Experience with the Parallel Workloads Archive

Dror G. Feitelsoh* Dan Tsafrif David Krakov

1Dept. Computer Science, The Hebrew University, 91904 dtsus Israel
2Computer Science Dept., Technion — Israel Institute of Aeldyy, 32000 Haifa, Israel

Abstract

Workload traces from real computer systems are invalualvlegsearch purposes but regularly suffer from quality
issues that might distort the results. As uncovering susheis can be difficult, researchers would benefit if, in
addition to the data, the accumulated experience conagitsiquality and possible corrections is also made availabl
We attempt to provide this information for the Parallel Wodds Archive, a repository of job-level usage data from
large-scale parallel supercomputers, clusters, and,gvitish has been used extensively in research on job scimeduli
strategies for parallel systems. Data quality problem®entered include missing data, inconsistent data, ertmeo
data, system configuration changes during the logging geaiod unrepresentative user behavior. Some of these may
be countered by filtering out the problematic data items.theocases, being cognizant of the problems may affect
the decision of which datasets to use.

Keywords: Workload, Data quality, Parallel job scheduling

1. Introduction

The study and design of computer systems requires good eg#ading the workload to which these systems
are subjected, because the workload has a decisive effébearbserved performance [1, 12, 27]. As an example,
consider the question of scheduling parallel jobs on a fsmgde cluster or supercomputer. As each job may require
a different number of processors, this is akin to bin packind 9, 25, 35]. Hence the best scheduling algorithm may
depend on the distribution of job sizes, or on the possibiteetation between job size and runtime [21].

But how can we know what the distribution is going to be? Thenemn approach is to collect data logs from
existing systems and to assume that future workloads wtlitndar. The Parallel Workloads Archive, whose data is
the focus of this paper, is a repository of such logs; it iseasible at URLwww.cs.huji.ac.il/labs/parallel/workload!.

The archived logs (see Table 1) contain accounting datatdbeyobs that executed on parallel supercomputers and
clusters, which is necessary in order to evaluate schesltdersuch systems. These logs have been used in many
research papers since the archive was started in 1999 eFiglrows the accumulated number of hits that the parallel
workload archive gets when searching for it in Google Sah@applemented by the number of hits associated with
the Grid Workloads Archive [17], which serves a similar pagp). The high citation count bears witness to the need
for such data in the research community, and it highlighesttportance of using the data judiciously.

At first blush it seems that accounting logs should providialoée and consistent data. After all, this is just a
mechanistic and straightforward recording of events thaplened on a computer system (as opposed to, say, genome
data, which is obtained via complex experimental procesitirat lead to intrinsic errors [23]). But upon inspection,
we find that the available logs have myriad deficiencies. Bhi®t a specific problem with the data that is available to
us. All such logs have data quality problems, and in fact ¢igs kvailable in the Parallel Workloads archive actually
represent relatively good data. We have additional logswieae never made public in the archive because an initial
investigation found the data contained in them to be so tagki

The issue of data quality has a long history (the Internafi@onference on Information Quality has been held
annually since 1996). The most general definition of datdityus “fitness for use”, implying that it is not an objective

* Contact information: email feit@cs.huji.ac.il, phone/fe97225494555.

Preprint submitted to Elsevier October 7, 2012

1000

both —— 3;2
900 -|PWA
IGWA o ¥eeer U/y
800
%) 7
S 700
o
g 600 55
() (o
© /Z
g 500 a3/
©
S 400 %
E 313/
o v
§ 300 . ~
200 157 -
100 , 82 lﬁ/“ o K
41 AT e B e OO
3:'I_“frm lM.,(ﬁ«ffy -
0 1 I i i i b ALY . 3 i i
o < N 2 N 2 2 2 2 2 2 2 2
year: 200000\7 %5 <%;3 <%y ~%s %05 <% ~%g ~%g ~%2¢ <%; %,

Figure 1:Accumulated yearly number of hits received when searctonghe Parallel Workloads Archive (PWA) and the Grid Workdearchive
(GWA) in Google Scholar as of September 6, 2012. GWA conttlinse logs from PWA that pertain to Grid systems, as well aswvedther Grid
logs. The query used was “Parallel Workload(s) Archive'ttbgingular and plural) and the archive’s URL, and likewisethe grid archive. Papers
that cite both archives are only counted once in “both”.

Table 1:Main logs in the Parallel Workloads Archive. (Some additiblogs with only serial jobs or low utilizations are not és)

log period months PEs users jobs util. file cleaned
NASA iPSC 10/93-12/93 3 128 69 42,264 0.47 NASA-iPSC-19%3v8 yes
LANL CM5 10/94-09/96 24 1024 213 201,387 0.75 LANL-CM5-1994wf yes
SDSC Par95 12/94-12/95 12 400 98 76,872 0.72 SDSC-Par3.895- yes
SDSC Par96 12/95-12/96 12 400 60 38,719 0.76 SDSC-Par3.896- yes
CTC SP2 06/96-05/97 11 338 679 79,302 0.85 CTC-SP2-1994-3.s yes
KTH SP2 09/96-08/97 11 100 214 28,489 0.70 KTH-SP2-199642.s

SDSC SP2 04/98-04/00 24 128 437 73,496 0.84 SDSC-SP2-1968-4 yes
LANL O2K 11/99-04/00 5 2048 337 122,233 0.70 LANL-O2K-192%wf

OSC cluster 01/00-11/01 22 178 254 80,714 0.14 OSC-Clux-20swf yes
SDSC Blue 04/00-01/03 32 1152 468 250,440 0.77 SDSC-BLUB-20swf yes
Sandia Ross 11/01-01/05 37 1524 204 85,355 0.50 SandiaZR04sl.swf

HPC2N 07/02-01/06 42 240 258 527,371 0.70 HPC2N-2002-2.swf yes
SDSC Datastar 03/04-04/05 13 1664 460 96,089 0.63 SDSCED&-2swf

SHARCNET 12/05-01/07 13 6828 412 1,195,242 n/a SHARCNBEIBZD swf

LLNL uBGL 11/06-06/07 7 2048 62 112,611 0.56 LLNL-uBGL-202&wf

LLNL Atlas 11/06-06/07 8 9216 132 60,332 0.64 LLNL-Atlase®32.swf yes
LLNL Thunder 01/07-06/07 5 4008 283 128,662 0.88 LLNL-Thenrd007-1.swf yes
MetaCentrum 12/08-06/09 7 806 147 103,656 0.36 METACENTRRO@A9-2.swf

ANL Intrepid 01/09-09/09 8 163,840 236 68,936 0.60 ANL-¢pid-2009-1.swf

PIK IPLEX 04/09-07/12 40 2560 225 742,965 0.38 PIK-IPLEXOQAL.swf

RICC 05/10-09/10 5 8192 176 447,794 0.87 RICC-2010-2.swf

“PEs” was nodes or CPUs in old logs, today it typically repres cores.

“util” is the system utilization, i.e. the fraction of theseurces that were allocated to jobs. It is not computed fokBEINET because

this is a grid system, and the constituent clusters becaailable at different times.
File names include a version number, as most logs were neeted to swf when errors were found or new considerationse we

introduced.

“cleaned” specifies whether a cleaned version exists, wiretglematic data has been filtered out.

but rather a context-sensitive attribute [33]. Indeed lkn@r data quality has identified no less than 20 dimensions of
data quality, the top five of which are accuracy, consistesegurity, timeliness, and completeness [2]. In the cdntex
of computer systems, practically all considerations haentabout the quality of data handled by the system, e.g. the
data contained in enterprise databases. Low quality datdé&en blamed for bad business decisions, lost revenue,
and even implicated in catastrophes leading to the loss wfanuife [13, 14, 24]. The quality of data in scientific
repositories, such as biological genome data, has alsodtedied, both to assess the quality of existing reposgorie
and to suggest ways to improve data quality [15, 20, 23].

At the same time, there has been little if any work on the duali data describing computer systems, such as
workload data. In this paper we report on our experience thigldata available in the Parallel Workloads Archive. We
start the discussion by considering log formats in Sectiofi#2 main problem here is representational aspects of data
quality, where the same field in different logs may have shgifferent semantics. The bulk of the paper is contained
in Section 3, which lists and classifies known problems indifferent logs. These are mainly intrinsic correctness
problems, such as inconsistency (redundant data fieldédshoticontradict each other), errors (data should not imply
that the number of processors being used at a certain iristargre than the number available in the machine), and
missing data in certain records and fields. Due to the datétyjpeoblems we have found, using log data as-is (even
as input to a statistical analysis) might lead to unreliabkults. Section 4 then outlines actions that we have taken
to improve data quality and make the logs more useful. Thelasions are presented in Section 5, and include a
perspective of our work in relation to the work on data qyalitother domains.

The main contribution of this work is to record the considiers behind the procedures that were used to handle
the data made available in the Parallel Workloads Archiveest represent over a decade of research on data quality
issues in these logs, including the identification of mangxgected problems. They are also important in order to
provide context for the many other papers that use this dathyalidate the data on which they are based. It should
be noted that the procedures we use are non-trivial and Havégent. By publicizing them, we hope to also initiate
a debate about data quality and data cleaning in experifnemrgputer systems research, a subject which has not
received sufficient attention so far.

2. Log Formats

A pre-requisite for analyzing logs is being able to parserthén some classes of systems, such as web servers,
standard log formats have been defined. Regrettably, themsuch standard for parallel job schedulers, and each one
has defined its own format with its own idiosyncrasies. Teeasrk with the logs, we defined a Standard Workload
Format for use in the archive [4]. This format was proposed by Dawth¥ and refined through discussions with
James Patton Jones and others.

The considerations applied in designing the standard foimabuded the following.

e It should be easy to parse. The chosen format is an ASCII file avie line per job, space-separated fields, and
exclusive use of numerical values (that is, no strings aediapdate or time formats). Fields for which data is
unavailable are given asl.

¢ It should be well defined. We sacrificed extensibility in theerest of standardization, and require that data be
expressed in given units. Regrettably, this also meanstmétimes data that is actually available in a log does
not have a corresponding field in the format, and is therdfistein the conversion process. For example, this
happens for the data about suspending and resuming jolis thaiilable in the SHARCNET log. Itis therefore
important to also maintain the original log file.

e It should be general. In particular, the same format is bléthoth for logs from production machines and for
statistical models. For example, this consideration fatbe use of the time tripletsubmit, wait, run) over
the triplet(submit, start, eng because wait and run times better separate the effect atctieduler and the
application. When used for the output of a model, the waietoan be left undefined.

IFiles in thestandardworkloadformat were naturally denoted by the suffix .swf. Unfortuhatiis suffix was later also adopted ferockwave
flash files.

e It should be safe. To preserve privacy, users and applitatice replaced by numerical codes that are allocated
in order of first appearance.

Of course, striving for consistency does not mean that itadaays be achieved. An example in point is the very
basic data about runtime, typically expressed in logs byctimebination of start time and end time. The problem is
that the precise semantics of these fields are usuallyfilkele. Thus start time may refer to the time that the scheduler
decided to start the job, or the time when the first processsteated, or the time when the last process was started, or
perhaps the time when the logging facility was notified thatjob was started. Likewise, end time may refer to the
time that the first process terminated, the time that theolastterminated, or the time when this was recorded.

For example, the KTH SP2 log includes a field called uwall mgvthe used wallclock time, which intuitively
seems to correspond to the runtime. However, uwall is definéa the interval from the last node allocation to the
first node deallocation. Note that this may be negative itpsses fail immediately, and there is no period of time
when they are all actually running in parallel. Thereforethie conversion to the standard format, we elected to use
the more commonly used start and end times (even thoughptfesiise semantics are unknown). Another problem in
the KTH SP2 log is that the system administrators sometiidesdfthe submit times in order to boost a job’s priority.
Such cases were identified by comparing the submit time fighltive submit time that was encoded in the job ID. A
similar problem occurs in the LANL O2K log format, which dogst contain an explicit field specifying the job end
time. The field specifying the time that the job-terminatament was logged was used instead.

Another notoriously problematic field is the job status. lany cases a successful completion status is recorded
only if the job terminated with a 0 exit code. While this hagb¢he convention on Unix systems since their inception,
there is no guarantee that applications indeed follow it.cdses where jobs do not have a “success” status, we
interpret “failed” as jobs that started to run but sufferezhi some problem or exception condition, and “canceled” as
jobs that were killed by the user. In the latter case, a jolddchave been canceled before it started to run, in which
case its runtime and allocated processors may be undefirmdeudr, there is no guarantee that logs indeed use the
terminology in the same way we interpretit. Thus it is dangerto filter jobs based on their recorded status.

The Standard Workload Format was established when the maiteens were the arrivals of jobs and their basic
resource requirements, namely processors and compute tireerendipitously included a field used to specify the
partition used to run the job, which has since been found tasleéul to represent data about grids including multiple
clusters (e.g. SHARCNET and MetaCentrum). However, it cafrandle more complex data requirements. For
example, it has been suggested that information aboutfgpd requirements and specific capabilities of different
clusters may lead to involved and limiting constraints, ebhinduce significant complexity on the scheduling, and
lead to greatly reduced performance [18]. This cannot beessed using the current version of the standard format.
Likewise, the standard format does not include facilities distinguishing between nodes, processors, and cores.
However, this is believed not to be very important, becalleeating a full node to a task rather than just a single core
is usually a disguise for allocating all the node’s memornhttask. Itis better to express this directly as an allocati
of memory, which is possible in the standard format.

3. Problemswith Log Data

Over the years, the logs available at the Parallel Workl@adhive have been found to contain various problems.
This is not unique to this repository — collected data in picatly all fields are known to have problems. It also does
not detract from the importance and usefulness of the dadaveker, it is definitely desirable to be cognizant of the
problems and deal with them when possible.

3.1. Incomplete Data

One problem that we sometimes encounter is that the datadsniplete. This means that some important infor-
mation is simply missing. As a result the usability of theiklde data is limited. In the following we provide some
examples.

The vast majority of parallel supercomputers and clustedsadite processors to jobs. This means that when a job
is scheduled, a certain partition of the machine is carvétboit. The job is then run on the processors in this partitio
until it terminates. Upon termination, the processors bezéree and can then be allocated to another job. But it is also
possible to use time slicing. The Connection Machine CM-5 are of the only commercial parallel supercomputers

Table 2: Occurrences of incomplete or inconsistent data in thereifielogs.

missing zero negative more than req. CPU
log jobs | submit start end proc run CPU mem wait run run proc mem| >run
NASA iPSC 42,264 n/a - n/a - - n/a n/al n/a - n/a n/a n/a n/a
LANL CM5 201,387 3 3 - - 37,199 19,517 - 1| 36,198 1,212 21,036 17
SDSC Par 115,591| 1,608 23 14 - - 6,181 nfal 27 15 - - n/a| 3,073
CTC SP2 79,302 - - - - 6 4 n/a - -] 1,380 - n/a 155
KTH SP2 28,490 — - - - - n/a n/a - - 64 219 n/a n/a
SDSC SP2 73,496 - 2 - - - 1,731 - - - 463 - - 3
LANL O2K 122,233 - - - - - 21,156 221 - - - - -| 1,886
OSC cluster 80,714 - 1 - - - 6,177 n/a 1 - - - n/a| 27,596
SDSC Blue 250,440 - 262 - 2 - 4,203 n/a| 28 -| 8,167 458 n/a 2
Sandia Ross 85,355 - - - 1 - 807 1,548 - -] 3,069 - -
HPC2N 527,371 - - 77 - — 73,483 5,646 12 3| 6,784 767 2,548 60,608
SDSC Datastar| 96,089 - 4 149 - - 8,976 nfal 12 87| 1,044 - n/a 149
SHARCNET 1,195,242 - 26 12,389 - - 78 16,231 - - - - —-| 1237
LLNL Atlas 60,332 n/a - - - - n/a n/a - - - 19 n/a n/a
LLNL Thunder 128,662 n/a 1208 1,208 - - n/a n/a - - - 155 n/a n/a
ANL Intrepid 68,936 - - - - - n/a n/a - —| 9,096 30,948 n/g n/a
MetaCentrum 103,656 — - - - - n/a 8 - - - - - n/a
RICC 447,794 - - - - - n/a n/a - -] 2,581 - n/a n/a

“~” means that there were no such inconsistencies. “n/a’nmmeat applicable, e.g. if the log does not contain such dah. &or runtime
and wait time, more than requested or negative is by a mafdimanute or more to allow for clock skew or notification dedayMissing
start time and O processors/CPU/memory are counted onjglisithat had a “success” status (but missing start time @#th=>0 is noted).

to support gang scheduling [29]. This meant that it couldextrswitch from one parallel job to another. And indeed
the LANL CM5 log includes an indication of whether jobs randedicated nodes or not. In those cases where jobs
did not run on dedicated nodes, the implication is that théydt run for the full duration from their start time to their
end time. However, there is no indication of precisely wiatfion of the time was actually used. As a result the real
runtimes are actually unknown. Naturally this makes tha gaactically unusable for simulations of job scheduling
and for analyzing utilization. However, it can still be ugedstudy the arrival process, user behavior, memory usage
[6], etc.

Another example comes from the SDSC Paragon logs. The degashgiven as two separate logs: one for 1995,
and the other for 1996. In the interest of preserving privasgr names were replaced by random numbers in the
original log. Regrettably, this user numbering was incstesit in 1995 and 1996, and the mapping from the 1995
numbers to the 1996 numbers is not available. Hence the lngsot be united into a single longer log, but each can
be used in isolation.

A third example is provided by the NASA iPSC log. This log slyndoes not include submit times at all —
only start times and run times. Similarly, the LLNL Atlas ambunder logs include only start and end times. In
the conversion to the standard format we therefore usetsters to also represent arrival times. Obviously, this data
cannot be used to study the arrival process, as the recaatétimes reflect the combined effect of the original alsva
and the wait time. Wait times distort arrival data becausg thay be influenced by priorities of the scheduling policy.
They may also reflect a smoothing out of load [9]. However,ltigs can still be used to obtain a lot of useful data,
and in fact the NASA iPSC log was the first log to be analyzedsiaidl[10].

Other fields that are often missing from logs are memory usagel time, and requested resources (in distinction
from the resources that were actually used). These are tardor studies that need this data, but are not needed for
the simplest scheduling studies that consider only pracessd runtime.

In addition to fields that are totally absent, it is not uncoomnfior data to be missing only for a subset of the
jobs. Table 2 shows that in most cases submit, start, andiraed ire missing only for a small fraction of the jobs
(except for those logs where submit times are just not adailat all). Fields like CPU time or memory used tend to
be missing much more often.

3.2. Inconsistent Data

Another type of problem is inconsistent data. This meansttieadata in the log contradicts itself, and does not
pass some simple sanity check.

Table 2 lists several circumstances that are easily idedtés inconsistent. For example, if a job ran successfully
then various resource-usage metrics must be positive eaat hon-negative: the wait time, the runtime, the number
of processors used, the amount of memory used, etc. Likethiseaaverage CPU time used per processor cannot be
larger than the wallclock running time of the whole job. Immeocases it also does not make sense for a job to receive
more resources than it had asked for, but such an inconsjsiemerely puzzling but not impossible.

It should be noted that timing inconsistencies do not nexégsndicate a real problem. Some cases of zero
runtime, for example, could be the result of a resolutiorbfegm, e.g. when runtime is measured in seconds and the
job’s runtime is smaller than half a second. This is unlikblywever, because the distribution of runtimes usuallysta
at several seconds, and sometimes at tens of seconds. rShottmes cannot be recorded simply due to the delay
associated with setting up all the parallel processes amiMiag notifications regarding their terminations. (Nthitat
in distinction from measured runtimeequesteduntime should not be 0, so this is considered an error anémot
inconsistency or a resolution problem.)

Negative times may result from clock skew or from notificatidelays between node daemons and a frontend
workstation. Therefore we report only differences of mdrant 1 minute in Table 2. This filtering may be very
meaningful. For example, in the SDSC-SP2 log 4291 jobs goemmtime than they requested, but in only 463 of
these the difference was larger than 1 minute. A negativémenoccurred 1 time and negative wait times occurred
183 times, and these were all smaller than 1 minute and trerebnsidered insignificant.

Inconsistent data is of course not limited to time fields.Ha SDSC Blue log, 253 jobs got less processors than
they requested. This may look very strange, as it is uncleardjob could run on less processors than it requires.
However, parallel jobs are often coded in a style that canamsegiven number of nodes, and receive the number
actually used in a certain run as a parameter.

ANL Intrepid

128K o
" =
]]
1
8K = =
17 1]
8 x| - = >1000
= m ooem = 101-1000
- rom 51-100
% 256 | m®m mrmnnn o m 11-50
5 3-10
= 1-2
0
1 -
T T T T T T
1 32 256 2K 8K 128K

requested procs

Figure 2: Allocation of processors on the ANL Intrepid machine. A#dtiog more than the number requested may result from fratatien
(rounding up to a possible partition size) or from the needllmcate all the memory in a node to a single process, ratfeer sharing it among
processes running on multiple cores.

The opposite may also occur, but often this is not a real prabl On many parallel machines processors are
allocated in predefined partitions, and there is a miniméitn size. In some cases this corresponds to the number
of processors (or cores) in a node. In other cases the mirpardtion may include many nodes. For example,
the ANL Intrepid machine consists of 40 racks, housing 40,§6ad-core nodes, and partition sizes are powers of
two. Moreover, in 8 racks the minimal partition size is 64 es8@256 cores), and in the rest the minimal size is 512
nodes (2048 cores). Jobs that require less are nevertladiiesated these sizes, and the extra processors are lost to
fragmentation. Similar rounding up is done on other machamwell. But in many logs we don’t know how many
are actually used and how many are lost.

In addition to partition size restrictions, over-allocatiof processors may be a by-product of allocating memory.
Using the Intrepid machine again as an example, each nodebmachine has 2 GB of memory, implying 512 MB
per core. If a job requires more than that, allocating theliregt memory will imply that cores will remain unused.
Evidence that this happens is shown in Fig. 2. This depietsdirelation between the requested number of processors
and the allocated number. The high values (dark shadingd@mfin diagonal imply that most jobs indeed get what
they requested. But note that high values also appear onoadeiagonal where allocations are four times higher
than requests. This most probably reflects requests whenmetiuired memory forces a full node to be allocated to
each process, even though it will use only one of the foulavis cores.

In the above examples examining the value of a single fieldediately showed that the data is problematic. Logs
may also include redundant data, that allows for sanity khégy comparing the values in several related fields. For
example, the HPC2N log uses the Maui scheduler, which reamgious data. In particular, the following fields are
included:

2 Nodes RequesteafdesReq)

3 Tasks RequesteddsksReq)

22 Tasks AllocatedtasksAlloc)

23 Required Tasks Per Nod&isksPer N ode)

32 Dedicated Processors per TagkdcPerT ask)

38 Allocated Host List fodesList)

In principle, it may happen that not all requested tasks easdly allocated, séasksAlloc # tasksReq. However,

in this log this only happens for 767 jobs, which are 0.14%insseffect we may take these fields as equal. Likewise,
we find thatnodesReq = |nodesList| for all but one job. This allows for the following checks:

Table 3: Example of possible actions when facing inconsistent tingata.

action submit wait run

none unchanged -55:34m 59:05m
start=submit unchanged 0 03:35m
submit=start changed 0 59:05m

start=submit)
end+:submit-sta}t unchanged 0 59:05m

RICC RICC (w/o cancelled)
3.5 35
3 34
g 2.5 g 25+
g 2 '% 2
£ 151 £ 15
=} 14 S5 14
0.5 o.s—r“”' ” ‘l r‘ ‘V‘ ‘
0 T T T T 1 0 T T T T 1
M J J A S (0] M J J A S (0]
2010 2010

Figure 3:Strange effect of canceled jobs.

e Calculate number of nodes based on task requiremertiss@sReq/tasksPerNode. This turns out not to
match the actual number of nodes in 6,428 cases. This is wioaseit seems becaus@desReq is actually
specified in only 89,903 cases (in 437,468 jalbdes Req is 0, so there is nothing to compare with). Also, in
30,357 jobgasksPerNode is given as 0, so the check is undefined.

e Compare the number of processors in the allocated nodés feae has 2 processors) with the number calcu-
lated based on task requirements, whictuisks Req * procsPerT ask (or tasksReq * procsPerTask + 1in
case it is odd). These do not match in 6,250 cases.

When inconsistencies are discovered, one has to decidéwhilte competing data to use. Oftentimesitis unclear
what to do. As a simple example, consider the following rddoom the SDSC Paragon 1995 log, with had a submit
time of 05/27/95 13:59:38, a start time of 05/27/95 13:0420®1 an end time of 05/27/95 14:03:13. The problem here
is that the start time is before the submit time, so when ¢atitig the wait and run times the wait is negative. The
options of how to handle this are listed in Table 3. Settirggtart time to the submit time without changing anything
else reduces the runtime from nearly an hou:%%aninutes, which is a big change. We can also do the opposite, an
move the submit time back to the start time. An alternativeebaon using thésubmit, wait, run triplet is to just
set the wait time to 0. This effectively means setting thet stae to the submit time, and changing the end time to
maintain the original runtime. Any of these options may oymat reflect what had actually happened in reality.

Another example of such a dilemma is provided by the RICC lnghis log the maximal momentary utilization
is erratic, and often surpasses 100%, which should not mafppere on this in the next section). But if we filter out
jobs that were marked as canceled, the utilization restdtsraich more reasonable (Fig. 3). This is still troubling,
however, because the canceled jobs are in fact recordeding hesed time on the processors.

3.3. Erroneous Data

A third type of problem is when the recorded data is downnigtang. For example, the LLNL Atlas and Thunder
logs contain jobs with a recorded time limit of 429496729%ls&ls. This is most probably the result of mishandling
a signed value of -2 by placing it in an unsigned variable.hie $DSC Blue log, timestamps are given in human-
readable form in the format 2000-12-23-19:52:38. Howewbgn these are tabulated they lead to a daily cycle that
peaks from the evening hours to midnight, and achieves anmaimi from 10 to 11 AM. This is most probably due
to mishandling of UTC timestamps and using the gmtime famctather than the localtime function that corrects for
time zones.

SDSC Par95 SDSC Par96 CTC SP2

utilization
utilization
utilization

0G0l .Mh \i mHIMH 82%

M il Llhllnll l' lulﬁ ML L\ I

1‘\Imm| I‘ T

DJFMAMJJASONDI DJFMAMJJASONDI JJASONDJFMAMI
199095 1996 199896 1997 1996 1997

SDSC Blue HPC2N SDSC Datastar

c j j
= =l ! S
T © ©
T
S i i S J “ | “ M| “l W S
|
J i HH i lIHH b L ldnﬁ Ll ||1 |l | “ W
AJAODFAJAODFAJAODF JOJAJOJAJOJIAJOJ
2000 2001 2002 2003 2002 2003 2004 2005 2006
SHARCNET Whale LLNL Thunder
1.4 4.5
1.2 47
3.5 -
c 17 c 3 c
S 054 S S
© T 257 ©
N o6 4 = 27 £
5 04 | 5 15 A 5
14
0.2 05
0 T T T T T T 1 O T T T T T 1
J J A S O N D J F J F M A M J J
2006 2007 2007

Figure 4:Examples of utilization exceptions. For each day the ramgeden the minimal and maximal utilizations observed ioieal.

In some cases wrong data is the result of intentional mistigyp For example, in the KTH SP2 system the system
administrators report that sometimes they have pushedtfwbagh the FIFO queue by giving them artificially low
‘enter-fifo’ times. Thus the arrival time and the wait timerasorded in the log are bogus.

A more subtle situation that actually happens in nearly @ifslis that the recorded utilization is occasionally
greater than 100%, which is technically impossible. Todale the utilization, one scans the log and simply counts
the number of processors in the jobs that are reported agngiaheach instant (note that if one job terminates and
another starts in its place, they should not both be countéd$ is then compared to the number of processors in the
system to obtain the utilization. The results of perfornsagh calculations are shown in Fig. 4, indicating excetion
that are sometimes large.

There are three possible explanations for such utilizagaeptions. The first is timing inconsistency, where one
jobis recorded as running a few seconds beyond its actumirtation, or another is recorded as starting slightly befor
it actually got hold of the processors. Such situations nmeigbntified and corrected, as shown in Section 4.4 below.
The second is that there is no real problem, because a jobeleabed some of its processors before it terminated.
While possible in principle, all our logs assume rigid johattuse all their processors for the duration of the run.
As a result we have no data to support this possibility. Tlrel fhossible explanation is simply a logging error. For
example, this is the most likely explanation when the logtams a sequence of several large jobs with very similar
parameters that all started on the same second, and togetjuéne more processors than are available in the system.

Despite the utilization exceptions, it turns out that adl thgs are actually stable in the sense that the service rate
is higher than the arrival rate. This is important becauseylies that the logs can actually be used for simulations of

LANL CM5 CTC SP2 SDSC SP2
0.35 o 0.45 o 45 R
03 1 fit 0.4 1 fit 0.4 4 fit
Qo — EASY Q@ B — EASY Q@ B — EASY
o 50.35 70.35
§0.25 S 03 8 0.3 -
@ @D @
S 024 50.25 50.25
£0.15 A = 0.2 A = 0.2 A
o o o
S 0.1 A £0.15 - £0.15
@ S 0.1 A S 014
0.05 0.05 0.05 -
0 T T T T T T T T T 0 T T T T T T T T T 0 T T T T T T T T T
3h 6h 12h 1d 2d 4d 1w 2w 1m 3h 6h 12h 1d 2d 4d 1w 2w 1m 3h 6h 12h 1d 2d 4d 1w 2w 1m
interval length interval length interval length
SDSC Par95 SDSC Par96 SDSC BLUE
0.35 4 4 0.35 ¢ 4 .35 4 4
— fit — fit — fit
@ 034 — EASY @ 034 — EASY @ 034 — EASY
§0.25 §0.25 §0.25
202 202 202
=] =] =]
50.15 b 50.15 b 50.15 b
go.lf go.lf go.lf
“=0.05 + “=0.05 + “=0.05 +
0 T T T T T T T T 0 T T T T T T T T T 0 T T T T T T T T T
3h 6h 12h 1d 2d 4d 1w 2w 1m 3h 6h 12h 1d 2d 4d 1w 2w 1m 3h 6h 12h 1d 2d 4d 1w 2w 1m
interval length interval length interval length
KTH SP2 HPC2N ANL Intrepid
0.35 5 0.18 5 0.25 5
— fit 0.16 - — fit — fit
0.3 1 — : — I
@ EASY @ i EASY @ g2 EASY
] 50.14 =0
©0.25 T0.12 ©
@ @D @ i
< 0.2 < 0.1 015
=} =} =}
gore £ §oi
S 0.1+ IShe 3]
g $0.04 $0.05
0.05 1 0.02 -

o

T T T T T T T T T
3h 6h 12h 1d 2d 4d 1w 2w 1m
interval length

T T T T T T T T T
3h 6h 12h 1d 2d 4d 1w 2w 1m
interval length

T T T T T T T T
3h 6h 12h 1d 2d 4d 1w 2w 1m
interval length

Figure 5: Stability results of logs that had relatively many unstabtervals. In most other logs only a few percent at most ohétie short intervals
were unstable.

parallel job scheduling. To verify stability we divided é&dog into fixed intervals of lengti’, and counted the fraction
of intervals where the work that arrives in the interval aatrive accommodated within the interval. “Accommodation”
had two interpretations. The first is just total resourcegaday all jobs, meaning that the amount of work arriving
within an interval ofl” was less than the capacity available during this interviaé §econd is whether they can actually
be scheduled by a backfilling scheduler, when jobs are statedably (that is, from longest to shortest or from largest
to smallest) and all of them are assumed to arrive at the butsboth cases, jobs that are longer taare divided
into slices of length" that are assigned to successive intervals.

The results were that in all cases the fraction of unacconateadntervals went down to zero Adncreased (Fig.

5). However, in some cases very lofig were needed. For example, in the SDSC SP2 log 12% of the wieskivals
were not accommodated, and in the CTC SP2 log 8% of the biwéridrvals suffered the same fate. In both cases
this dropped to zero only for intervals of a full month.

A common feature of many utilization graphs is the horizbupger bound of 100% utilization (albeit sometimes
it is breached). A special case of utilization exception ieewthis upper bound occurs bellow 100% utilization. This
most probably indicates that our information regardingrtbenber of processors is wrong. For example, the size of
the CTC SP2 machine is 512 processors, of which 430 are inatuh Ipartition. Assuming this is the number of
processors being used leads to the utilization graph show#igi. 6, with an upper bound of around 78.38%. This
indicates that the true size of the batch partition used pouca the log was most probably only 338 processors, and
not 430.

10

CTC SP2 (430 procs)
8

utilization

Ll ulwl Ll

JJASONDJFMAMI
1996 1997

Figure 6: Effect of assuming the wrong number of processors.

SDSC SP2 Sandia Ross LLNL Atlas
1.8 4 3.5
3
c c c 251
S S S 5]
© © ©
£ £ £ 15
=1 =1 - =1 1
MR
LI IHII \ o
AJAODFAJAODEFA NFMANFMANFMANF N D J FM A M J 13
1998 1999 2000 20@002 2003 2004 2005 2006 2007

Figure 7:Examples of utilization variability probably due to configtion change.

3.4. Environment Variability

A major problem with parallel workload logs is that the configtion of the underlying machine may be heteroge-
neous and may even change with time. This can be expectegte@mhaffect on the workload, to the point of making
it non-stationary. In many cases we do not have informatimuasuch effects, but sometimes we can deduce them
from the log data.

An important type of variability is apparent changes in sgstapacity. This is evident from the utilization graphs,
as shown in Fig. 7. The SDSC SP2 seems to have grown aboutaofitine way into the log. In the Sandia Ross
machine the available capacity dropped significantly alotinird of the way into the log. The LLNL Atlas had an
initial trial period with half the final capacity. A more egtne example is the LPC log, which started with only one
node and was later expanded to the full size of 70 nodes. thedke cases, using the whole log consecutively seems
to be inappropriate, because it is actually composed ofukeposition of two distinct workloads recorded under
different conditions.

A more subtle form of variability is the imposition of resaerconstraints. The scheduling of parallel jobs is often
controlled by defining a set of queues with different priestand resource constraints. Jobs are submitted to the ap-
propriate queue, as a means of specifying their requiresn@&hte scheduler then judiciously selects jobs for exenutio
from the different queues so as to create a “good” job mix mheets the scheduling objectived his obviously has
an effect on the representation of different types of jobthanlog. To confound things, system administrators may
change the queue definitions over time.

For example, the SDSC Paragon system employed the systeueoésg described in Table 4. The ones with an
‘f” indicate use of 32 MB (fat) nodes, while the others are 16 MB nodes. The scheduler could use different sets
of nodes for different queues during prime time and non-priime (nights and weekends) [32]. Specifically, during
prime time it was desirable to provide quick turnaround 8rfeg short jobs, so a set of nodes were set aside for such

2This is based on the assumption that the jobs are indeed gebrt the “most appropriate” queue, which tightly fits thb’$ requirements.
In retrospect this assumption is naive, and jobs often useaosmall fraction of their runtime limit [8, 22].

11

Table 4:Queues on the SDSC Paragon.

time nodes low
limt | 1| 4| 8 16 32 64 128 256 pri
1hr g4s| g8s| ql6s| g32s| g64s
gf8s| qf16s| qf32s

4 hr g32m| g64m| q128m| g256m

gf32m| gf64m| gf128m| qf256m
12 hr| g1l g32l | g64l | 9128l | g256l | standby

qf32l | gf64l | gf128l | qf256l | fstandby

CTC SP2 SDSC SP2
6000) . 3000 . X
— inter-arrivals — inter-arrivals
5000 — inter-start times 2500 — inter-start times
1) 0
& 4000 ~ & 2000 ~
c c
2 3000 A 2 1500 A
3 3
S 2000 - 8 1000 -
1000 + 500
0 T T T T T 1 0
0 20 40 60 80 100 120 0 30 60 90 120 150 180 210 240
interval length [s] interval length [s]

Figure 8:Examples of modal inter-start-time distributions due ttchiang by the scheduler.

jobs. But despite this richness, the log actually contaimeite a few additional queues, including test, interagtive
gf32test, qtmp32, sdsdest, glll, holding, g320m, g4t, and q256s. For some of tlesean guess the resource
requirements, but for the others we cannot.

A striking example of the effect of such constraints occdirshien the scheduler was changed on the LLNL T3D
[8] (regrettably, this data is not available on the Archivéjhen effective gang scheduling was introduced in March
1996 it became much easier to run large jobs. By October #tdlition of job sizes had changed, with the fraction
of resources devoted to 32-processor jobs dropping by tidsthwhile the fraction of resources devoted to 64, 128,
and 256-processor jobs more than doubled.

The KTH SP2 system also imposed various limits on job rungia@ad this was also changed during the period
that the log was recorded). In essence jobs were limitedrtoing for up to 4 hours during weekdays, which were
defined to be from 7 AM to 4 PM Monday through Friday. At nighitey could run for 15 hours, and over the weekend
for 60 hours. By tabulating the number of jobs with long resjed runtimes that were submitted at different times of
the day and the week, one can see that requests to run joles kivaap 4 hour peak every day after 4 PM, and requests
to run jobs longer than 15 hours are nearly always submitteerimlay afternoon.

In addition to differences in configuration, schedulers reglyibit idiosyncratic behavior. A small example is the
batching of jobs. Some schedulers accumulate jobs acrossistervals, rather than immediately scheduling jobs as
they arrive. This leads to a modal inter-start-time disitiiin, as opposed to a smoother inter-arrival distribytam
demonstrated in Fig. 8.

The point of these examples is to demonstrate that the oddererkload is not necessarily a “natural” workload
that reflects what the users want to run. Rather, users maytimgil requirements according to the limitations imposed
by each system’s administrators and schedulers. And to malkiers worse, these limitations may be quite involved,
may change unpredictably, and may be unknown to us.

3.5. Non-Representative Behavior

Another source of variability is the users themselves. litecufew cases we find users whose behavior is different
from the behavior of all others, and might be considereditd the log data.

An early example was the behavior of the system adminissatothe NASA iPSC machine. Itturns out that these
administrators commonly ran the Unix pwd command (printkirg directory) on a single node of the machine as a

12

W user 50 B user 60 W user 61 W user 374 W user 197 B user 98 W user 66 W user 94

W user31 user8 user 96 W user 24 user 429 = user 13 W user 92 user 50
user 38 W user 150 m user 176 user 48 W user 274 W user 148 user 61 others
14000 user 94 m user 56 others 8000 user 21 M user 139 others 7000 user 62
LANL CM5 SDSC SP2 SDSC Par95
12000 7000 6000
X X X
© 10000 g 6000 S 5000
5000 2
2 8ooo s 2 4000
8— 6000 8— 4000 g— 3000
Q @ 3000 2
| 4000 8. 2000 . 2000 “’_\
2000 o) 1000 AN
M o WA Ao, WAL 1000 - «J { h"k -
0 L e e B I O B 0 L e e I A A B B B 0 T T T T T T T T T T T T T 1
ONDJFMAMJ JASOND JFMAMJ JASO AMJ JASOND JFMAMJ JASOND J FMAM DJFMAMJJASONDIJ
19941995 1996 1998 1999 2000 19995 1996
W user 23 W user 24 W user 135® user 181 W user 269 W user 236 W user 293
W user 3 user 51 W user 151 user 66 W user 342 user 45 user 191
user 45 others user 404 others user 35 M user 257 W user 391
2500 user 8 3500 user 191 4000 user 330 W user 290 others
SDSC Par96 CTC SP2 SDSC Blue
3000 3500
~ 2000 X X
0] T 2500 © 3000
9] 9] 1]
2 1500 2 5000 ’ A 2 2500 } J
g g 1500 s 4 /\ 5 g 2000 V’\A
g 100 2 AT g 1500 I ‘\
S ol o | N 5 1000 3 1000 “!‘ | 'N*j
/ 500 500
O+—F—7T 77T T T T T T T 1 T 0 [O B B R B B O T
DJFMAMIJJASONDI JJASONDJIFMAMI AVIJJASONDJIRVIAMI JASONDJAVAMIJ JASONDJ
199896 1997 1996 1997 2000 2001 2002 2003
W user 174 m user 22 m user 37 W user 175® user3 W user 89 W user2 MW user44 m user43
H user 84 user 54 user 47 W user 84 user 17 user 72 W user 60 user 27 © user 65
user 216 W user 147 others user 38 M user 96 W user 171 user 51 W user 15 ® user 1
7000 user 239 m user 231 3500 user8 W user103 others 20000 user 12 m user 26 others
OSC cluster Sandia Ross HPC2N
6000 3000
X X X
15000
¢ 5000 @ 2500 2
2 4000 2 2000 s
[[@ 10000
Q. 3000 Q. 1500 Q
2 2 8
° 2000 ° 1000 S 5000
1000 500 W i } |
0\\\\\\\\\\\\\\\\\\\\\\\\\ 0H\HH\\\\\H\HHHH\HHHHHHHH O TTTTTTT T T T T T T ITTrrrrrTrrrrrTi
DJFMAMJ JASOND J FMAMJ JASOND NDIRVAVI JASONDIRVAVI JASCNDIRVAVI JASCNDIF JASONDIRVAVIJASONDIAVAVUJASONDIRVAVD JASONDOF
1290 2001 201102 2003 2004 2005 2002 2003 2004 2005 2006

Figure 9:Examples of large flurries of activity by individual users.

means to verify that the system was operational and respari told, no less than 56.8% of the jobs recorded in the
log were such pwd commands. Another example comes from tf®CSParagon log, where an automatic script was
executed every day at around 3:45 AM, most probably to perfaisequence of cleanup or maintenance operations.
This caused a noticeable perturbation of the normal daityeoyf activity.

Another type of non-representative behavior is flurriesaivaty by individual users, which dominate all other
activity in the system [11, 30]. Examples are shown in FigT®.create these graphs, the number of jobs in each
week was counted and the weeks with the highest level ofigcsimgled out. Then, the top users in these weeks were
identified and their activity color-coded throughout thg.ldHere we focus on job flurries, but in logs from parallel
machines like ours flurry observations can also be basedamegses. Importantly, process flurries are not necessarily
correlated with job flurries, as they can be created by aivelgtsmall number of jobs that each include a very large
number of processes. Examples of logs that contain proagsged that do not correspond to job flurries include
SDSC SP2, SDSC Blue, HPC2N, SHARCNET, LLNL Atlas, LLNL Thandand RICC.

Flurries can be roughly classified into three types.

e Sporadic large flurries, where the number of jobs produced bingle user is 5-10 times the average weekly
total, but this continues only for a short period. A promihexample is the activity of user 374 in the SDSC
SP2 log, or the three large flurries in the LANL CM5 log. Notattthese are not necessarily the most active

13

W user 19 W user 52 W user 19 ®m user 7 W user 36

W user 66 user 82 W user66 user 82 user94
user 28 others user4 M user 52 m user 109
10000 user 7 2000 user 28 m user 99 others
LLNL Atlas LLNL Atlas (days)
x 8000 - . 25007
[5]
o S 2000
S 6000 -| °
= (]
@ o 1500
= 4000 @
o < 1000 +
o —
= 2000 - \ . 500 Jw 1 ‘Lf“‘
. PRRLITTRITN P USLESE N
0 T T T T T T T 1 0 T T T }W\ — T 1
N D J FM A M J J N D J FM A M J J
2006 2007 2006 2007

Figure 10:Flurries observed at different resolutions.

users in the log, but their concentration makes them unique.

e Long-range dominance, where the abnormal level of actiwtya single user continues for a long time, and
perhaps even dominates the whole log. A striking exampledsattivity of user 2 in the HPC2N log, who is
responsible for no less than 57.8% of the whole log.

e Small flurries, where some user displays a relatively highllef activity, but not as exceptional as the previous
classes. Nevertheless, such small flurries may cause iiitgtatin simulations used to evaluate schedulers. An
example is the flurry in the CTC SP2 log [11].

While the large-scale flurries pop out and are obviously ieal outliers, the identification of small flurries is
more contentious. There seems to be no precise rule foridgaithen a user’s activity is abnormal, and when it
is just the most active from among a distribution of users.rédoer, the degree that a user’s activity appears to be
abnormal may depend on the resolution of observation. Famele, when using a daily resolution flurries may look
more prominent than when using a weekly resolution (Fig. 1®9}Yhe Parallel Workloads Archive we attempt to be
conservative, and flag only flurries that look prominent oneekly scale. However, smaller flurries may also be
flagged if we know that they lead to problems in simulations.

Other patterns are even more subtle than small flurries,dugtrtheless may be important. For example, a study of
the interactions between workloads and system schedolens that the CTC SP2 log is unique in having many serial
jobs that are relatively very long [7]. This was attributedthe fact that this machine inherited the workload of an
IBM ES/9000 mainframe that was decommissioned at the samdsiportantly, this arcane attribute of the workload
actually turned out to influence performance results in thetext of simulations of scheduling with backfilling [7].
Thus knowing about it may be a consideration when decidingthdr or not to use this workload in an evaluation.
In a related vein, most parallel workloads exhibit a weakitp@scorrelation between the parallelism and runtime of
jobs, but the LANL O2K log exhibits a weakly negative cortala. This can be important in situations where the
correlation between job size and runtime affects perfooagl].

Another strange workload attribute is the user residentenmain the SDSC Blue log In most logs, many new
users are observed in the first few weeks (these are the ukersvere actively using the system when the logging
commenced). Then new user arrivals stabilize at a lower fidie opposite happens with the users’ last appearances
in the logs: initially they are randomly distributed, andvezds the end of the log one finds a large concentration. But
the SDSC Blue log exhibits a different and strange pattehis bg is 32 months long, and includes data about 467
users. Surprisingly, the first user to leave does so only a8 days (more than 8 months). By this time no less than
307 different users had been observed, and all of them aantombe active. Moreover, only 10 users leave within the
first 20 months. Of the remaining 457 users 106 leave duriadptst month, and the other 351 leave during the period
from the 21st month to the 31st month, at an average rate o€Bfpnth. While we currently do not know of any
consequences of this strange pattern, it neverthelessmeimghly unusual.

3This observation is due to Netanel Zakay.

14

0] 0o 0
0 00 0d [} 000 OO0 00 000 O O00 000 oDoOoooo O 0000 ooooo OoQa
0O 0000000 OO0 0O OO0 00000000000 OC0 OO0 ooooOo 0 OoOogqondaao
OO O C0o0DCO OO 00O O oo CO oo Ooo/|] & >
[] [1 3 1 L] [1L I I —][]
[] [] [i] [] [[]

time

logging period

Figure 11:Example of sampling effects at the ends of the logging period

3.6. End Effects

The way that most logs are collected is that the record d@agrieach job is written when the job terminates. If
jobs are extremely short this has no appreciable effect.ifBabs can be very long, as is the case for parallel jobs
executed on large supercomputers, this can have a marlamd eff the observed workload at the log’s ends, and on
the calculated utilization. This assumes that the machine production use, and logging is done for an arbitrary
limited duration.

At the beginning of the log we often see a warmup effect. Thiseicause the first timestamp in the log is typically
the arrival time of a job that had a very long response timetandinated soon after logging commenced. Jobs that
ran in parallel to this job but had shorter response timeewet logged, because they terminated before logging
commenced. Hence the logged load is smaller than it realdyimvthe initial portion of the log (Fig. 11).

The opposite effect happens near the end of the log, wheyesbnlt jobs get logged. Jobs with longer response
times that start towards the end of the logging period mayteratinate within the logging period, and hence are not
logged. Again, the effect is of logging only part of the loaddttwas actually present.

To counteract these effects, care must be taken. When atitguh machine’s utilization, one usually calculates the
total resource usage (processatisne) of all jobs, and divides this by the available resositetalProcessosdogDuration).
To reduce the end effects, it is best to interpret the logtthuras the interval from the first termination to the last
termination, rather than as the interval from the first titapgp to the last timestamp or the interval from the first
arrival to the last arrival.

When performing a simulation using a log, it is important tecdrd some initial subset of the results in order to
allow for warmup. Also, stop measuring when the last arrd@urs, because after that time the simulated jobs will
encounter less and less competition, leading to unrezdlistigood results.

3.7. Missing Downtime Data

The activity on a parallel supercomputer may be interruptaésionally due to various reasons, such as scheduled
maintenance, software failures, and hardware failures/iddBly this affects the logged workload, and creates time
intervals where the utilization drops to zero. Jobs may bedated and re-submitted later. As a side effect, this also
distorts overall utilization calculations.

Failure data is also directly important for performancdeations. Failures may reduce observed performance as
jobs need to wait for resources to become available [18]irExéstence also suggests the system-level metric of how
many jobs were killed due to failures. Conversely, job datg imelp in analyzing failures and producing reliable data
regarding the severity and effect of failures [34].

Failure data exists for a few of the systems in the Paralleliads Archive. Examples include the NASA iPSC,
SDSC Paragon, LPC grid, the MetaCentrum grid [18], and ANtrelpid [34]. However, this data is not integrated
into the standard workload format. Note that a separatesity concerning failure data existsddr.usenix.org, and
in the future it may be beneficial to create some connectiehsd®en this repository and our archive. Another related
repository is the Failure Trace Archive fa.inria.fr, which has made inroads toward defining a standard format for
recording failure data.

4. Attemptingto Improve Log Data Quality

An important goal of the archive is to capture experiencéwiing the logs. This is done by providing specially
“cleaned” versions of the logs which reflect our experiertaech cleaned versions allow users of the data to benefit

15

from our experience without delving into all the details atehning decisions themselves, and also ensure that-differ
ent users use data that was cleaned in the same way. Ne@déags tisers are also free to inspect the original data for
themselves and make other decisions.

In particular, our conversion to the standard workload farmakes some attempts to recover data that is missing
from the log. The cleaned versions then remove data that @lesf®uld not be used because it is erroneous or not
representative of normal production use.

4.1. Removing Initial Low-Load Intervals

Some of the logs were started when the machines being loggexwery new, before users started to use them for
real. As a result they have initial segments that do not refea production use. Such initial segments are typically
of no interest for system evaluations (albeit they might biaterest for studies of how the workload evolves [16]). In
the interest of providing data that can be used as-is, weaeshtre logs and remove the initial low-load periods from
the cleaned versions.

An example is the LLNL Atlas log. As shown in the utilizatiotopin Fig. 7, this log has an initial segment
from 10 November 2006 to 7 December 2006 where the utilinaaup to 50%, indicating that most probably the
machine was operating at half capacity. Then there is a sitertzal with no activity, and finally full production work
is started on 18 December 2006. In the cleaned version this Blgprtened and everything before 18 December 2006
is removed.

4.2. Reconstructing Missing Data

Among the most important attributes of parallel jobs arértheival time and running time. Regrettably, in some
cases this information or related information (e.g. thetdtme or end time) are missing. Nevertheless, sometimes
missing data can be reconstructed at least partially.

Our conversion scripts accept the following partly redumdields that all relate to job timing:

e Arrival time (arr)
Start time §tart)
End time ¢nd)

Running time (wallclockyun)

CPU time (average per processer)

If the data is available and consistent, we should have< start < end, run = end — start, andcpu < run.
The output of the conversion needs the following three remundant fields:

e Arrival time (ARR)
o Wait time (WAIT)
e Running time RUN)

The way these are set based on the available input data is givEable 5. This reflects various heuristics. For
example, ifstart is missing, we assume it to ber. If run andcpu are also not available, we can then estimate the
runtime asnd — arr. However, this should be qualified by job status. If the jols wanceled before it was started, it
is more appropriate to assign this interval to the wait tiare] leave the runtime undefined.

While such heuristics may recover some data and enhancedhdity of the log, they may also cause problems.
For example, in the SDSC SP2 log, a straightforward analgsisaled that 4291 jobs got more runtime than they
requested, and in 463 cases the extra runtime was larget ttmamute. However, 5831 jobs had undefined start times,
so their runtime was not computed. When the missing stadgdimere replaced by the submit times, the number of
jobs that got more runtime than they requested jumped up3d,Gind in 2284 of them the difference was larger than
1 minute. As we saw previously, there is no way to know whatdbeect data was. We need to make a subjective
decision based on the data that is available.

16

Table 5: Calculation of job timing data based on available input data
arr | start | end | action
OK | * * ARR = arr
OK * WAIT = start — arr
OK | (run)? RUN = run: RUN = end — start
n/a | (run)? RUN = run:
(cpu)? RUN = cpu
n/a * (run)? RUN = run :
(cpu)? RUN = cpu
OK | (run)? WAIT = (end — run) — arr:
(cpu)? WAIT = (end — cpu) — arr :
(succ)? RUN = end — arr, WAIT =0 :
WAIT = end — arr
n/a | OK * ARR = start
OK | (run)? RUN = run: RUN = end — start
nfa | (run)? RUN = run:
(cpu)? RUN = cpu
n/a * (run)? RUN = run :
(cpu)? RUN = cpu
OK | (run)? ARR = end — run:
(cpu)? ARR = end — cpu : ARR = end
The notation “(X)? S1 : S2” means that if input is available or true
then action S1 is taken, otherwise action S2 is taken. Netettiese
may be stringed to form “else if” sequences.cc means the job has
a success status. Note that in some combinations of unbleitgputs
some of the desired outputs are left undefined.

4.3. Data Cleaning by Removing Flurries

The anomalous behaviors described in Section 3.5 degrddegdality because they are anomalous and do not
represent normal usage. Using logs that contain such aresve input to evaluations risks results that are tainted
by the anomalies. For example, if a log contains voluminausrepresentative activity by a single user, and this is
used to evaluate schedulers and suggest operational garamee risk making the selection so as to optimize the
performance of the non-representative user that was amtigesingle system some years ago.

Of course, removing the abnormal behavior also entails Eg&t, maybe we are wrong and the data is not as bad
as we think. Second, by removing part of the data we are I¢ffit aviog that does not give the full picture. In particular,
the behavior of other users may have been affected by theplaadd on the system by the abnormal user.

Our policy in the Parallel Workloads Archive is to clean thegnprominent dominant users and flurries [11, 30],
but at the same time also provide the original log as is. Bggisiur cleaned logs, analysts can tap into our experience
and avoid the need to make cleaning decisions for themsebrethe other hand, if they do indeed want to invest the
time in studying anomalous data and deciding what to do ahdbts is possible.

About half the logs in the archive have cleaned versionsutihér support of cleaning, we note that in most cases
the impact on the log is minimal. For example, in the SDSC ¥ temoving the flurry of activity by user 374
reduced the overall utilization only form 83.7% to 83.5%.€Tkason is that all the jobs by this user were both small
(using only a single processor) and short (typically lasfor less than a minute, but with some lasting up to an hour,
as indicated in Fig. 12). The most extreme case was the HP@2Nvhere user 2 was responsible for a full 57.8% of
the jobs in the log. However, removing them only reduced ¢iael lfrom 70.2% to 60.2%. Again, these jobs tended
to be small (up to 8 processors) or short (up to a minute),talb¢his case they were larger (e.g. 20 processors) or
longer (e.g. an hour).

17

SDSC sP2 HPC2N

1 4 16 64
job size job size

4d 4d l
10h 4 - oh- 1 s . ek
© [} HET
£ 1h+ j E 1 *‘!“‘*J'-"i .
glOm* ' glom { 15:-'
g | g - p e
—.1057 " 10s A “|?} ;!
5
1s 1s4 =+ R I
T T T T
1 4 16 64

Figure 12:Scatter plots showing size/runtime data for a whole log, fagtlighting jobs of a single highly active user.

4.4. Enforcing the Capacity Constraint

The errors mentioned in Section 3.3 whereby the utilizatinceeds 100% may be reduced by two means. The
first is “shaking” the input, namely making small modificat#oto job start times such that the jobs will fit in [31].
Specifically, we used a linear solver to see whether all jalddcbe accommodated if we increase some of the wait
times by different amounts. However, this invariably lecetther of two outcomes: either a proof that no solution
could be found within the specified limits (e.g. only changgtwimes by up to 1 hour), or failure of the linear solver
to terminate within a few hours.

The second option is to simply delete the offending jobs.rtieoto find which jobs to delete, we first divide the
log into cliques of jobs that overlap in time [3]. For those&jaks where a utilization exception occurs, we solve a
linear program that describes the problem (which jobs weteleleted and the capacity constraint). The optimization
criterion is to minimize the number of jobs that are remowdlternatively the total node-seconds that are removed.
This enables a tradeoff between removing a few large jobsamyrsmall jobs. We settle the tradeoff by choosing the
approach that leads to the minimal maximal reduction. FangXe, if removing few large jobs leads to a reduction of
LJ percent of the jobs an8U percent of the utilization, while removing many small jobads to a reduction ¢/
percent of the jobs an8lU percent of the utilization, we will choose the first optiomifix(LJ, LU) < max(SJ, SU),
and the second otherwise.

Scanning the logs, we find that in some cases very many jolisvaiged, and trying to eliminate all the utilization
errors would mean removing lots of jobs throughout the log.tiérefore decided to leave such logs as they are. But
in about half of the logs the utilization errors could be deé by removing only a small fraction of the jobs. In these
cases using the utilization criterion typically led to skaamaximal impact. In most cases up to 1 or 2 percent of the
jobs and utilization needed to be removed, and in one castyriepercent.

5. Conclusions

Even in the age of information overload, good data is a prtecand scarce resource. This is especially true in
Computer Science, for two reasons. The first is that this fekes not have a tradition of experimental research based
on empirical observations. The second is the rapid progmessmputing technology, which creates the risk that data
will be outdated and irrelevant not long after it is colletteNevertheless, we contend that using real data is still
generally preferable over using unbased assumptionse@ioly data and subjecting it to analysis and sanity checks
is a crucial part of scientific progress.

Aging is but one aspect of a more general problem, namely tbelggm of data quality. Thus data should be
used intelligently, and experience regarding the cleanindata and its validity constraints should be recorded and
maintained together with the data itself [26]. In the Pafalorkloads Archive, some of the logs have been publicly
available for over a decade. Nevertheless, we still ocoadlipfind new and previously unknown artifacts or deficien-
cies in them. It is unreasonable to expect each user of tlzetddie able to analyze this independently and achieve
comprehensive results. Thus sharing experience is nortgssrfant than sharing the data in the first place.

It is interesting to compare our work with work done on dataliy in other domains. Knight and Burn have
reviewed the commonly cited dimensions of data qualityetam the pioneering work of Wang and Strong and others

18

Table 6: Applicability of data quality dimensions to the Parallel Woads archive.

1 accuracy some problems occur as described in this paper
2 consistency some internal (among fields in the same log)eatetnal (among similar fields in
different logs) inconsistencies occur
3 security free access is a goal; privacy is maintained byding users, groups, and applications
4 timeliness some logs are dated, but enable research abddbad evolution
5 completeness some desirable data is missing, e.g. jomdepeies, memory and I/O requirements,
other scheduling constraints
6 conciseness log files are typically small enough to beyhaitdled
7 reliability some problems occur as described in this paper
8 accessibility freely accessible via the world-wide web
9 availability freely accessible via the world-wide web
10 obijectivity logs come from different locations and maehiypes with no biased selection
11 relevancy extremely relevant as withessed by extensige u
12 usability simple format; ASCII files

13 understandability simple format; documentation of farend background on each log are provided
14 amount of data seems to be adequate for common usageissenar

15 believability data comes from large scale productiorntesys; non-representative behavior is
cleaned

16 navigability table listing logs and their main attribsiie provided

17 reputation data comes from major installations

18 usefulness witnessed by extensive use

19 efficiency A year’s activity can typically be simulatedseconds

20 value-added data provides needed grounding in reality

[2, 28, 33]. Table 6 shows how these dimensions apply to thallBeWorkloads Archive. It turns out that the data
itself inherently satisfies some of the dimensions, for gxamelevance, believability, and value-added. Furtheemno
the archive naturally addresses many additional dimessfonexample by making the data available and accessible.
The Standard Workload Format that is used also helps, fanpbkaby providing privacy and understandability. But
other dimensions are indeed problematic. Specificallybthk of this paper was devoted to the description of various
accuracy and inconsistency problems. Completeness ib@mmadtential problem.

In many cases the decisions regarding how to handle proliledzda are subjective in nature. This is of course an
undesirable situation. However, it seems to be unavoidakleause the information required in order to make more
informed decisions is unavailable. The alternative oflegithe data as is is no better, because the question of how to
handle the data arose due to problems in the data itselfeTdrerwe contend that the best solution is to make the best
subjective decision that one can, and document this deciBioing so in the Parallel Workloads Archive leads to two
desirable outcomes. First, users of the data will all begittie same improved version, rather than having multiple
competing and inconsistent versions. Second, this can & assthe basis for additional research on methods and
implications of handling problematic data.

A further improvement in the usability of workload data may dgrained by combining filtering with workload
modeling. Specifically, in future work we are considering ttoncept of workload re-sampling at the user level. This
means that the workload log is partitioned into indepengtanstreams by the individual users. These job streams
are then combined in randomized ways to generate new warklim use in performance evaluation. Among other
benefits, this approach allows for the removal of users winibéxon-representative behavior such as the workload
flurries of Section 3.5. The reconstructed workloads wabahot suffer from underlying configuration changes such
as those noted in Section 3.4.

Additional future work concerns data cleaning. One impartatstanding issue is how to handle situations where
the utilization exceeds 100%, as demonstrated in Sect®inA3. noted in Section 4.4, in about half of the logs we did
not find a simple fix to this problem. Another interesting digesis to assess the effect of the different problems we
found in workload logs. This would enable an identificatidrihe most important problems, which are the ones that

19

cause the biggest effect and therefore justify increadedtieto understand their sources and how to fix them.

Acknowledgments

Many thanks are due to all those who spent their time coligdiie data and preparing it for dissemination. In
particular, we thank the following for the workload dataytilggaciously provided:

¢ Bill Nitzberg for the NASA iPSC log

e Curt Canada for the LANL CM5 log

e Reagan Moore and Allen Downey for the SDSC Paragon logs

e Dan Dwyer and Steve Hotovy for the CTC SP2 log

e Lars Malinowsky for the KTH SP2 log

e Victor Hazlewood for the SDSC SP2 and SDSC Datastar logs

e Fabrizio Petrini for the LANL Origin 2000 log

e David Jackson for the OSC cluster log

e Travis Earheart and Nancy Wilkins-Diehr for the SDSC Blueikon log

e Jon Stearley for the Sandia Ross log

e Ake Sandgren and Michael Jack for the HPC2N log

e John Morton and Clayton Chrusch for the SHARCNET log

e Moe Jette for the uBGL, Atlas, and Thunder logs from LLNL

e Susan Coghlan, Narayan Desai, and Wei Tang for the ANL Iidrieg

e Dalibor Klusacek and Czech National Grid InfrastructitetaCentrum for the MetaCentrum log

e Ciaron Linstead for the PIK IPLEX log

e Motoyoshi Kurokawa for the RICC log

Likewise, many thanks are due to the managers who approeaélitase of the data. Thanks are also due to students
who have helped in converting file formats and maintainirgatchive.

References

[1] A. K. Agrawala, J. M. Mohr, and R. M. Bryant,An approach to the workload characterization problem
Computerd(6), pp. 18—-32, Jun 1976.

[2] S. ann Knight and J. BurnDeveloping a framework for assessing information qualitytoe world wide web.
Informing Science B, pp. 159-172, 2005.

[3] M. Aronsson, M. Bohlin, and P. KreugeMixed integer-linear formulations of cumulative schedglicon-
straints - A comparative studysICS Report 2399, Swedish Institute of Computer Sciena#,2007. URL
http://soda.swedish-ict.se/2399/.

[4] S. J. Chapin, W. Cirne, D. G. Feitelson, J. P. Jones, S.elténegger, U. Schwiegelshohn, W. Smith, and
D. Talby, “Benchmarks and standards for the evaluation of paralledghledulers In Job Scheduling Strategies
for Parallel ProcessingD. G. Feitelson and L. Rudolph (eds.), pp. 67-90, Springelag, 1999. Lect. Notes
Comput. Sci. vol. 1659.

[5] D. G. Feitelson, Packing schemes for gang scheduliig Job Scheduling Strategies for Parallel Processing
D. G. Feitelson and L. Rudolph (eds.), pp. 89-110, Springelag, 1996. Lect. Notes Comput. Sci. vol. 1162.

[6] D. G. Feitelson, Memory usage in the LANL CM-5 workloddIn Job Scheduling Strategies for Parallel Pro-
cessingD. G. Feitelson and L. Rudolph (eds.), pp. 78-94, Springelag, 1997. Lect. Notes Comput. Sci. vol.
1291.

20

[7] D. G. Feitelson, Experimental analysis of the root causes of performandeatran results: A backfilling case
study’. IEEE Trans. Parallel & Distributed Sys16(2), pp. 175-182, Feb 2005.

[8] D. G. Feitelson and M. A. Jettelrhproved utilization and responsiveness with gang schiegluln Job Schedul-
ing Strategies for Parallel ProcessinD. G. Feitelson and L. Rudolph (eds.), pp. 238-261, SpriMgdag, 1997.
Lect. Notes Comput. Sci. vol. 1291.

[9] D. G. Feitelson and A. W. Mu’alem,On the definition of “on-line” in job scheduling problem&IGACT News
36(1), pp. 122-131, Mar 2005.

[10] D. G. Feitelson and B. NitzbergJbb characteristics of a production parallel scientifickd@ad on the NASA
Ames iPSC/860 In Job Scheduling Strategies for Parallel Processibg G. Feitelson and L. Rudolph (eds.),
pp. 337-360, Springer-Verlag, 1995. Lect. Notes Comput.\v8t 949.

[11] D. G. Feitelson and D. TsafrirWorkload sanitation for performance evaluatiom IEEE Intl. Symp. Perfor-
mance Analysis Syst. & Softwapp. 221-230, Mar 2006.

[12] D. Ferrari, ‘Workload characterization and selection in computer parémce measureméniComputers(4),
pp. 18-24, Jul/Aug 1972.

[13] C. Firth, “Data quality in practice: Experience from the frontling Intl. Conf. Information QualityOct 1996.

[14] C. W. Fisher and B. R. Kingma,Criticality of data quality as exemplified in two disasterinformation &
Managemen89(2), pp. 109-116, Dec 2001.

[15] C. Harger et al., The genome sequence database (GSDB): Improving datayqaatit data accessNucleic
Acids ResearcB6(1), pp. 21-26, Jan 1998.

[16] S. Hotovy, ‘Workload evolution on the Cornell Theory Center IBM SPB Job Scheduling Strategies for Par-
allel ProcessingD. G. Feitelson and L. Rudolph (eds.), pp. 2740, Springelag, 1996. Lect. Notes Comput.
Sci. vol. 1162.

[17] A.losup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Walteand D. H. J. EpemaThe grid workloads archive
Future Generation Comput. Sy&4(7), pp. 672-686, May 2008.

[18] D. Klusacek and H. Rudova,The importance of complete data sets for job scheduling lsiions’. In Job
Scheduling Strategies for Parallel Processiriey Frachtenberg and U. Schwiegelshohn (eds.), pp. 132-153
Springer Verlag, 2010. Lect. Notes Comput. Sci. vol. 6253.

[19] W. Leinberger, G. Karypis, and V. KumarMulti-capacity bin packing algorithms with applications job
scheduling under multiple constraifitin Intl. Conf. Parallel Processingpp. 404—412, Sep 1999.

[20] D. Lichtnow et al., ‘Using metadata and web metrics to create a ranking of gendetébase's In IADIS Intl.
Conf. WWW/Internepp. 253-260, Nov 2011.

[21] V. Lo, J. Mache, and K. Windisch A comparative study of real workload traces and synthetitkivad models
for parallel job schedulirigIn Job Scheduling Strategies for Parallel ProcessiRgG. Feitelson and L. Rudolph
(eds.), pp. 25-46, Springer Verlag, 1998. Lect. Notes Cangai. vol. 1459.

[22] A. W. Mu’alem and D. G. Feitelson, Utilization, predictability, workloads, and user runtinestimates in
scheduling the IBM SP2 with backfillirig [EEE Trans. Parallel & Distributed Sysil2(6), pp. 529-543, Jun
2001.

[23] H. Muller, F. Naumann, and J.-C. Freytad)dta quality in genome databaseis 8th Intl. Conf. Information
Quality, pp. 269-284, Nov 2003.

[24] T. C. Redman, The impact of poor data quality on the typical enterprisgomm. ACMAL1(2), pp. 79-82, Feb
1998.

[25] E. Shmueliand D. G. FeitelsonBackfilling with lookahead to optimize the packing of pae&jbbs’. J. Parallel
& Distributed Comput65(9), pp. 1090-1107, Sep 2005.

[26] Y. L. Simmhan, B. Plale, and D. GannorA ‘survey of data provenance in e-sciehc8lGMOD Record4(3),
pp. 31-36, Sep 2005.

[27] A.J. Smith, ‘Workloads (creation and use)Comm. ACMb0(11), pp. 45-50, Nov 2007.

[28] D. M. Strong, Y. W. Lee, and R. Y. WangPData quality in context Comm. ACMA40(5), pp. 103-110, May
1997.

[29] Thinking Machines CorpConnection Machine CM-5 Technical Summaypv 1992.

21

[30] D. Tsafrirand D. G. Feitelson/fistability in parallel job scheduling simulation: The eaf workload flurries.
In 20thIntl. Parallel & Distributed Processing SympApr 2006.

[31] D. Tsafrir, K. Ouaknine, and D. G. FeitelsorkRéducing performance evaluation sensitivity and varigtfily
input shaking. In 15th Modeling, Anal. & Simulation of Comput. & Telecomm. Sys. 231-237, Oct 2007.

[32] M. Wan, R. Moore, G. Kremenek, and K. Steubd,Blatch scheduler for the Intel Paragon with a non-contiguou
node allocation algorithinin Job Scheduling Strategies for Parallel ProcessiDgG. Feitelson and L. Rudolph
(eds.), pp. 48—64, Springer-Verlag, 1996. Lect. Notes Gdangxci. vol. 1162.

[33] R. Y. Wang and D. M. Strong,Beyond accuracy: What data quality means to data constindefdanagement
Inf. syst.12(4), pp. 5-33, Spring 1996.

[34] Z. Zheng, L. Yu, W. Tang, Z. Lan, R. Gupta, N. Desai, S. Blag, and D. Buettner,Co-analysis of RAS log
and job log on Blue Gene/PIn Intl. Parallel & Distributed Processing Sympvay 2011.

[35] B. B. Zhou, C. W. Johnson, D. Walsh, and R. P. Brewplf packing and re-packing schemes for enhancing
the performance of gang schedulinin Job Scheduling Strategies for Parallel ProcessiBgG. Feitelson and
L. Rudolph (eds.), pp. 129-143, Springer Verlag, 1999. Lidotes Comput. Sci. vol. 1659.

22

