J O J
2006

ut
ili

za
tio

n

0

0.2

0.4

0.6

0.8

1

1.2
SDSC Datastar

M
2004

A M J J A S O N D J
2005

F M A M

ut
ili

za
tio

n

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

SHARCNET Whale

J
2006

J A S O N D J
2007

F

ut
ili

za
tio

n

0

0.2

0.4

0.6

0.8

1

1.2

1.4
LLNL Thunder

J
2007

F M A M J J

ut
ili

za
tio

n

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

ANL Intrepid

J
2009

F M A M J J A S O
ut

ili
za

tio
n

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 4:Examples of utilization exceptions. For each day the range between the minimal and maximal utilizations observed is colored.

In some cases wrong data is the result of intentional misreporting. For example, in the KTH SP2 system the system
administrators report that sometimes they have pushed jobsthrough the FIFO queue by giving them artificially low
‘enter-fifo’ times. Thus the arrival time and the wait time asrecorded in the log are bogus.

A more subtle situation that actually happens in nearly all logs is that the recorded utilization is occasionally
greater than 100%, which is technically impossible. To calculate the utilization, one scans the log and simply counts
the number of processors in the jobs that are reported as running at each instant (note that if one job terminates and
another starts in its place, they should not both be counted). This is then compared to the number of processors in the
system to obtain the utilization. The results of performingsuch calculations are shown in Fig. 4, indicating exceptions
that are sometimes large.

There are three possible explanations for such utilizationexceptions. The first is timing inconsistency, where one
job is recorded as running a few seconds beyond its actual termination, or another is recorded as starting slightly before
it actually got hold of the processors. Such situations may be identified and corrected, as shown in Section 4.4 below.
The second is that there is no real problem, because a job had released some of its processors before it terminated.
While possible in principle, all our logs assume rigid jobs that use all their processors for the duration of the run.
As a result we have no data to support this possibility. The third possible explanation is simply a logging error. For
example, this is the most likely explanation when the log contains a sequence of several large jobs with very similar
parameters that all started on the same second, and togetherrequire more processors than are available in the system.

Despite the utilization exceptions, it turns out that all the logs are actually stable in the sense that the service rate
is higher than the arrival rate. This is important because itimplies that the logs can actually be used for simulations of

9

LANL CM5

interval length
3h 6h 12h 1d 2d 4d 1w 2w 1m

fr
ac

tio
n

un
st

ab
le

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
fit
EASY

CTC SP2

interval length
3h 6h 12h 1d 2d 4d 1w 2w 1m

fr
ac

tio
n

un
st

ab
le

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

fit
EASY

SDSC SP2

interval length
3h 6h 12h 1d 2d 4d 1w 2w 1m

fr
ac

tio
n

un
st

ab
le

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

fit
EASY

SDSC Par95

interval length
3h 6h 12h 1d 2d 4d 1w 2w 1m

fr
ac

tio
n

un
st

ab
le

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
fit
EASY

SDSC Par96

interval length
3h 6h 12h 1d 2d 4d 1w 2w 1m

fr
ac

tio
n

un
st

ab
le

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
fit
EASY

SDSC BLUE

interval length
3h 6h 12h 1d 2d 4d 1w 2w 1m

fr
ac

tio
n

un
st

ab
le

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
fit
EASY

KTH SP2

interval length
3h 6h 12h 1d 2d 4d 1w 2w 1m

fr
ac

tio
n

un
st

ab
le

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
fit
EASY

HPC2N

interval length
3h 6h 12h 1d 2d 4d 1w 2w 1m

fr
ac

tio
n

un
st

ab
le

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

fit
EASY

ANL Intrepid

interval length
3h 6h 12h 1d 2d 4d 1w 2w 1m

fr
ac

tio
n

un
st

ab
le

0

0.05

0.1

0.15

0.2

0.25
fit
EASY

Figure 5:Stability results of logs that had relatively many unstableintervals. In most other logs only a few percent at most of even the short intervals
were unstable.

parallel job scheduling. To verify stability we divided each log into fixed intervals of lengthT , and counted the fraction
of intervals where the work that arrives in the interval cannot be accommodated within the interval. “Accommodation”
had two interpretations. The first is just total resource usage by all jobs, meaning that the amount of work arriving
within an interval ofT was less than the capacity available during this interval. The second is whether they can actually
be scheduled by a backfilling scheduler, when jobs are sortedfavorably (that is, from longest to shortest or from largest
to smallest) and all of them are assumed to arrive at the outset. In both cases, jobs that are longer thanT are divided
into slices of lengthT that are assigned to successive intervals.

The results were that in all cases the fraction of unaccommodated intervals went down to zero asT increased (Fig.
5). However, in some cases very longT s were needed. For example, in the SDSC SP2 log 12% of the weekly intervals
were not accommodated, and in the CTC SP2 log 8% of the biweekly intervals suffered the same fate. In both cases
this dropped to zero only for intervals of a full month.

A common feature of many utilization graphs is the horizontal upper bound of 100% utilization (albeit sometimes
it is breached). A special case of utilization exception is when this upper bound occurs bellow 100% utilization. This
most probably indicates that our information regarding thenumber of processors is wrong. For example, the size of
the CTC SP2 machine is 512 processors, of which 430 are in the batch partition. Assuming this is the number of
processors being used leads to the utilization graph shown in Fig. 6, with an upper bound of around 78.38%. This
indicates that the true size of the batch partition used to capture the log was most probably only 338 processors, and
not 430.

10

CTC SP2 (430 procs)

J
1996

J A S O N D J
1997

F M A M J

ut
ili

za
tio

n

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Figure 6:Effect of assuming the wrong number of processors.

SDSC SP2

A
1998

J A O D F
1999

A J A O D F
2000

A

ut
ili

za
tio

n

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Sandia Ross

N
2001

F
2002

M A N F
2003

M A N F
2004

M A N F
2005

ut
ili

za
tio

n

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

LLNL Atlas

N
2006

D J
2007

F M A M J J

ut
ili

za
tio

n

0

0.5

1

1.5

2

2.5

3

3.5

Figure 7:Examples of utilization variability probably due to configuration change.

3.4. Environment Variability

A major problem with parallel workload logs is that the configuration of the underlying machine may be heteroge-
neous and may even change with time. This can be expected to have an effect on the workload, to the point of making
it non-stationary. In many cases we do not have information about such effects, but sometimes we can deduce them
from the log data.

An important type of variability is apparent changes in system capacity. This is evident from the utilization graphs,
as shown in Fig. 7. The SDSC SP2 seems to have grown about a third of the way into the log. In the Sandia Ross
machine the available capacity dropped significantly abouta third of the way into the log. The LLNL Atlas had an
initial trial period with half the final capacity. A more extreme example is the LPC log, which started with only one
node and was later expanded to the full size of 70 nodes. In allthese cases, using the whole log consecutively seems
to be inappropriate, because it is actually composed of the juxtaposition of two distinct workloads recorded under
different conditions.

A more subtle form of variability is the imposition of resource constraints. The scheduling of parallel jobs is often
controlled by defining a set of queues with different priorities and resource constraints. Jobs are submitted to the ap-
propriate queue, as a means of specifying their requirements. The scheduler then judiciously selects jobs for execution
from the different queues so as to create a “good” job mix thatmeets the scheduling objectives2. This obviously has
an effect on the representation of different types of jobs inthe log. To confound things, system administrators may
change the queue definitions over time.

For example, the SDSC Paragon system employed the system of queues described in Table 4. The ones with an
‘f’ indicate use of 32 MB (fat) nodes, while the others are for16 MB nodes. The scheduler could use different sets
of nodes for different queues during prime time and non-prime time (nights and weekends) [32]. Specifically, during
prime time it was desirable to provide quick turnaround times for short jobs, so a set of nodes were set aside for such

2This is based on the assumption that the jobs are indeed submitted to the “most appropriate” queue, which tightly fits the job’s requirements.
In retrospect this assumption is naive, and jobs often use only a small fraction of their runtime limit [8, 22].

11

Table 4:Queues on the SDSC Paragon.

time nodes low
limit 1 4 8 16 32 64 128 256 pri
1 hr q4s q8s q16s q32s q64s

qf8s qf16s qf32s
4 hr q32m q64m q128m q256m

qf32m qf64m qf128m qf256m
12 hr q1l q32l q64l q128l q256l standby

qf32l qf64l qf128l qf256l fstandby

CTC SP2

interval length [s]
0 20 40 60 80 100 120

oc
cu

re
nc

es

0

1000

2000

3000

4000

5000

6000
inter−arrivals
inter−start times

SDSC SP2

interval length [s]
0 30 60 90 120 150 180 210 240

oc
cu

re
nc

es

0

500

1000

1500

2000

2500

3000
inter−arrivals
inter−start times

Figure 8:Examples of modal inter-start-time distributions due to batching by the scheduler.

jobs. But despite this richness, the log actually containedquite a few additional queues, including test, interactive,
qf32test, qtmp32, sdsctest, q1ll, holding, q320m, q4t, and q256s. For some of thesewe can guess the resource
requirements, but for the others we cannot.

A striking example of the effect of such constraints occurred when the scheduler was changed on the LLNL T3D
[8] (regrettably, this data is not available on the Archive). When effective gang scheduling was introduced in March
1996 it became much easier to run large jobs. By October the distribution of job sizes had changed, with the fraction
of resources devoted to 32-processor jobs dropping by two thirds, while the fraction of resources devoted to 64, 128,
and 256-processor jobs more than doubled.

The KTH SP2 system also imposed various limits on job run times (and this was also changed during the period
that the log was recorded). In essence jobs were limited to running for up to 4 hours during weekdays, which were
defined to be from 7 AM to 4 PM Monday through Friday. At nights they could run for 15 hours, and over the weekend
for 60 hours. By tabulating the number of jobs with long requested runtimes that were submitted at different times of
the day and the week, one can see that requests to run jobs longer than 4 hour peak every day after 4 PM, and requests
to run jobs longer than 15 hours are nearly always submitted on Friday afternoon.

In addition to differences in configuration, schedulers mayexhibit idiosyncratic behavior. A small example is the
batching of jobs. Some schedulers accumulate jobs across short intervals, rather than immediately scheduling jobs as
they arrive. This leads to a modal inter-start-time distribution, as opposed to a smoother inter-arrival distribution, as
demonstrated in Fig. 8.

The point of these examples is to demonstrate that the observed workload is not necessarily a “natural” workload
that reflects what the users want to run. Rather, users may mold their requirements according to the limitations imposed
by each system’s administrators and schedulers. And to makematters worse, these limitations may be quite involved,
may change unpredictably, and may be unknown to us.

3.5. Non-Representative Behavior

Another source of variability is the users themselves. In quite a few cases we find users whose behavior is different
from the behavior of all others, and might be considered to taint the log data.

An early example was the behavior of the system administrators on the NASA iPSC machine. It turns out that these
administrators commonly ran the Unix pwd command (print working directory) on a single node of the machine as a

12

LANL CM5

O
1994

ND J
1995

FMAMJ J ASOND J
1996

FMAMJ J ASO

jo
bs

 p
er

 w
ee

k

0

2000

4000

6000

8000

10000

12000

14000

user 50
user 31
user 38
user 94

user 60
user 8
user 150
user 56

user 61
user 96
user 176
others

SDSC SP2

A
1998

MJ J ASONDJ
1999

FMAMJ J ASONDJ
2000

FMAM

jo
bs

 p
er

 w
ee

k

0

1000

2000

3000

4000

5000

6000

7000

8000

user 374
user 24
user 48
user 21

user 197
user 429
user 274
user 139

user 98
user 13
user 148
others

SDSC Par95

D
1994

J
1995

F M A M J J A S O N D J
1996

jo
bs

 p
er

 w
ee

k

0

1000

2000

3000

4000

5000

6000

7000

user 66
user 92
user 61
user 62

user 94
user 50
others

SDSC Par96

D
1995

J
1996

F M A M J J A S O N D J
1997

jo
bs

 p
er

 w
ee

k

0

500

1000

1500

2000

2500

user 23
user 3
user 45
user 8

user 24
user 51
others

CTC SP2

J
1996

J A S O N D J
1997

F M A M J

jo
bs

 p
er

 w
ee

k

0

500

1000

1500

2000

2500

3000

3500

user 135
user 151
user 404
user 191

user 181
user 66
others

SDSC Blue

A
2000

MJJASONDJ
2001

FMAMJJASONDJ
2002

FMAMJJASONDJ
2003

jo
bs

 p
er

 w
ee

k

0

500

1000

1500

2000

2500

3000

3500

4000

user 269
user 342
user 35
user 330

user 236
user 45
user 257
user 290

user 293
user 191
user 391
others

OSC cluster

D
1999

J
2000

FMAMJ J ASOND J
2001

FMAMJ J ASOND

jo
bs

 p
er

 w
ee

k

0

1000

2000

3000

4000

5000

6000

7000

user 174
user 84
user 216
user 239

user 22
user 54
user 147
user 231

user 37
user 47
others

Sandia Ross

N
2001

DJ
2002

FMAMJJASONDJ
2003

FMAMJJASONDJ
2004

FMAMJJASONDJ
2005

F

jo
bs

 p
er

 w
ee

k

0

500

1000

1500

2000

2500

3000

3500

user 175
user 84
user 38
user 8

user 3
user 17
user 96
user 103

user 89
user 72
user 171
others

HPC2N

J
2002

ASONDJ
2003

FMAMJJASONDJ
2004

FMAMJJASONDJ
2005

FMAMJJASONDJ
2006

F

jo
bs

 p
er

 w
ee

k

0

5000

10000

15000

20000

user 2
user 60
user 51
user 12

user 44
user 27
user 15
user 26

user 43
user 65
user 1
others

Figure 9:Examples of large flurries of activity by individual users.

means to verify that the system was operational and responsive. All told, no less than 56.8% of the jobs recorded in the
log were such pwd commands. Another example comes from the SDSC Paragon log, where an automatic script was
executed every day at around 3:45 AM, most probably to perform a sequence of cleanup or maintenance operations.
This caused a noticeable perturbation of the normal daily cycle of activity.

Another type of non-representative behavior is flurries of activity by individual users, which dominate all other
activity in the system [11, 30]. Examples are shown in Fig. 9.To create these graphs, the number of jobs in each
week was counted and the weeks with the highest level of activity singled out. Then, the top users in these weeks were
identified and their activity color-coded throughout the log. Here we focus on job flurries, but in logs from parallel
machines like ours flurry observations can also be based on processes. Importantly, process flurries are not necessarily
correlated with job flurries, as they can be created by a relatively small number of jobs that each include a very large
number of processes. Examples of logs that contain process flurries that do not correspond to job flurries include
SDSC SP2, SDSC Blue, HPC2N, SHARCNET, LLNL Atlas, LLNL Thunder, and RICC.

Flurries can be roughly classified into three types.

• Sporadic large flurries, where the number of jobs produced bya single user is 5–10 times the average weekly
total, but this continues only for a short period. A prominent example is the activity of user 374 in the SDSC
SP2 log, or the three large flurries in the LANL CM5 log. Note that these are not necessarily the most active

13

LLNL Atlas

N
2006

D J
2007

F M A M J J

jo
bs

 p
er

 w
ee

k

0

2000

4000

6000

8000

10000

user 19
user 66
user 28
user 7

user 52
user 82
others

LLNL Atlas (days)

N
2006

D J
2007

F M A M J J

jo
bs

 p
er

 d
ay

0

500

1000

1500

2000

2500

3000

user 19
user 66
user 4
user 28

user 7
user 82
user 52
user 99

user 36
user 94
user 109
others

Figure 10:Flurries observed at different resolutions.

users in the log, but their concentration makes them unique.

• Long-range dominance, where the abnormal level of activityby a single user continues for a long time, and
perhaps even dominates the whole log. A striking example is the activity of user 2 in the HPC2N log, who is
responsible for no less than 57.8% of the whole log.

• Small flurries, where some user displays a relatively high level of activity, but not as exceptional as the previous
classes. Nevertheless, such small flurries may cause instabilities in simulations used to evaluate schedulers. An
example is the flurry in the CTC SP2 log [11].

While the large-scale flurries pop out and are obviously behavioral outliers, the identification of small flurries is
more contentious. There seems to be no precise rule for deciding when a user’s activity is abnormal, and when it
is just the most active from among a distribution of users. Moreover, the degree that a user’s activity appears to be
abnormal may depend on the resolution of observation. For example, when using a daily resolution flurries may look
more prominent than when using a weekly resolution (Fig. 10). In the Parallel Workloads Archive we attempt to be
conservative, and flag only flurries that look prominent on a weekly scale. However, smaller flurries may also be
flagged if we know that they lead to problems in simulations.

Other patterns are even more subtle than small flurries, but nevertheless may be important. For example, a study of
the interactions between workloads and system schedulers found that the CTC SP2 log is unique in having many serial
jobs that are relatively very long [7]. This was attributed to the fact that this machine inherited the workload of an
IBM ES/9000 mainframe that was decommissioned at the same site. Importantly, this arcane attribute of the workload
actually turned out to influence performance results in the context of simulations of scheduling with backfilling [7].
Thus knowing about it may be a consideration when deciding whether or not to use this workload in an evaluation.
In a related vein, most parallel workloads exhibit a weak positive correlation between the parallelism and runtime of
jobs, but the LANL O2K log exhibits a weakly negative correlation. This can be important in situations where the
correlation between job size and runtime affects performance [21].

Another strange workload attribute is the user residence pattern in the SDSC Blue log3. In most logs, many new
users are observed in the first few weeks (these are the users who were actively using the system when the logging
commenced). Then new user arrivals stabilize at a lower rate. The opposite happens with the users’ last appearances
in the logs: initially they are randomly distributed, and towards the end of the log one finds a large concentration. But
the SDSC Blue log exhibits a different and strange pattern. This log is 32 months long, and includes data about 467
users. Surprisingly, the first user to leave does so only after 248 days (more than 8 months). By this time no less than
307 different users had been observed, and all of them continue to be active. Moreover, only 10 users leave within the
first 20 months. Of the remaining 457 users 106 leave during the last month, and the other 351 leave during the period
from the 21st month to the 31st month, at an average rate of 32 per month. While we currently do not know of any
consequences of this strange pattern, it nevertheless remains highly unusual.

3This observation is due to Netanel Zakay.

14

logging period
time

Figure 11:Example of sampling effects at the ends of the logging period.

3.6. End Effects

The way that most logs are collected is that the record describing each job is written when the job terminates. If
jobs are extremely short this has no appreciable effect. Butif jobs can be very long, as is the case for parallel jobs
executed on large supercomputers, this can have a marked effect on the observed workload at the log’s ends, and on
the calculated utilization. This assumes that the machine is in production use, and logging is done for an arbitrary
limited duration.

At the beginning of the log we often see a warmup effect. This is because the first timestamp in the log is typically
the arrival time of a job that had a very long response time andterminated soon after logging commenced. Jobs that
ran in parallel to this job but had shorter response times were not logged, because they terminated before logging
commenced. Hence the logged load is smaller than it really was in the initial portion of the log (Fig. 11).

The opposite effect happens near the end of the log, where only short jobs get logged. Jobs with longer response
times that start towards the end of the logging period may notterminate within the logging period, and hence are not
logged. Again, the effect is of logging only part of the load that was actually present.

To counteract these effects, care must be taken. When calculating a machine’s utilization, one usually calculates the
total resource usage (processors×time) of all jobs, and divides this by the available resources (totalProcessors×logDuration).
To reduce the end effects, it is best to interpret the log duration as the interval from the first termination to the last
termination, rather than as the interval from the first timestamp to the last timestamp or the interval from the first
arrival to the last arrival.

When performing a simulation using a log, it is important to discard some initial subset of the results in order to
allow for warmup. Also, stop measuring when the last arrivaloccurs, because after that time the simulated jobs will
encounter less and less competition, leading to unrealistically good results.

3.7. Missing Downtime Data

The activity on a parallel supercomputer may be interruptedoccasionally due to various reasons, such as scheduled
maintenance, software failures, and hardware failures. Obviously this affects the logged workload, and creates time
intervals where the utilization drops to zero. Jobs may be truncated and re-submitted later. As a side effect, this also
distorts overall utilization calculations.

Failure data is also directly important for performance evaluations. Failures may reduce observed performance as
jobs need to wait for resources to become available [18]. Their existence also suggests the system-level metric of how
many jobs were killed due to failures. Conversely, job data may help in analyzing failures and producing reliable data
regarding the severity and effect of failures [34].

Failure data exists for a few of the systems in the Parallel Workloads Archive. Examples include the NASA iPSC,
SDSC Paragon, LPC grid, the MetaCentrum grid [18], and ANL Intrepid [34]. However, this data is not integrated
into the standard workload format. Note that a separate repository concerning failure data exists atcfdr.usenix.org, and
in the future it may be beneficial to create some connections between this repository and our archive. Another related
repository is the Failure Trace Archive atfta.inria.fr, which has made inroads toward defining a standard format for
recording failure data.

4. Attempting to Improve Log Data Quality

An important goal of the archive is to capture experience with using the logs. This is done by providing specially
“cleaned” versions of the logs which reflect our experience.Such cleaned versions allow users of the data to benefit

15

from our experience without delving into all the details andcleaning decisions themselves, and also ensure that differ-
ent users use data that was cleaned in the same way. Needless to say, users are also free to inspect the original data for
themselves and make other decisions.

In particular, our conversion to the standard workload format makes some attempts to recover data that is missing
from the log. The cleaned versions then remove data that we feel should not be used because it is erroneous or not
representative of normal production use.

4.1. Removing Initial Low-Load Intervals

Some of the logs were started when the machines being logged were very new, before users started to use them for
real. As a result they have initial segments that do not reflect real production use. Such initial segments are typically
of no interest for system evaluations (albeit they might be of interest for studies of how the workload evolves [16]). In
the interest of providing data that can be used as-is, we shorten the logs and remove the initial low-load periods from
the cleaned versions.

An example is the LLNL Atlas log. As shown in the utilization plot in Fig. 7, this log has an initial segment
from 10 November 2006 to 7 December 2006 where the utilization is up to 50%, indicating that most probably the
machine was operating at half capacity. Then there is a shortinterval with no activity, and finally full production work
is started on 18 December 2006. In the cleaned version the logis shortened and everything before 18 December 2006
is removed.

4.2. Reconstructing Missing Data

Among the most important attributes of parallel jobs are their arrival time and running time. Regrettably, in some
cases this information or related information (e.g. the start time or end time) are missing. Nevertheless, sometimes
missing data can be reconstructed at least partially.

Our conversion scripts accept the following partly redundant fields that all relate to job timing:

• Arrival time (arr)

• Start time (start)

• End time (end)

• Running time (wallclock,run)

• CPU time (average per processor,cpu)

If the data is available and consistent, we should havearr ≤ start ≤ end, run = end − start, andcpu ≤ run.
The output of the conversion needs the following three non-redundant fields:

• Arrival time (ARR)

• Wait time (WAIT)

• Running time (RUN)

The way these are set based on the available input data is given in Table 5. This reflects various heuristics. For
example, ifstart is missing, we assume it to bearr. If run andcpu are also not available, we can then estimate the
runtime asend− arr. However, this should be qualified by job status. If the job was canceled before it was started, it
is more appropriate to assign this interval to the wait time,and leave the runtime undefined.

While such heuristics may recover some data and enhance the usability of the log, they may also cause problems.
For example, in the SDSC SP2 log, a straightforward analysisrevealed that 4291 jobs got more runtime than they
requested, and in 463 cases the extra runtime was larger than1 minute. However, 5831 jobs had undefined start times,
so their runtime was not computed. When the missing start times were replaced by the submit times, the number of
jobs that got more runtime than they requested jumped up to 6154, and in 2284 of them the difference was larger than
1 minute. As we saw previously, there is no way to know what thecorrect data was. We need to make a subjective
decision based on the data that is available.

16

Table 5:Calculation of job timing data based on available input data.

arr start end action
OK * * ARR = arr

OK * WAIT = start − arr
OK (run)? RUN = run : RUN = end − start
n/a (run)? RUN = run :

(cpu)? RUN = cpu
n/a * (run)? RUN = run :

(cpu)? RUN = cpu
OK (run)? WAIT = (end − run) − arr :

(cpu)? WAIT = (end − cpu) − arr :
(succ)? RUN = end − arr, WAIT = 0 :
WAIT = end − arr

n/a OK * ARR = start
OK (run)? RUN = run : RUN = end − start
n/a (run)? RUN = run :

(cpu)? RUN = cpu
n/a * (run)? RUN = run :

(cpu)? RUN = cpu
OK (run)? ARR = end − run :

(cpu)? ARR = end − cpu : ARR = end
The notation “(X)? S1 : S2” means that if inputX is available or true
then action S1 is taken, otherwise action S2 is taken. Note that these
may be stringed to form “else if” sequences.succ means the job has
a success status. Note that in some combinations of unavailable inputs
some of the desired outputs are left undefined.

4.3. Data Cleaning by Removing Flurries

The anomalous behaviors described in Section 3.5 degrade data quality because they are anomalous and do not
represent normal usage. Using logs that contain such anomalies as input to evaluations risks results that are tainted
by the anomalies. For example, if a log contains voluminous non-representative activity by a single user, and this is
used to evaluate schedulers and suggest operational parameters, we risk making the selection so as to optimize the
performance of the non-representative user that was activeon a single system some years ago.

Of course, removing the abnormal behavior also entails risk. First, maybe we are wrong and the data is not as bad
as we think. Second, by removing part of the data we are left with a log that does not give the full picture. In particular,
the behavior of other users may have been affected by the loadplaced on the system by the abnormal user.

Our policy in the Parallel Workloads Archive is to clean the most prominent dominant users and flurries [11, 30],
but at the same time also provide the original log as is. By using our cleaned logs, analysts can tap into our experience
and avoid the need to make cleaning decisions for themselves. On the other hand, if they do indeed want to invest the
time in studying anomalous data and deciding what to do aboutit, this is possible.

About half the logs in the archive have cleaned versions. In further support of cleaning, we note that in most cases
the impact on the log is minimal. For example, in the SDSC SP2 log, removing the flurry of activity by user 374
reduced the overall utilization only form 83.7% to 83.5%. The reason is that all the jobs by this user were both small
(using only a single processor) and short (typically lasting for less than a minute, but with some lasting up to an hour,
as indicated in Fig. 12). The most extreme case was the HPC2N log, where user 2 was responsible for a full 57.8% of
the jobs in the log. However, removing them only reduced the load from 70.2% to 60.2%. Again, these jobs tended
to be small (up to 8 processors) or short (up to a minute), albeit in this case they were larger (e.g. 20 processors) or
longer (e.g. an hour).

17

SDSC SP2

job size
1 4 16 64

jo
b

ru
nt

im
e

1s

10s

1m

10m

1h

10h

4d

HPC2N

job size
1 4 16 64

jo
b

ru
nt

im
e

1s

10s

1m

10m

1h

10h

4d

Figure 12:Scatter plots showing size/runtime data for a whole log, andhighlighting jobs of a single highly active user.

4.4. Enforcing the Capacity Constraint

The errors mentioned in Section 3.3 whereby the utilizationexceeds 100% may be reduced by two means. The
first is “shaking” the input, namely making small modifications to job start times such that the jobs will fit in [31].
Specifically, we used a linear solver to see whether all jobs could be accommodated if we increase some of the wait
times by different amounts. However, this invariably led toeither of two outcomes: either a proof that no solution
could be found within the specified limits (e.g. only change wait times by up to 1 hour), or failure of the linear solver
to terminate within a few hours.

The second option is to simply delete the offending jobs. In order to find which jobs to delete, we first divide the
log into cliques of jobs that overlap in time [3]. For those cliques where a utilization exception occurs, we solve a
linear program that describes the problem (which jobs were not deleted and the capacity constraint). The optimization
criterion is to minimize the number of jobs that are removed,or alternatively the total node-seconds that are removed.
This enables a tradeoff between removing a few large jobs or many small jobs. We settle the tradeoff by choosing the
approach that leads to the minimal maximal reduction. For example, if removing few large jobs leads to a reduction of
LJ percent of the jobs andLU percent of the utilization, while removing many small jobs leads to a reduction ofSJ
percent of the jobs andSU percent of the utilization, we will choose the first option ifmax(LJ, LU) < max(SJ, SU),
and the second otherwise.

Scanning the logs, we find that in some cases very many jobs areinvolved, and trying to eliminate all the utilization
errors would mean removing lots of jobs throughout the log. We therefore decided to leave such logs as they are. But
in about half of the logs the utilization errors could be cleaned by removing only a small fraction of the jobs. In these
cases using the utilization criterion typically led to smaller maximal impact. In most cases up to 1 or 2 percent of the
jobs and utilization needed to be removed, and in one case nearly 5 percent.

5. Conclusions

Even in the age of information overload, good data is a precious and scarce resource. This is especially true in
Computer Science, for two reasons. The first is that this fielddoes not have a tradition of experimental research based
on empirical observations. The second is the rapid progressin computing technology, which creates the risk that data
will be outdated and irrelevant not long after it is collected. Nevertheless, we contend that using real data is still
generally preferable over using unbased assumptions. Collecting data and subjecting it to analysis and sanity checks
is a crucial part of scientific progress.

Aging is but one aspect of a more general problem, namely the problem of data quality. Thus data should be
used intelligently, and experience regarding the cleaningof data and its validity constraints should be recorded and
maintained together with the data itself [26]. In the Parallel Workloads Archive, some of the logs have been publicly
available for over a decade. Nevertheless, we still occasionally find new and previously unknown artifacts or deficien-
cies in them. It is unreasonable to expect each user of the data to be able to analyze this independently and achieve
comprehensive results. Thus sharing experience is no less important than sharing the data in the first place.

It is interesting to compare our work with work done on data quality in other domains. Knight and Burn have
reviewed the commonly cited dimensions of data quality, based on the pioneering work of Wang and Strong and others

18

Table 6:Applicability of data quality dimensions to the Parallel Workloads archive.

1 accuracy some problems occur as described in this paper
2 consistency some internal (among fields in the same log) andexternal (among similar fields in

different logs) inconsistencies occur
3 security free access is a goal; privacy is maintained by encoding users, groups, and applications
4 timeliness some logs are dated, but enable research about workload evolution
5 completeness some desirable data is missing, e.g. job dependencies, memory and I/O requirements,

other scheduling constraints
6 conciseness log files are typically small enough to be easily handled
7 reliability some problems occur as described in this paper
8 accessibility freely accessible via the world-wide web
9 availability freely accessible via the world-wide web

10 objectivity logs come from different locations and machine types with no biased selection
11 relevancy extremely relevant as witnessed by extensive use
12 usability simple format; ASCII files
13 understandability simple format; documentation of format and background on each log are provided
14 amount of data seems to be adequate for common usage scenarios
15 believability data comes from large scale production systems; non-representative behavior is

cleaned
16 navigability table listing logs and their main attributes is provided
17 reputation data comes from major installations
18 usefulness witnessed by extensive use
19 efficiency A year’s activity can typically be simulated inseconds
20 value-added data provides needed grounding in reality

[2, 28, 33]. Table 6 shows how these dimensions apply to the Parallel Workloads Archive. It turns out that the data
itself inherently satisfies some of the dimensions, for example relevance, believability, and value-added. Furthermore,
the archive naturally addresses many additional dimensions, for example by making the data available and accessible.
The Standard Workload Format that is used also helps, for example by providing privacy and understandability. But
other dimensions are indeed problematic. Specifically, thebulk of this paper was devoted to the description of various
accuracy and inconsistency problems. Completeness is another potential problem.

In many cases the decisions regarding how to handle problematic data are subjective in nature. This is of course an
undesirable situation. However, it seems to be unavoidable, because the information required in order to make more
informed decisions is unavailable. The alternative of leaving the data as is is no better, because the question of how to
handle the data arose due to problems in the data itself. Therefore we contend that the best solution is to make the best
subjective decision that one can, and document this decision. Doing so in the Parallel Workloads Archive leads to two
desirable outcomes. First, users of the data will all be using the same improved version, rather than having multiple
competing and inconsistent versions. Second, this can be used as the basis for additional research on methods and
implications of handling problematic data.

A further improvement in the usability of workload data may be gained by combining filtering with workload
modeling. Specifically, in future work we are considering the concept of workload re-sampling at the user level. This
means that the workload log is partitioned into independentjob streams by the individual users. These job streams
are then combined in randomized ways to generate new workloads for use in performance evaluation. Among other
benefits, this approach allows for the removal of users who exhibit non-representative behavior such as the workload
flurries of Section 3.5. The reconstructed workloads will also not suffer from underlying configuration changes such
as those noted in Section 3.4.

Additional future work concerns data cleaning. One important outstanding issue is how to handle situations where
the utilization exceeds 100%, as demonstrated in Section 3.3. As noted in Section 4.4, in about half of the logs we did
not find a simple fix to this problem. Another interesting question is to assess the effect of the different problems we
found in workload logs. This would enable an identification of the most important problems, which are the ones that

19

cause the biggest effect and therefore justify increased efforts to understand their sources and how to fix them.

Acknowledgments

Many thanks are due to all those who spent their time collecting the data and preparing it for dissemination. In
particular, we thank the following for the workload data they graciously provided:

• Bill Nitzberg for the NASA iPSC log

• Curt Canada for the LANL CM5 log

• Reagan Moore and Allen Downey for the SDSC Paragon logs

• Dan Dwyer and Steve Hotovy for the CTC SP2 log

• Lars Malinowsky for the KTH SP2 log

• Victor Hazlewood for the SDSC SP2 and SDSC Datastar logs

• Fabrizio Petrini for the LANL Origin 2000 log

• David Jackson for the OSC cluster log

• Travis Earheart and Nancy Wilkins-Diehr for the SDSC Blue Horizon log

• Jon Stearley for the Sandia Ross log

• Ake Sandgren and Michael Jack for the HPC2N log

• John Morton and Clayton Chrusch for the SHARCNET log

• Moe Jette for the uBGL, Atlas, and Thunder logs from LLNL

• Susan Coghlan, Narayan Desai, and Wei Tang for the ANL Intrepid log

• Dalibor Klusáček and Czech National Grid InfrastructureMetaCentrum for the MetaCentrum log

• Ciaron Linstead for the PIK IPLEX log

• Motoyoshi Kurokawa for the RICC log

Likewise, many thanks are due to the managers who approved the release of the data. Thanks are also due to students
who have helped in converting file formats and maintaining the archive.

References

[1] A. K. Agrawala, J. M. Mohr, and R. M. Bryant, “An approach to the workload characterization problem”.
Computer9(6), pp. 18–32, Jun 1976.

[2] S. ann Knight and J. Burn, “Developing a framework for assessing information quality on the world wide web”.
Informing Science J.8, pp. 159–172, 2005.

[3] M. Aronsson, M. Bohlin, and P. Kreuger,Mixed integer-linear formulations of cumulative scheduling con-
straints - A comparative study. SICS Report 2399, Swedish Institute of Computer Science, Oct 2007. URL
http://soda.swedish-ict.se/2399/.

[4] S. J. Chapin, W. Cirne, D. G. Feitelson, J. P. Jones, S. T. Leutenegger, U. Schwiegelshohn, W. Smith, and
D. Talby, “Benchmarks and standards for the evaluation of parallel jobschedulers”. In Job Scheduling Strategies
for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 67–90, Springer-Verlag, 1999. Lect. Notes
Comput. Sci. vol. 1659.

[5] D. G. Feitelson, “Packing schemes for gang scheduling”. In Job Scheduling Strategies for Parallel Processing,
D. G. Feitelson and L. Rudolph (eds.), pp. 89–110, Springer-Verlag, 1996. Lect. Notes Comput. Sci. vol. 1162.

[6] D. G. Feitelson, “Memory usage in the LANL CM-5 workload”. In Job Scheduling Strategies for Parallel Pro-
cessing, D. G. Feitelson and L. Rudolph (eds.), pp. 78–94, Springer Verlag, 1997. Lect. Notes Comput. Sci. vol.
1291.

20

[7] D. G. Feitelson, “Experimental analysis of the root causes of performance evaluation results: A backfilling case
study”. IEEE Trans. Parallel & Distributed Syst.16(2), pp. 175–182, Feb 2005.

[8] D. G. Feitelson and M. A. Jette, “Improved utilization and responsiveness with gang scheduling”. In Job Schedul-
ing Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 238–261, Springer Verlag, 1997.
Lect. Notes Comput. Sci. vol. 1291.

[9] D. G. Feitelson and A. W. Mu’alem, “On the definition of “on-line” in job scheduling problems”. SIGACT News
36(1), pp. 122–131, Mar 2005.

[10] D. G. Feitelson and B. Nitzberg, “Job characteristics of a production parallel scientific workload on the NASA
Ames iPSC/860”. In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.),
pp. 337–360, Springer-Verlag, 1995. Lect. Notes Comput. Sci. vol. 949.

[11] D. G. Feitelson and D. Tsafrir, “Workload sanitation for performance evaluation”. In IEEE Intl. Symp. Perfor-
mance Analysis Syst. & Software, pp. 221–230, Mar 2006.

[12] D. Ferrari, “Workload characterization and selection in computer performance measurement”. Computer5(4),
pp. 18–24, Jul/Aug 1972.

[13] C. Firth, “Data quality in practice: Experience from the frontline”. In Intl. Conf. Information Quality, Oct 1996.
[14] C. W. Fisher and B. R. Kingma, “Criticality of data quality as exemplified in two disasters”. Information &

Management39(2), pp. 109–116, Dec 2001.
[15] C. Harger et al., “The genome sequence database (GSDB): Improving data quality and data access”. Nucleic

Acids Research26(1), pp. 21–26, Jan 1998.
[16] S. Hotovy, “Workload evolution on the Cornell Theory Center IBM SP2”. In Job Scheduling Strategies for Par-

allel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 27–40, Springer-Verlag, 1996. Lect. Notes Comput.
Sci. vol. 1162.

[17] A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters, and D. H. J. Epema, “The grid workloads archive”.
Future Generation Comput. Syst.24(7), pp. 672–686, May 2008.

[18] D. Klusáček and H. Rudová, “The importance of complete data sets for job scheduling simulations”. In Job
Scheduling Strategies for Parallel Processing, E. Frachtenberg and U. Schwiegelshohn (eds.), pp. 132–153,
Springer Verlag, 2010. Lect. Notes Comput. Sci. vol. 6253.

[19] W. Leinberger, G. Karypis, and V. Kumar, “Multi-capacity bin packing algorithms with applications to job
scheduling under multiple constraints”. In Intl. Conf. Parallel Processing, pp. 404–412, Sep 1999.

[20] D. Lichtnow et al., “Using metadata and web metrics to create a ranking of genomicdatabases”. In IADIS Intl.
Conf. WWW/Internet, pp. 253–260, Nov 2011.

[21] V. Lo, J. Mache, and K. Windisch, “A comparative study of real workload traces and synthetic workload models
for parallel job scheduling”. In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph
(eds.), pp. 25–46, Springer Verlag, 1998. Lect. Notes Comput. Sci. vol. 1459.

[22] A. W. Mu’alem and D. G. Feitelson, “Utilization, predictability, workloads, and user runtimeestimates in
scheduling the IBM SP2 with backfilling”. IEEE Trans. Parallel & Distributed Syst.12(6), pp. 529–543, Jun
2001.

[23] H. Müller, F. Naumann, and J.-C. Freytag, “Data quality in genome databases”. In 8th Intl. Conf. Information
Quality, pp. 269–284, Nov 2003.

[24] T. C. Redman, “The impact of poor data quality on the typical enterprise”. Comm. ACM41(2), pp. 79–82, Feb
1998.

[25] E. Shmueli and D. G. Feitelson, “Backfilling with lookahead to optimize the packing of parallel jobs”. J. Parallel
& Distributed Comput.65(9), pp. 1090–1107, Sep 2005.

[26] Y. L. Simmhan, B. Plale, and D. Gannon, “A survey of data provenance in e-science”. SIGMOD Record34(3),
pp. 31–36, Sep 2005.

[27] A. J. Smith, “Workloads (creation and use)”. Comm. ACM50(11), pp. 45–50, Nov 2007.
[28] D. M. Strong, Y. W. Lee, and R. Y. Wang, “Data quality in context”. Comm. ACM40(5), pp. 103–110, May

1997.
[29] Thinking Machines Corp.,Connection Machine CM-5 Technical Summary. Nov 1992.

21

[30] D. Tsafrir and D. G. Feitelson, “Instability in parallel job scheduling simulation: The role of workload flurries”.
In 20thIntl. Parallel & Distributed Processing Symp., Apr 2006.

[31] D. Tsafrir, K. Ouaknine, and D. G. Feitelson, “Reducing performance evaluation sensitivity and variability by
input shaking”. In 15th Modeling, Anal. & Simulation of Comput. & Telecomm. Syst., pp. 231–237, Oct 2007.

[32] M. Wan, R. Moore, G. Kremenek, and K. Steube, “A batch scheduler for the Intel Paragon with a non-contiguous
node allocation algorithm”. In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph
(eds.), pp. 48–64, Springer-Verlag, 1996. Lect. Notes Comput. Sci. vol. 1162.

[33] R. Y. Wang and D. M. Strong, “Beyond accuracy: What data quality means to data consumers”. J. Management
Inf. syst.12(4), pp. 5–33, Spring 1996.

[34] Z. Zheng, L. Yu, W. Tang, Z. Lan, R. Gupta, N. Desai, S. Coghlan, and D. Buettner, “Co-analysis of RAS log
and job log on Blue Gene/P”. In Intl. Parallel & Distributed Processing Symp., May 2011.

[35] B. B. Zhou, C. W. Johnson, D. Walsh, and R. P. Brent, “Job packing and re-packing schemes for enhancing
the performance of gang scheduling”. In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and
L. Rudolph (eds.), pp. 129–143, Springer Verlag, 1999. Lect. Notes Comput. Sci. vol. 1659.

22

