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Abstract

Little work has been done on the performance of barrier syordhation using two-phase blocking, as the
common wisdom is that it is useless to spin if the total nunatbéreads in the system exceeds the number
of processors. We challenge this view and show that it mayebeficial to spin-wait if the spinning period
is set to be a bit more than twice the context switch overhestdr than being equal to it). We show that
the success of our approach is due to an inherent propertgrargl-purpose schedulers, which tend to
select threads that become unblocked for immediate exgciie find that this property causes applica-
tions based on barriers to fall into a previously unnoticattgyn, denoted “alternating synchronization”,
which is quite different from the patterns typically assuhire theoretical analyses. By merely choosing
an appropriate spinning period, we leverage alternatimglsonization to implicitly nudge the system
into simultaneously co-scheduling the application’s #lug thereby dramatically reducing the overhead of
synchronization and significantly improving the perforroan
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Chapter 1

Introduction

1.1 Parallel Computers and Applications

A parallel computer is “a collection of processing eleméh& communicate and cooperate to solve large
problems fast” [13]. The main motivation for developing Buztomputers is that “whatever the perfor-
mance of a single processor at a given time, higher perfocmean, in principle, be achieved by utilizing
many such processors” [6]. Nowadays, high performanceipnattessors range from the fastest and most
expensive supercomputers to scalable Internet servenditadual desktops.

Simple parallel applications are composed from a humbenadépendent sequential programs that
are executing simultaneously. However, the more intarggparallel applications involve cooperation,
communication and synchronization between the concuyreminputing entities. The former applications,
namely those that seldom synchronize or communicate, aadlyseferred to asoarse grain The latter,
namely applications that perform frequent synchroniratéwe known to béine grain The smaller (finer)
the application’gyranularity, the greater the potential for parallelism, and hence sgeeHleckler et al.
[17] have shown that parallelism can be exploited with gese as small as 20 machine cycles.

The manner in which threads of a parallel application comata is dependent on timeachine class
on which they execute. Parallel machines may be dividedmbcclasses:

Shared memory machinesA collection of processors that may access a collection ahorg modules
through some kind of hardware interconnect. The key prgp#rthis class is that communication
takes the form of conventional memory access instructiohisteads can be configured in such
a way that portions of their address space are shared. @ati@h among threads is therefore
accomplished by reading from and writing to shared vargldeated within the shared memory
portion.

Message passing machineSuch multiprocessors employ a cluster of complete computenodesas
building blocks. Each node has its own microprocessor, nmgraiod I/O devices, though typically
it doesn’t have a monitor and a keyboard. Nodes are inteexiad by a high performance network
(often with much higher capability than the standard locabanetwork). Communication between
threads executing on different nodes is done via expliGitdperations i.e. by message passing.

This work is related to the first machine class. Of particiritarest are the dominant bus basgthmetric
shared memory multiprocessars SMPs that “form the bread and butter of modern commercial pelrall
machines” [6]. Such multiprocessors are of small to mogesaale and provide a global physical address
space and symmetric access to the main memory from any paces

1.2 Synchronization Mechanisms

A common operation in SMP synchronizing programs is acqgielock to achieve mutual exclusion,
thus protecting access to shared data (a thread my accesspsedefined memory location only if it has

9



10 CHAPTER 1. INTRODUCTION

acquired the appropriate lock). Nowadays, all microprecessupport instructions that allow this type of
synchronization.

In addition, most numerical parallel applications makeviyagse of collective communication known
asbarrier synchronizationThese type of applications obey the following computatradel: Each thread
from thejob (the parallel application) computes alone for a while. Thereaches a point where it should
communicate with its peers. Since communication is doneggiohal data structures located on shared
memory, the thread must somehow make sure its peers haadwlsgitten the information it needs. In this
case we say that the thread has reachsghahronization pointThe barrier synchronization mechanism
will allow threads to continue to compute only upon the afrieof the last thread to the synchronization
point.

1.3 Tradltional Waiting Algorithms: Spin & Block

Synchronization between peers in a parallel applicatidghdésefore a common operation. Assuming other
threads are waiting for a processor, a thread that needsttiéowaynchronization is faced with a dilemma:
how should it wait for the synchronization-event ?

The two canonical waiting algorithms are:

1. busy-wait a threadspinsin a loop while repeatedly testing some condition that iatés whether the
synchronization event occurred.

2. block when a thread becomes aware that it needs to wait, it blatispénds) itself by releasing its
processor and is enqueued to some waiting queue, until saehnt which the awaited event occurs
and the thread is made ready-to-run again.

Note that the choice of the waiting algorithm is quite indeghent from the particular nature of the syn-
chronization mechanism. If the awaited event will happethiwia short period of time, it is usually better
to spin, both in terms of progress of this thread and in terhteesystem resources lost to overhead due
to context switch(saving thread'’s state, deciding which will be the next&loiéo run and dispatching it).
However, for longer time periods, it's presumably betteimmediately block and avoid wasting valuable
CPU time otherwise utilized by other ready-to-run threads.

Drawbacks of making the wrong choice are obvious: When [grapplications synchronize fre-
guently, the overhead of synchronization can be very siganti Jiang & Singh [14] have examined where
parallel applications (from SPLASH-2 [28] and more) spdmittime when executed on a real large scale
machine (SGI Origin2000 [20] with up to 128 CPUs). Their fingh indicated some applications may
spend up to 55% of their elapsed time while trying to syncta® usually due to barriers). Karlin et al.
[16] have witnessed that with immediate blocking, some iapfibns spend over a third of their elapsed
time on context switches. Theoretically, the penaltyabviays-blockmay converge to 100% of the exe-
cution time (for very long context switch durations). Likie®, on systems with no preemption, the worst
case performance @aflways-spinis arbitrarily bad since it might introduce a deadlock (ifeadt; spins
while waiting for synchronization with,, and consequently deprivest, of a processor).

1.4 Competitive Waiting Algorithms and Other Related Work

The two waiting algorithms mentioned above are seemingtpmeiled by usingwo phase waitingin
which a period of busy waitind.,;, is followed by blocking. Two phase waiting was first proposed
by Ousterhout [23] in 1982 who observed that blocking shdiddavoided if wait times are short, and
suggested “pausing” a waiting thread for some (user defifirezt) time before blocking.

For lock synchronization, Karlin et al. [15] (1990) have simahat a variant of this method, where the
time spent spinning is equal to a context switch durafiois 2-competitive This means the amortized cost
of this strategy is at most twice that of the optimal off-liagorithm (which has complete knowledge of
synchronization wait times). The justification of this ateis trivial. They have also analytically proven that
there is no deterministic algorithm that has a competittimrsmaller than 2. Finally, they have proven that
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a randomized algorithm can achieve strongly competititiesapproaching=; ~ 1.58 (when compared
to the optimal off-line algorithm) under the assumptionttvait time distributions obey some unknown
but time invariant probability distribution.

Later, Karlin et al. [16] (1991) have empirically evaluataollection of parallel applications on a
small scale SMP (7-processor Firefly [25]) while using aesafttwo phase waiting competitive algorithms
that included varioufixed spinningleterministic algorithms with constant maximal spin dioras (among
themLp;, = C andLgpi, = %), and variouwariable competitivalgorithms with an adaptive maximal
spin duration (among which the algorithm with the compegitiatio that converges tg;). They have
concluded that fixed spin algorithms are usually better tiaditional always spin or block, and that
adaptive algorithms are usually better than fixed spinning.

Inspired by the work presented in [15] and [16], Lim & Agarvjal] (1993) have investigated two-
phase waiting algorithm through analysis and experimearttsa context of a larger machine (a simulator of
the 64-processor MIT Alewife machine called ASIM [1]). Equoiocessor in the Alewife has fobardware
contexts A hardware context is a set of registers that implement tbegssor-resident state of a thread. A
waiting thread on such a multithreaded processor, can Iswatgidly to another processor-resident thread
in a round-robin fashion. This type of waiting, where thettiane is interleaved with executions of other
threads, is calledwitch-spinningand was the only type of spinning used in this work. Consetyd.im
& Agarwal focused on methods for statically determinibg,;,, arguing that the run-time overhead of
doing it dynamically can be comparable to the cost of blogkin machines similar to the Alewife.

A key difference between the work of Karlin et al. and the woflk.im & Agarwal was that the lat-
ter were motivated by the observation that different syootaation mechanisms (barriers, locks) exhibit
different wait time distributions, and therefore need sefgaevaluation. Under the conjecture of Poisson
arrivals of synchronizing threads, they have shown thae#ponential and uniform distributions are rea-
sonable models of wait times for lock and barrier synchratian, respectively. They have proven that a
static choice of,,;, can yield close to optimal on-line performance against avéasary” algorithm that
is restricted to choosing wait times from a fixed family of pability distributions. This result allowed them
to make an optimal static choice bf,;,, based on synchronization type. For exponentially disteibuvait
times (associated with locks), they have proven that seftif;,, = In(e — 1)C =~ 0.54C resulted in a
competitive ratio of %5 in comparison to the optimal off-line algorithm. For unifiay distributed wait

times (associated with barriers), they have proven théhgel 5, = % (\/5 — 1) C =~ 0.62C resultsina
competitive ratio of; (v/5 + 1) ~ 1.62 (the golden ratio).

In their practical experiments, Agarwal & Lim have diffetetted betweematchedand unmatched
programs. A program is matched if the number of concurrantiyable threads assigned to any processor
never exceeds the number of hardware contexts on that parcetherwise, the program is unmatched. In
practice, unmatched programs were simulated by runningrijaal (matched) programs while reducing
the number of hardware contexts from four to two. Alwaysekl@L,;, = 0) was found to be a good
waiting algorithm with performance that was usually clos¢hte best of the algorithms compared. Fixed
spinning of Lspi, = C OF Lgpiy, = % usually produced slightly better results. A particularyevant
conclusion to this work was that unmatched barrier baseticapion should always usé,,;, = 0 (i.e.
always-block). Since most popular microprocessors haleare hardware context, the practical mean-
ing of this recommendation is that any barrier based appdicahould usually choose the always-block
waiting algorithm when other ready threads are waiting fpra@cessor.

Based on the work described above, Kontothanassis et a].(19287) developed a set stheduler
conscioussynchronization algorithms, that contrary to earlier waie supposedly suited for a multipro-
grammed preemptive environment. Such algorithms maydntewith the kernel in order to ensure (for
example) that a lock holding thread will not be preemptediotinnately, their proposed barrier algorithm
doesn’t handle multiprogramming and assumes processesaatitioned among applications. However,
it does allow an application witli’ threads to execute aft processors even whdn > P. Kontothanassis
et al. have pointed out that fixed spin algorithms lead toarnifpolicy for all threads: either all will spin,
or all will block. Their suggested barrier algorithm makias trivial optimal spin-versus-block decision in
each individual thread: for a job composedibthreads running o processors, the fir§t — P threads
to reach a barrier will block while the remainidgwill spin.
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1.5 Motivation

Though theoretically pleasing, the analytical resultsprged in [15] and [21] have an inherent flaw: the
“optimal off-line algorithm” does not qualify to be theectualoptimal algorithm. The following is a simple
example that demonstrates this. Assume a 2-processordmaaetecuting two jobs./; and J;, each
composed of two threads. L¢t{, t1} and {t}, t3} be the threads composing and.J, respectively.
Assume all threads profiles are identical, such that eagathcomputes for cycles and then needs to
synchronize with its peer (this can be viewed both as lockl@arder synchronization). Further assume
that¢] andt are currently executing and that the waiting algorithm usdd,,;,, = C' (which was proven
to be 2-competitive compared to the optimal off-line algfum). ¢} andt? compute foru cycles and reach
a synchronization point, they spin for cycles and blockt! andtZ take their place, compute farcycles,
spin for C cycles and also block, only to be replacedtbyandt? ... and so on. LetV denote the total
number of synchronization points in the computation. Cquosetly, the total duration of the execution
described above is:

|']| N (C(spin) + C’(bloc}’c) + /L(compute)) = 2N (20 + ,LL) = 4NC + 2N,LL
Of course the duration of the optimal off-line algorithm vidhave been:
2N(C+p) = 2NC+2Np

because it would have avoided all the useless spinning.ethde factor of approximately 2 (whefi is
considerably bigger tham as implied by the competition ratio. However, the duratibthe actual optimal
algorithm would have beers 2Ny, if J;'s threads would have spun (for example) fdr' instead ofC,
because this would allow} andt? to execute together and therefore to avoid the context Bwiésociated
with each synchronization point (same goes.Jgy. It follows that the optimal off line algorithm may be
arbitrarily bad in comparison to the actual optimal algorit For example, it = 1 andC = 100, then
the former is approximately 100 times slower than the latter

The scenario specified above is the simplest we could finddardo demonstrate our claim. However,

it fails to emphasize the source of the defect of the optirffeie algorithm. Let{Wi}f\L1 denote the wait
times series of some threadvithin an execution of some parallel application. The pédjphy behind the
optimal off-line algorithm (compared for example to a wagfialgorithm withL,;, = C) is the following:
If Wy < C, than it was advantageous foto spin while it was trying to synchronize for tteth time. If
on the other han@l;, > C, thent should have immediately blocked. The underlying assumgitiat lies
beneath this concept is that a change ofithtk spin-vs-block decision will not affe<{ﬂ/[/i}f.\[:,€4rl which is
of course erroneous.

The focus of this work is on barrier synchronization. Indekdrlin et al. [16] have claimed that
spinning is only worth while if the awaited thread is curigeecuting (because when waiting for “a thread
which is waiting for a processor, it makes little sense teypiThis implies that barrier based applications
will have little chance to synchronize when running on a ligdwaded SMP. In addition, Lim & Agarwal
concluded that unmatched barrier based applications dlmawer spin, which for most processors means
that whenever the number of threads exceeds the numberadgsors, then threads should always-block
(which in any case is a good waiting algorithm according tm1& Agarwal). However, the flaw that
we have identified in the analysis related to the optimallio#-algorithm, leads us to believe that it's
possible that there exists a waiting algorithm which withiewe better exploitation of the SMP, by allowing
barrier based application to compute without having to gwlock at each synchronization point. Our
experience has indicated that threads either always managechronize during their busy-waiting period,
or else they always block. We set out to examine this phenomby a detailed study of how two-phase
waiting for barrier synchronization depends on system.ldgr goal is to gain a better understanding of
parallel barrier based application operating in a mukitag environment, and check the implications of
high loads on such applications. We hope these unders@gsdiii serve designers and implementors of
barrier algorithms and will allow better utilization of SMP
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1.6 Choosing a Scheduler

Aspiring for this work to have a practical value, we wante@valuate barrier synchronization on a SMP
that uses a popular and common scheduler. Nowadays, magiapaperating systems (even non UNIX)
conform to POSIX1.b(formally known as POSIX.4) which is theortable Operating System Interface
[12]. POSIX1.b defines three types of scheduling policies:

SCHED_FIFO Processes running under this policy, run until they givehgyrocessor, usually by block-
ing for I/O, waiting for a semaphore, or executing some obhecking system call.

SCHED_RR Operates just like SCHEPBIFO, except that processes run with a system given quantum
(RR stands for Round-Robin).

SCHED_OTHER Is not defined by POSIX but its presence is mandated. Thissisi¢fiault (and thus,
arguably, the most important) timesharing scheduler ugatdooperating system.

Of course, since it is the most common and widely used, we @angaply interested in the last policy.
Unfortunately, its semantics are not defined by POSIX. Hexewe do know that the default schedulers
of general purpose operating systems such as all the flafai X and Windows are:

1. preemptive, based on quanta, and

2. priority-based, such that I/O bound (interactive) psses are favored.
Our chosen method to evaluate barrier synchronizatiorimitiaded systems is therefore:

1. Evaluating the standard (and relatively simple) SCHER scheduler, which can be thought of as a
simple version of SCHEODTHER where all the priorities of the various processes guakall the
time, and

2. Choosing a popular scheduler as a representative frohinvttte various operating systems’ im-
plementations of SCHEIMTHER; use the previous step’s understandings in orderdtuate this
scheduler, and hopefully be able to project our findings togeemptive priority-based scheduler.

1.7 Thesis Outline

We will evaluate barrier synchronization within a loadedtsyn in a number of stages, with increasing
complexity and realism:

1. One synchronizing job with a compute-bound backgrouad,lo
2. A set of identical synchronizing jobs,
3. A set of heterogeneous jobs, with different synchroimrabehavior,

4. Same as above with priority based scheduling rather thamd-robin scheduling.

Chapter 2 will give a detailed description of the SMP simailate have used in this work. Chapters 3,
4 and 5 will evaluate the SCHEBR scheduler according to the steps described above. Cltaptill
introduce the Linux scheduler, which we have chosen as aseptative for SCHETHER. Chapters 7,

8 and 9 will evaluate this scheduler similarly to SCHIRR. Finally, chapter 10 will discuss and conclude
this work.
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Chapter 2

The SMP Simulator

Throughoutthis work we use an event driven SMP simulatois Ghapter describes this simulator in detail.
Only SCHEDRR aspects of the simulator are reviewed. Details regantieghosen SCHETHER
policy will be discussed in chapter 7 (after the Linux scHedis introduced in chapter 6).

2.1 General

The simulator distinguishes betwesynchronizing and non-synchronizing joiSince threads of a non-
synchronizing job do not interact with each other, it hasignificance if we view each individual thread as
an independent job. Consequently, within the context okthmulator, a non-synchronizing job is always
composed of a single thread. The only form of interactiomien threads belonging to a synchronizing job
is barrier-synchronization. Synchronizing jobs may varyiany parameters, among which are size, gran-
ularity and more. A fixed-spinning waiting algorithm is usadrder to perform barrier-synchronization.

At any time instance, each executing thread within the sitoulis in exactly one of four possible
states:

Ready: The thread is found in the ready queue waiting to be allocatecessor.
Running: The thread is currently running (possibly spinning).

Blocked: The synchronizing thread has decided to block until its p&glt reach the current barrier. The
thread will be moved back to the tail of the ready-queue wherctirrent barrier is completed (upon
the arrival of the last thread from the job).

Finished: The program executed by the thread has terminated.

Figure 2.1 demonstrates how threads may move between thre atades.

The simulator is event driven.  Future events are held in a global priority-queue, ordecedmling to
their execution time. Execution times are expressed inesy(ihtegral number). Obviously, at most one
event may be executed, in any given time instance, for eamtepsor within the SMP. This means that
two different events may have the same execution time iff re executed within the context of different
processors. When an event is executed, it updates the @dlRlclock with its time of execution (since
the simulator is a serial program, there is only one clocRctgransition between the various thread states
described in figure 2.1 is associated with an event. In amdifiynchronizing threads use events to simulate
the end of a computation-phase and the implementation dfah@er synchronization mechanism:

e repeatedly polling to check for barrier completion (maxis@n duration is fixed)
e upon success, push the next end-of-computation-phase even

e upon failure, trigger a yield-event and enqueue to blockatds

15
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thread was allocated
a processor

thread terminated

Ready Running Finished
thread finished quantu J

9ZIU0JYIJUAS 0]
em 1snlu pealiyy

Blocked

<,

Figure 2.1: possible states and state-switches for a sgniing thread. The diagram associated with
non-synchronizing threads is similar, with the differetitat the 'blocked’ circle and the arrows attached
to it should be removed.

We remark the contention due to synchronization was notlsited. This is a reasonable simplification
when assuming that a barrier completion time (with contentis significantly shorter than a context switch
duration. This work focuses on SMP systems for which thiadeed the case. Chapter 6 will demonstrate
that the popular general purpose operating systems withiigyrbased schedulers (like Linux), are such
systems.

Each execution of the simulator gets as input a configuration file which describes the various SMP
parameters (e.g. how many processors it has, how long is texta@switch etc.) and the parameters of
the jobs it executes (e.g. granularity, number of barrieusnber of threads etc.). The configuration file is
described in section 2.2.

The output of the simulator is a table describing how well the synchronization policyfpened, as a
function of the load on the SMP. The output is described itige@.3.

2.2 The Configuration File: Simulator’s Input

The configuration file specifies all the information necegfarthe simulator to simulate a complete SMP
run and output a “graph” describing the results of this ekeou There are three types of lines acceptable
in the configuration-file:

1. Global lines: These type of lines may contain specification of genergbgnies of the output graph
such as the title etc. (not significant).

2. Curve lines: Each such line describes one curve in the resulting grabpis.lihe should contain the
description of the machine: the number of processors coimgdise SMP, the quantum duration,
how long it takes to perform a context switch etc. Each cuiwve is followed by one or more
synchronizing-job lines.
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3. Synchronizing-job lines Each such line relates to the curve-line that preceded itch& line
describes a profile of a synchronizing job (size, granylatt) within the mix of jobs that will
eventually be displayed as one curve in the graph.

Each line is composed out of a sequence of tokens in the foParaimeter=Valueseparated by white
space. As the simulator evolved, a large number of acceppeivthmeters was defined. Table 2.1 specifies
the more important parameters that may appear in a configarafput file and are used throughout the
following chapters.

)
2| =
c| S
T | ©
c (8]
S| @ -
# | parameter name € | o | description
curve-line parameters
1 |p * Processor number.
2 |q * Cycles per quantum.
3 |in * | * | Cycles per context switch - in (wakeup).
4 | out * | * | Cycles per context switch - out (preempt).
5 | nosync * Number of non-synchronizing jobs (each with one thread).
6 | rand.ord Nonzero if the threads in the 'ready-queue’ should be shiiffle

beforethe execution begins, zero otherwise. If this patams
not given than noshuffling will be performed.

7 | job_configs The number of sync-job-lines following the curve-line. Fhe
lines willspecify the synchronizing-job mix which will ptei-
pate in the simulationdefined by this curve-line.

synchronizing-job-line parameters

8 | sync * Number of threads composing the synchronizing job.

9 | barrier * Number of barriers performed by the threads of the specified|

10| spin * | * | Maximum number of cycles for a thread to spin while tryingto
synchronize (before entering the blocked-state).

11| cnput * | * | The expectation 4 - (in cycles) of the time interval a thread

“computes”’between barriers. The computation-intervais |a
normally distributed around this value.
12| rand_cnput si gnma The standard deviations - of the normal distribution used tp
generate computation intervatan be specified in various fo
mats(see section 2.2.1 for detailed description).If thiameter
is not given it is assumed to be zero.

13| i nst ance_num Number of instances of the job with the profile defined in the
current sync-job-line.If this parameter is not given it ssamed
to be 1.

Table 2.1: Simulator’s main parameters.

e All parameter marked with 'percent’ may be followed by a '%gis which means the associated
value specifies a percent out of the quantum interval (vadse@ated withy).

¢ All parameter marked with 'mandatory’ must be specified.

2.2.1 Theo Used to Generate Computation Intervals

This subsection describes the acceptable formatstbe value associated with the paramet@nd_cnput _si gna.
If this parameter appears, it means computation intenfatsecsynchronizing job represented by the sync-
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job-line should benormally distributedaroundy (the value associated witthhput ). The associated value
may be given in 2 formats:

1. Direct-format Only one floating value is given. This value is the actwalf the normal distribution
used (must be positive).

2. Symbolic-formatThe value must be in the format: DENSITY/INTERVAL

e DENSITY A float from the open domain: (0,100) specifying thercentagef the points to be
found in the interval which is defined as follows:
A =[p-INTERVAL , p+INTERVAL]

e INTERVAL A number which defines the domain &fas described above. It must be positive.
In addition, if this number is followed by "%’ it means the nber is given as percentage out
of i (the value associated wittrrput ) in which case it must be in the open domain: (0,100).
Note that in any case the lower bound/ofnust be positive.

If this parameter doesn’t appear in the job-config-line ttencomputation interval is always

2.2.2 Convertingo’'s Symbolic-Format to Direct-Format

Let X be a random variable such thait~ N(u,0). Givenp = ZELSITY andz = INTERV AL, we
want to compute the value of According to the definition gf andz there exists:

Prip—z2<X<p+z)=p

= Pr(—z<X-—pu<z)=

i

and because of the normal distribution symmetry:

él—ZPr(Zﬁ—i):p

= 1—2k =pwherek = Pr (Z < %),
1—
= k="

Sincep is given therk is know. Now, we may look for the value gf = —= such thatt = Pr(Z <y)

using theunit normal distribution’s area tableFinally, we may compute using the formular = —5 .

2.3 The Output Of the Simulator

The output of the simulator is a table specifying how well #ymchronization policy performed as a
function of the load on the SMP. The following subsection déscribe this output in detail.

2.3.1 The SSR Metric

Throughout this work, we will use theuccessful-spin-rate (SSR)order to evaluate the advisability of
spinning. This metric is defined to be the percentage of dasehich a process succeeds to synchronize
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while spinning, excluding the last one to arrive. More foliyi is:

. ZtEST success ful Spin(t)

SR > eyt total Spin(t)

x 100

where:

e ST is a group containing all th8ynchronizingT hreads participating in the simulation.

e success ful Spin(t) is the number of timesdid not block after spinning (because all the threads of
its job have reached the barrier while it was spinning). Thisiber does not include the timewas
the last thread of its job to reach a barrier, since no spgnias performed. The last thread to reach
a barrier always succeeds, we are not interested in thess.cas

e totalSpin(t) is the number of timesentered a spin mode. Again, this number does not include the
timest was the last thread of its job to reach a barrier.

As a rule of thumb, if the SSR is smaller than 50%, we will cdesispinning as not worth while, because
threads failed more than they succeeded to synchronizeodiertning.

2.3.2 Elapsed Time

We remark that SSR is not a perfect metric and should be ugefuttg. For example, if the always-
spin waiting algorithm is used, jobs executing on a preerepcheduler (which is what we use in this
work) will always achieve SSR of 100%. This subject will betfier elaborated later on. Throughout
chapters 3-5 we will solely use the SSR metric in order touatal the profitability of spinning and to gain
understandings of the computation patterns of barriercbapplications. However, throughout chapters 7-
9 we will also expend our discussion to include applicatietepsed execution time, and we will establish
a firm connection between speedup and high SSR.

2.3.3 The Load

Usually, when we discuss SSR (or speedup, when compariimugawvaiting algorithms) it is associated
with or displayed as a function of load. Various aspects afllare considered. For example, in chapter 3,
|ST| is constant, and therefore load is usually associated |\WihiZ'| (NSTis defined to be the group that
contains all theNon SynchronizingT hreads participating in the simulation). Another exampléhe size
ofthe setlr HREADS = ST|JNST, which defines théotal load on the SMP. This measure is usually
used when we discuss heterogeneous job collections.
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Chapter 3

Synchronizing Job in a
Non-Synchronizing Environment
Under the Round-Robin Scheduler

3.1 Introduction

This chapter describes the behavior of a single synchmuogigib in a very simple scenario: the job is
“disturbed” by an increasing number of non-synchronizimgads. We will show and explain the effects
of adding two types of randomization to such a simulation:

1. shuffling the order of the threads in the ready-queue atugtaand

2. adding imbalance by normally distributing the compuatatintervals of the synchronizing threads
(as explained in section 2.2.1).

We will establish a connection between the SSR (succegsifurate), the length of the spinning-interval
and thes-interval (as defined in 2.2.1). We will also introduce #iernating synchronizationoncept.

The X axis of all the graphs presented in this chapter areuihger of non-synchronizing threads that
participated in the simulation.

3.2 Simulation with No Randomization
In this section we will analyze a very simple scenario of s@maulation in which there is no randomiza-

tion. The purpose of this section is to allow us to get familiith the subject of barrier based application
in a loaded environment, as fast as possible.

The parameters used in the simulations are:

p q in | out | sync| nosync | barrier | spin 1 (cmput)
32| 100| 3% | 3% | 11 | 0...200| 50 6% | 1%,10%,100%

The chosen length of the quantum is arbitrary, it has no nmgaom its own outside the context of the
other parameters. It was chosen to allow easy conversiomfiarameters that are expressed as percentage
of a quantum, to the actual number of cycles they represdr.tdtal duration of context switch (6% of
guantum) may seem (and is probably) too long. However, dsiie being considerably shorter than a
guantum duration, it too has no actual meaning of its own énabntext of this work. Its real importance
lies in the manner we classify granularity of jobs. Roughlyd without (currently) addressing the role of
o, the following specify how we classify jobs’ granularity:

21
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1. We usually consider jobs with value which is smaller than the duration of a context switthe
fine grain(and therefore a job with=1% of quantum, is fine grain within this simulation).

2. Jobs for whichu is longer than the duration of context switch but not longpamnt4 or 5 times this
duration, is classified as beimgedium grainfand thus in this simulation; = 10% is considered as
medium granularity).

3. Jobs withu values higher than that, are considecedrse grain(e.g. = 100% is coarse).
The resulting graph is presented in figure 3.1.

No Randomization (out/out12-no-enum)
100 it ‘ i ‘ 4 st ‘ i
i i i i .

90

80

70

60

SSR

50

40

30

20 196 —+—

100% ---%--- sk % * X * N
10 L

21 53 85 117 149 181
Number Of Non Synchronizing Threads

Figure 3.1: The result of a simple simulation with no randzation. The fine-grain jobsu(= 1%, red
line) achieve the best SSR. The coarse-grain jgbs (100%, blue line) achieve the worst SSR. The SSR
achieved by the medium-grain johs £ 10%, green line) is somewhere in between.

3.2.1 Analyzing the Fine-Grain Job’s Behavior:iu = 1%

The fine-grain job’s behavior is presented by the red linegark 3.1. This job must synchronize each 1%
out of quantum i.e. each cycle (because the quantum was taken100 simulator cycles). The following
subsections constitute a detailed analysis of the behafibis job.

3.2.1.1 The First Quantum

To understand the graph we must first understand what happ#resfirst quantum from the point of view
of - J - the synchronizing job:

¢ On startup)’s threads occupy the beginning of the ready-queue

e Immediately after the execution begins, ALL the threads alecated processors and move to
running-state (becausks size is 11 and there are 32 processors).

1This is true because the simulator decides the startup ofde threads in the ready queue according to the ordereejeti-id,
thread-id> and the id of J in this simulation was chosen to be 0.
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e By the time the first quantum endbs threads have finished the 33rd barrier. This is true becaus

— It takes one cycle for each thread to reach the “next” barrier

— It takes two cycles for the job to synchronize: all the thietagl to synchronize; only the “last
one” succeeds; the other threads start to spin and afteryahe heir first “polling”) they
succeed and continue computing . ..

— considering the above, the number of barriers performeddritst quantum is approximately:

cycles per quantum 100

~ 33

1(compute) + 2(synchronize) 3

The above scenario is not dependent on the number of nomsymizing threads participating in the
simulation, what happens next however, does.

3.2.1.2 The Second Quantum fofNST| = 1...42

Recall thatV ST was defined in section 2.3.3 to be the group of non-synchirgntareads participating in
the simulation. We will now show that foiVST'| = 1...42, all of J's threads willimmediately be allocated
a processor after returning to the ready-queue. It's entmghow this fol N.ST| = 42 and the argument
used may be applied {&V ST| = 1...41 in a similar manner.
Along with J's threads there are 21 non-synchronizing threads that &laeefinished their quantum.
The number of ready threads found in the ready queue afteugtand before the first context switch is:
total thread num — 32(running) = (42(nosync) + 11(sync)) — 32(running) = 21
This means that after the first quantum ends and these 21dthge allocated a processor, there are
11 = 32 — 21 vacant processor to use, just enough for all’sfthreads. Unsurprisingly these processors
are indeed allocated to them SinceJ’s threads will complete all the barriers in the second cquiantwe
chose 50 barriers for the simulation), the simulation willlevith 100% SSR.

3.2.1.3 The Second Quantum and Onwards fofN ST | = 43...52

The above “ideal” ends of course wheNST| = 43. In this situation there aren’t enough processors to
allocate for all ofJ's threads: ten threads get allocated processors but thiergteremains in the ready
gueue. As a result, the jobs fall into atternating synchrorzation patternin which the processes in the
job occur as two contiguous groups in the ready queue. Thegfiosip reaches the barrier, spins, and
blocks. When the second group runs, the barrier is complatatiall the processes in the first group are
released again into the ready queue and so on. Alternatirahsynization is discussed in detail in section:
4.3. As aresult of the alternating synchronization, the 3Rduced.

The argument explaining why is divided to two thread-groups (of the sizes: 10-runningreddy)
for [NST| = 43 after the first quantum, may also be appliedoST'| = 44...52:

e |NST| = 44: the job is divided to thread-groups: 9-running + 2-ready
e |NST| = 45: the job is divided to thread-groups: 8-running + 3-ready
e ...

e |NST| = 52: the job is divided to thread-groups: 1-running + 10-ready

The SSR achieved faN ST'| = 43...52 is further discussed in section 3.2.1.5.

2This is true because J's threads occupied the beginningeaktidy queue on startup. Therefore they were allocatedgsors
first. Therefore they were the first to have finished the firstnum. Therefore they are again occupying the beginninpeoféady
queue.
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3.2.1.4 The Cycle of the Simulation{NST| > 53

From the point whehN ST'| = 53 - which means that the number of threads participating irsitimellation
iS|THREADS| = |NST|U|ST| = 64 - we notice the simulation enters a cycle. After the first quan
finishes there are 32 non-synchronizing threads waitingpénready queue and therefore synchronizing
threads do not get allocated a processor. This means thaettond “chunk” of 32 threads executing
on the SMP doesn't influence the resulting graph at all, theyly consume one complete quantum.
After the 2nd quantum is over, the other 32 threalis 11 threads + the remaining 21 non-synchronizing
threads) will get a processor and the simulation will betexaetly is it did when N .ST'| was 21 (i.e. when
|THREADS| was 32) .We conclude that for=1,2,3... andi = 0,1, ..., 31 there exists:

SSR(INST|=21+i) = SSR(INST|=21+i+32c)
or in other words:
SSR(ITHREADS|=32+1i) = SSR(THREADS|=32-(14+¢)+1)

The cycle is demonstrated in figure 3.2.

| NST|: 1 20 21 42 43 52 53 84
| THREADS | : 11 31 32 53 54 63 64 95

@ @ @ @

Figure 3.2: The various stagesdbin the simulation and the simulation’s cycle:

Q) The SMP is not fully utilized, there are more processbhastthreads.

(2) |THREADS)| isn’'t smaller than the number of processors but is small ghdor J's threads
to be allocated processors immediately after returningeéa¢ady queue (in the beginning of
the second quantum).

3) The load is big enough to caud¢o alt-synchronize: in the begin of the second quantum only
a portion ofJ’s thread are allocated processors.

4) The simulation’s cycle.

3.2.1.5 Increasing the Number of Barriers

The sections above imply that the high SSR of the fine-gramukition (always more than 77%) was
achieved purely because of the relatively low number ofieerthat was performed kyand the relatively
big weight the successful spins of the first quantum haveerAftis initial “grace period”, the simulation
starts to perform alternating-synchronization and the 88#s below 50% (this 50% boundary is ex-
plained in section: 4.4). Therefore increasing the numbbaaiers should reduce the weight of the grace
period and cause the SSR to decline. Figure 3.3 demonstiniges

3.2.2 Analyzing the Medium and Coarse Grain Jobs’ Behavioryu = 10%, 100%

All the arguments that were applied to analyze the case iclwhi- the computation interval - is 1% of
guantum, also hold fqu=10% and«=100%. For=10% the difference is that by the time the first quantum
endsJ’s threads have finished only 8 barriers or so because:

cycles per quantum 100

10(compute) + 2(synchronize) 12
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Effects of increasing barrier number (out/out12barrier-tics)
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Figure 3.3: This figure shows the effects of increasing thalmer of barriers in the fine-grain simulation.
It is obvious the more barriers there are, the lesser the S&Rsjnce the weight of the grace period
diminishes.

For 1=100%,J didn't finish even one barrier in the first quantum.

The curve associated witl=1% appears to present a far better SSR than the curves atssbwaiith
1#=10% andu=100%. But, as explained in section 3.2.1.5 (and demoestiatfigure 3.3), this happens
due to the relatively small number of barriers in the sinmatatcausing the weight of the successful spins
in the first quantum to be much smaller for 10% and 100% that%6r

To further demonstrate this, figure 3.4 shows the resultreftksimulations identical to those displayed
in figure 3.1 (in the beginning of the chapter) with the diéfiece that now, more than 50 barriers are used.
By increasing the number of barriers we decrease the wefghedirst few quanta successful spins and
increase the weight of the unsuccessful spins caused hyatiteg synchronization. As expected, as we
increase the number of barriers, the graph shows that the @ssociated witlk=1% gets closer to the
other curves.

3.3 Randomizing the Order of the Ready-Queue

This section describes the results of a simulation whictiésiical to the previous simulation we discussed
(defined in the beginning of section 3.2) , with the differetitat the order of the threads in the ready-queue
was shuffled on startup. Figure 3.5 presents the result®thiulation.

The main effect of this shuffling was that the scenario of trs few quanta in the simulation - which
was described in detail in the previous section - didn't leappSince the threads aren’t continuously
ordered in the ready queuggenters an alternating synchronization pattern from thénpéag of the sim-
ulation and doesn’t get the “grace period” as before. As theré shows (and as expected), the results are
fairly similar for the different computation intervals.

3.4 Adding Variability to the Computation Intervals

This section describes the results of a simulation idehtiicthe one described in the previous section (in
which we shuffled the order of the ready queue on startup, i difference that now we add imbalance
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No Randomization With 200 Barriers (out/outl2-more-barrier2)
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Figure 3.4: As we increase the number of barriers, the diffee between the SSR achieved by fine grain
jobs, gets closer to the SSR achieved by coarse grain jobs.

Shuffle Ready-Queue On Startup (out/out13-no-enum)
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Figure 3.5: The results of the simulation after shufflingrbedy queue on startup: no grace period causing
the SSR to be low from the moment the number of running thrisanigger than the number of processors.
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to the simulation by normally distributing computationantals of the synchronizing threads (as explained
in section 2.2.1). Figure 3.6 presents the result of thisition. The computation intervals of the synchro-
nizing threads were normally distributed with90/15%, which means 90% of the computation intervals
fall into [85%...115%] out of: (the value associated with te@put parameter). Making the length of the
computation interval random, influences its values as¥allo

e For 1-cycle-computation-interval (computation interigal % of quantum, quantum is set to be 100
cycles), 90% of the values will be in the ran@e85...1.15]. Since a computation interval represents
a number of cycles, it must be discrete and therefore thesgate always (or with probability close
to 1) roundedto 1.

e For 10-cycle-computation-interval (i.e. computatioreivial is 10% of quantum), 90% of the values
will be in the rangg8.5...11.5] which means that the effective values arédin.11].

e For 100-cycle-computation-interval (i.e. computatioteival is 100% of quantum) the effective
values are if85...115).

Shuffle And Normally Distributed Computation Intervals (out/out14-no-enum)
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Figure 3.6: Adding imbalance to the simulation by normallstibuting computation intervals around
with 0=90/15%, resulted only in the decline of SSR associatedwaitlise grain jobs. The SSR of fine and
medium grain jobs have (more or less) stayed the same.

The figure shows that the results for computation-inter9aland 10% stayed more or less the same
while the results for computation interval 100% have dexdin To make sure the reason for the curves
associated with=1%, 10% have stayed the same wasn't the discrete nature sfrttulation, we ran the
same simulation but with 10000-cycles-quantum insteaddof Figure 3.7 shows that the results of this
simulation (10000-cycles per quantum) which are almosttidal to the results displayed in figure 3.6
(100-cycles per quantum). This fact verifies our hypothesis

3.4.1 The Reason Why Only Coarse-Grain Jobs Were Affected Bithe Random
Distribution of Computation Intervals

Let the quantum be 10000 cycles. The spinning interval is thise is 600 cycles (6% out of quantum).
Let's examine the computation interval expectatiohdnd effective values, relatively to tleinterval (=
90/15%):

L range of 90% | o-interval | _ZInlereal,
out of quantum| in cycles | of the values
1% 100 [85...115] 30 0.05
10% 1000 [850...1150] 300 0.5

100% 10000 | [8500...11500] | 3000 5
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Random Compute Intervals with 10000-cycles-quantum (out/outl4c)
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Figure 3.7: This figure presents the results of a simulatientical to the one presented in figure 3.6. The
difference between them is that in this simulation the quarised was 10000 cycles instead of 100. Since
the two figures are almost identical, it proves that the discnature of the simulation wasn't the reason
why only the coarse-grain jobs (blue lines100%) was affected by the normal distributing of compuotati
interval’s length.

For coarse-grain jobsu£100%), thes-interval is much bigger than the spin-interval. On the othe
hand, for fine and medium-grain jobg<1%,10%), thes-interval is smaller than the spin-interval. For a
coarse-grain job, if we get two threads with different comapion intervals that are far enough apart (say
the first is near 8500 cycles and second is near 11500 cychen)dbviously the first thread will spin
unsuccessfully. The-interval (= 3000 cycles) is big enough compared to the spi@rval (= 600 cycles)
to make most of the spins unsuccessful. This is the reasoronligythe curve associated with coarse-grain
jobs was affected by the random distribution of computaitibervals.

Most of the SSR associated with the coarse-grain jobs isfanound 10% which means that for each
barrier, on average, only one out of 10 threads that actapliy performs successful spinning (the eleventh
thread to reach the barrier doesn’t count since it doesnfopa spinning) .

We will now demonstrate the principal stated above in the segtion using a few simulations . ..

3.4.2 Various Computation-Intervals with 15% o-Interval

In this simulation we choose theinterval to be 15% out of varioys values. We will show (for a constant
spinning-interval) that increasing- which means increasing tleinterval - causes the SSR do decline.

The parameters of the simulations are:

p q in | out | sync| nosync| barrier | spin | rand 1 (in percents o
_ord out of quantum)

[32]1000] 3% [ 3% [ 11 [ 0...70] 50 [ 6% | 1 | 20,25,30,35,40,4550,60,70,9000/15%

The o-intervals and the effective values for the various computation-intervals are displayed irleab
3.1

The result of the simulation is displayed in figure 3.8. The figure strengthens the hypsidhstated
above. Itis clear that for bigger-intervals (with respect to the spinning-interval), lov83R is achieved.
Notice also the implied continuity - demonstrated by therigubetween the mediunu£10%) and coarse
(41=100%) grain curves displayed in previous figures.
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1 range of 90% | o-interval | difference
out of quantum| in cycles| of the values from #%
spin-interval
15% 150 [127.5...172.5] 45 -15 0.75
20% 200 [170...230] 60 0 1
25% 250 | [212.5...287.5] 75 +15 1.25
30% 300 [255...345] 90 +30 15
35% 350 [297.5...402.5] 105 +45 1.75
40% 400 [340...460] 120 +60 2
45% 450 [382.5...517.5] 135 +75 2.25
50% 500 425...575 150 +90 25
60% 600 510...690 180 +120 3
70% 700 595...805 210 +150 3.5
80% 800 680...920 240 +180 4
90% 900 [765...1035] 270 +210 45

Table 3.1:c0-interval values and computation interval effective valas a function of:. Recall the the
spin interval is 60 cycles (6% of the quantum which is 1000es)c

various computation-intervals with 15% sigma-interval (out/outl5b)
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Figure 3.8: This figure shows 12 simulations with various patation-interval. Ther-interval is 15%
of the computation-interval which means that if the compatainterval gets bigger then so does the
interval. The figure proves that for biggefinterval a lesser SSR is achieved.
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3.4.3 Variouso-Intervals with a Constant Computation-Interval

The simulations performed in this section are similar tssthperformed in the previous section with the
difference that now the-intervals changes with respect to a constantVe expect of course that for bigger

o-intervals we will get lower SSR.

The parameters of the simulations aré:

rand

p q in | out | sync| nosync| barrier | spin I o
_ord
321 1000| 3% | 3% | 11 | 0...70 50 6% 1 5% | 90/20-100:20 %
10% 90/5-55:5%
100% | 90/5-55:5%

The result of the simulation

is displayed in figure 3.9. This figure also strengthen theottygsis stated

above. Again, it is clear that for bigger’s, lower SSR is achieved.

3The meaning of: x-y:j is the list of values that starts fronemds in y with a difference of j between each two successamehts

in the list.
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Figure 3.9: Figures a,b,c show simulations witt6%,10%,100% respectively: we can see for gathat
for biggero (interval) a lesser SSR is achieved.
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Chapter 4

Homogeneous Collection of
Synchronizing Jobs Under the
Round-Robin Scheduler

4.1 Introduction

This chapter describes the behavior of a collection of hanegus synchronizing jobs and explains the
alternating synchronizatiomoncept mentioned in the previous chapter. Each simulatoains an in-
creasing number of synchronizing jobs with an identicafifgo We will show that such simulations be-
have more or less the same regardless of the chosen sizegyfrttleronizing jobs and (from some point)
regardless of the load, due to the alternating synchrdpizeffect. There are no non-synchronizing-jobs
participating in the simulations described in this chapfEhe X axis of most graphs presented in this
chapter displays the number of synchronizing jobs pawding in the simulation.

4.2 Simulation and Results

The parameters Used in the simulations are:

p q in | out sync nosync| barrier | spin I o randord
32| 100 | 3% | 3% 2,3,4,5, 0 50 6% | 1%,10%,100% 90/15% 1
10, 11, 15, 16,
22,25, 32

The resulting graphs are presented in figure 4.1.

4.3 Alternating Synchronization

4.3.1 Motivation

When examining figure 4.1, an immediate question that comesinid is why do curves associated with
1=1%,10% converge to a fairly high value regardless of thé [®aFor instance, how come there’s no
difference between the SSR achieved by a system runninglikbgbthe size 10 (150 threads) and the
SSR achieved by a system running 150 such jobs (1500 threatts result is quite surprising as we

33
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computation interval is 10% of quantum Homo g eneous Jo bS

computation interval is 1% of quantum
computation interval is 100% of quantum
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Figure 4.1: TheX axis specifies the number of jobs participating in the simulatitobs’ size is specified in
the graph’stitle. The& axisis the SSR. We notice thét) the lines associated wifli=1,10% start at 100%
SSR and?2) drop until they converge to some value below 50% but above @%ept for jobs composed
of two threads that converge to zero, the difference is éx@thin section 4.3.5).
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expected that more jobs participating in the simulation isult in smaller SSR. As mentioned before -
with the exception of jobs composed out of two threads - the 83on negligible both for 1% and for
10% computation intervals. Table 4.1 specifies the SSR telwthie various curves converge.

Job’s I
size | 1% | 10% | 100%
3 25 24 20
4 324 321 | 185
5 36.1| 35.9| 16.5
10 | 415|39.1| 115
11 | 41.7| 38.5| 10.9
15 | 419 356| 9.2
16 | 41.8| 348| 8.8
22 | 40.7| 308| 7.2
25 [ 39.9|299| 6.6
32 | 376]|249| 55

Table 4.1: The SSR to which the various simulation converge.

4.3.2 Threads’ Dispersal in the Ready Queue

The first thing we did when we tried to understand this phemamevas to check how do threads of some
arbitrary job -J - “scatter” in the ready queue. The simplest thing to do wamé&asure the distance
Dist(J) betweerll; andT whereT is J's thread which is closest to the tail of the ready queueBnid
J's thread which is closest to the head of the ready queue.

For example: in the following figurel, is composed out of four threads;, T», T3 andTy, all of them
are in the ready queue. In this examplést(J) = 8 :

The Ready Queue

Tall T1|H1| H2| T3 | H3| H4| T4 | H5| T2 | H6| HY Head

Distance between T1 and T2 is 8

We've changed the simulation such that fer1%,10%, wheneveALL of J's threads are found in the
ready queueDist(J) will be printed. To our surprise, the simulation didn’t grieven a single number.
This of course means that there’s no time instance in whitlofal’s threads are in the ready queue
simultaneously (with the exception of the beginning of timedation). We refined the simulation such that
whenever there’s a change in the dispersal’'®thread among the various SMP’s states, it will print the
pair: <Dist(J), |RQ(J)|> where:

RQ(J) = {J'sthreads foundin the ready queue}

We found that if we defin®ist(J) to be (-1) whenRQ(J) = (), through out all the simulation (except on
startup) the following invariant holds:

Dist(J) — |RQ(J)| = —1

which means the threads RQ(J) are contiguous in the ready queue at any time instance.
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4.3.3 Reason WhyRQ(J) is Always Contiguous

After carefully examining the events generated by the satiorh, we discovered why jobs are contiguously
ordered in the ready queue:

The first step: is to show that the probability that all % threads will be allocated a processor on startup
is very small:

e LetJ be some job in the homogeneous job collection.

Let « be the above probability (that all dfs threads are allocated a processor on startup).

Let p be the number of processors in the SMP (in our gase32).

Letj=|J|, 2<j<p.

Let k£ be the number of jobs participating in the simulation.

e Letn be the number of threads participating in the simulatios: £ x j, n > p.

Before the simulation begins, the ready queue is shuffledrifpumly choosing a permutation of the
threads. This means:

= [(5) ol = () ()

becaus j g+ (n — j)!| is the number of permutations in which all 8% threads are found at the

p “first” places of the ready queue (i.e. all of them will be alided processors on startup) atlds the
total number of permutation. By developing the above exgioeswe get:

CT - T nm—0-m-2)--n—j+1) Ly

P! =3 pp=1)-(p—2)-p—j+1)  qop
11

which actually also have a combinatorial explanation beedlne numerator is the number of combinations
to arrangej items in (the first)p places and the denominator is the number of combinationsange;
items inn places. By further developing the above expression we get:

os (2

since forb > a > 0, r > 0 there exists:

a-+r

a (a+r)-b—(b+r)-a ab+rb—ab—ra
b+r b (b+r)-b N (b+7r)-b

r-(b—a) positive
(b+7)-b  positive

H —+r a L =1 [ p—i H p1
which means thag- > § and therefore we can replace edtH in [[;_, (nﬂ) with 2.

By using the above formula we conclude that in our simulaffon» > 100, j > 3) « is smaller
than 0.03 and for larger valuesofbigger load) andl (bigger jobs) « converges to zero.

1Actually, we could have approximateds upper bound to bé%)] from the beginning, because this expression’s combiratori
meaning may be: the probability to chogséems (in our case the “firstp locations in the ready queue) from within a collection
of n items (all the possible locations in the ready queue). Thabability is bigger tharx because it allows the same location to be
chosen more than once.
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Now, we will explain why RQ(J) is contiguous: Let A denote the group af's threads that were allo-
cated a processor immediately when the simulation begasums (without loss of generality) that £ .
Also assume thal C J i.e. J containsA but is not equal to it. As stated in the previous paragraph thi
assumption holds with probability close to 1.

Sinceyu - the expectations of the computation intervals we're disig - is 1% or 10% (out of the
guantum)A’s threads reach the first barrier in the first quantum. Thast & spin, but fail because threads
in J \ Aaren’'trunning yet. As a resudt's thread move to “blocked” state.

Let T} be the last thread dfto be allocated a processor for the first tirfig starts to compute and soon
enough it reaches the first barrier. It immediately succéadgnchronize with the rest of's threads as it
is the last one to reach the first barrier. Note that currdontieveryT =£ Ty, T € J, T is either “running”
(spins while waiting fofT}) or “blocked”.

Let B denote the group of’s threads that are currently in “blocked” state. We knowt tBa~ ()
becaused C B andA # (). B’s threads move from “blocked” state to the end of the readgugudue
to the factT}, has reached the first barrier. Of course wligs threads are moved to the end of the ready
queue, it is done in a contiguous manner and thereRgpé.J) is continuous.

In the meanwhild; (along with the other threads ih\ B if exist) continue to compute and reach the
second barrier. Now, becaus¥s threads are currently at the end of the ready qudueB’s thread start
to spin, fail and block. They will remain in this state unfils thread will be allocated processors again.

This scenario repeats itself untilfinishes. WhenJ performs this type of computation we say that
performsalternating-synchronizatioar that.J is alt-synchronizing

4.3.4 lllustration

Figure 4.2 illustrates alternating synchronization.

The data presented in the figure was taken from a simulatiotagong 19 jobs where each job is of the
size 10 andl is 10% out of the quantum. The figure shows how threads of tmtgierary jobs are divided
between the three states: “ready”, “running” and “blockad’a function of time.

Let'’s focus on the rectangle associated wigh(job number 0). On the simulation’s startup all.&fs
threads are in the ready queue. After a while as indicatedhi&ygteen color (time=22...23) we can see
that two threads of the job are allocated CPUs. These thread®r a while, reach the first barrier, spin,
fail (since the other threads aren’t running yet as inditdtg the red color) and go to blocked state as
indicated by the blue color (time=44...45). The width of agr stair is approximately 22 cycles:

3(context switchin) + 10(compute) 4+ 6(spin) + 3(context switch out)

This scenario continues to happen as indicated by the gteroase and every time the executing threads
end up in the blocked state. This is true ufiijl- the last thread of, - gets allocated a CPU and reaches
the first barrier (time=141) in which case all the blocked s move to the ready queue as indicated by
the red “wall”.

T, continues its computation and reaches the second bamiar,fail and block as indicated by the
blue “corridor” with the green beginning above the red “Wélime=141...259).

At time=260...268 the threads RQ(.Jy) reach the head of the ready queue and are allocated CPUs.
Note that they don't get the CPUs all at once but rather gebtipe@dually because there aren’t nine CPUs
available at the same time instance. This is the reason wtimet281. ..282 two threads joify, in the
blocked state (the thin blue line) only to move immediatelytie end of the ready queue because the last
thread of.J, has finally reached the second barrier.

Note that at time=283. ..284, three more threads join thextthreads that are already at the end of the
ready queue (height of the red “wall” at this point is 6 not B)happened because the SMP has finished
preempting them (due to unsuccessful spinning) but afeectimtext-switch-out ended, the second barrier
was already complete, so instead of placing these threablimcking mode, the SMP moved them to the
end of the ready queue. The five threads that joifiedidn’t contribute even one successful spirat that
time.
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Threads distribution among SMP’s states
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Figure 4.2: This figure describes how the threads of thregrarp jobs are divided between the SMP
states: ready, running and blocked. Each job has 10 thré&us simulation was composed of 19 such
jobs. Theu of these jobs is 10% of the quantum.
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4.3.5 Difference Between Jobs Composed of Two Threads andetiiRest

In figure 4.1 we notice that the graph associated with jobsi®fkize 2 doesn’t behave as jobs composed
out of more threads. Instead of converging to some valuedsiv25 to 50 the curves converge to zero.
This should come as no surprise in light of alternating symcization since - as mentioned before - the
SSR metric doesn’t embody the “successful spin” of the lastad to arrive to a barrier because this thread
actually didn’t perform spinning. This means that only th@Successful spin” of the first thread to arrive
to a barrier affects the SSR thus making it converge to zero.

4.4 The Consequences of Alternating Synchronization

4.4.1 Expected SSR

We've seen that jobs with relatively small computationiméds (with respect to the quantum)i.e. jobs that
perform “a lot” of synchronization have a tendency to fatbilan alternating synchronization pattern. For
this type of computation the SSR has a 50% upper bound. TtrisdHecause the best we can expect from
a thread is to successfully spin at the first barrier it readhéhe quantum (causing the blocked threads in
its job to move to the end of the ready queue) and fail spinairthe next (causing it to be preempted and
enter blocked state). For every successful spin a threddrpes, it also performs an unsuccessful one.
As shown at the end of section 4.3.4, sometimes a thread ti@gesitribute even a single successful

spin in a quantum. Instead it joins the group of threads tfeaitreblocked state. This is the reason why the
overall SSR is always less than 50%.

442 CPU-Time Wasted

When a job is alt-synchronizing, the SMP system pays a hedeg in terms of CPU time:

Let J be a job that performs alternating synchronization. Thiamsehat/’s threads are divided in to
two subsets A and B - which compute alternately such that each group causesthiee @ move from
blocked state to the end of the ready queue. We will (optio#y) assume that each threadJralways
manages to contribute one successful spin when it is aldaprocessor.

The following is a description of what happens when the tiiseaf a subset4 for example) are
allocated processors:

e Eachthreadin A is scheduled. This consumgs;c.: switch in Cycles per thread.

e All of A’s threads begin to compute, reach the first barrier in theeotiquantum and spin while
waiting for Tj - the last thread to reach that barrierz{fis the number of cycles it todk, to reach
the first barrier then this stage consuntgaycles per thread. Since the computation intervals are
normally distributed, it is safe to say that in most casgs: temput Wheret ., .: is the expectation
of the normal distribution. We therefore conclude that stégye consumed no less thap,,... cycles
per thread.

e A’s threads continue to compute, reach the second barriar,fap) and block. This stage consumes
on average:

tcmput + tspin + tcontewt switch out

cycles per thread.

The above scenario also holds for subBetIn each such scenario the subset “passes” two barriers and
therefore the overall CPU time consumedXig:

N o

|J| : (tcontemt switch in + tcmput + tcmput + tspin + tcontezt switch out) :

|J| : (2tcmput + tspin + tCO’ﬂtELEt .switch) :

N | o
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whereb is the total number of barriers performed By Since in most systems; i, > tcontet switch W€
get that the overall CPU time consumedbign’t less than:

|J| -b- (tcmput + tcontewt switch)

This means each dfs threads wastes. et switch CyCles on context switching (or spinning) fevery
temput Cycles of computation it performs or in other words, for gMearrier it performs.

4.5 The Role of Shuffling the Ready Queue on Startup

So far we haven't discussed why the ready queue was shufflgeblsyartup procedure of most simulations.
This seemed reasonable at the beginning of the discusst@ube we assumed threads aren’t arranged in
any particular order in the ready queue. This assumptiorpl@agen to be wrong when we've witnessed
alternating synchronization. Shuffling however has an irtgrt effect on the simulations: it causes the
jobs to alt-synchronize right from the beginning of the diations. This is true because in most cases
(from a certain load) a job’s threads aren’t allocated pssoes all at once. Therefore, some threads of the
job end up in blocked state (failing to synchronize at the besrier) which is all that is needed for a job
to begin alternating synchronization.

In section 3.2.1.3 (page 23) we've seen that the SSR achimvadob is very high when its threads are
allocated processors all at once. When the ready queueshaifiied, this is indeed the case during the first
few quanta (which we've named the “grace period”). After dlevhowever, the grace period ends, the job
starts to alt-synchronize and the SSR drops dramaticadlgéaonstrated in figure: 3.3 page: 25).

The shuffling of the ready queue therefore allows us to perfsinorter simulations and concentrate
on the effects of alternating synchronization while magkime “white noise” of high SSR achieved in the
initial grace period.

Figure 4.3 shows the results of the original simulation wité difference that the ready queue is not
shuffled on startup. We can see that graphs associated Wwgfthat have sizes different than a power of
2 behave like the original graphs but achieve a higher SSR f@the “grace period”). As expected these
SSRs are dramatically reduced when we increase the numbarrér from 50 to 500 (and thus reducing
the weight of the grace period). This is demonstrated in éig4r4.

For obvious reasons, this isn’t the case for jobs with sizasdre a power of two: For 1% computation
interval, the SSR is 100% because the jobs’ threads alwayagego execute together (one might say that
the jobs are gang scheduled [10]). For 10% computationvatethe SSRs get smaller as the size of the
jobs get bigger. This happens becausesthiterval is big enough to allow the scenario described ;144.
(in which a thread doesn’t contribute even a single sucuéspin) to occur and the bigger the job is, the
chances this scenario will happen increase.

4.6 Intermediate Load: the 50%-SSR Threshold

When we examined figure 4.1 (page 34) the most obvious phemameas indeed the asymptote caused
due to alt-synchronizing. However, there is another irstiimg phenomenon presented in this figure:

There exists an interval between the point where the systéofl (32 threads) and a point where there
are more threads than processors, for which the SSR is Fagtyi.e. bigger than 50%. This 50% threshold
seems a natural limit for examining whether spinning wasfjad: we can conclude for certain that for
SSR < 50% the parallel jobs would have consumed less CPU time had ey thhe “alway-block” policy
(the opposite however is not certain because we can’t betlsat@ high SSR ensures better throughput;
this issue will be addressed later).

Figure 4.5 displays the data that were presented in figurbut.tvith a smaller x-range (the first 100
threads) which allows us to focus on this phenomenon.

Figure 4.6 summarizes these results specifying - N - the maxiumber of surplus threads for which
the SSR is bigger than 50%, and the average SSR from the ple@rewthere are more threads than proces-
sor until N. We can see that fine grain jobs achieve biggeldgsithan medium grain jobs. We can also see
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Figure 4.3: This figure presents the result of a simulati@nittal to the original (see figure: 4.1) with
the difference that the ready queue is not shuffled on stafop sizes which are not powers of two, the
behavior is similar but SSRs are higher because of the “graded”. For power-of-two sizes: jobs with
1% computation intervals are gang scheduled and theredbievee 100% SSR. The SSR achieved by jobs
with 10% computation intervals gets smaller as jobs’ siztdigger.
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Figure 4.4: This figure is similar to figure: 4.3 but the sintidla uses 500 barriers instead of 50. SSRs are
reduced because the weight of the grace period is lessened.
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Figure 4.5: The X-axis presents the number of threads [jaatiog in the simulation. The Y-axis is the
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range of 100 threads. Itis clear that jobs with sizes less 25¢ still manage to achieve a decent SSR when
there are more than 32 active threads.
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that smaller fine grain jobs do better than larger ones. Themad surplus appears bounded from above
by the number of CPUs (aside from jobs with size 2, surplumialier than 32).

The surplus threads for which a simulation achieved
a successful-spin-rate higher than 50%
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Figure 4.6: This figure summarizes the results displayedyuwré 4.5. The height of the bar - N - is the
maximal number of surplus threads for which the simulatidmeved SSR> 50%. The 'avg’ and 'min’ on
each bar specifies (respectively) the average and the mini&8R achieved by the simulations composed
from [33...32+N] threads. The data specified in the paresghés the number of jobs (not threads) that
participated in the simulation when the 'min’ SSR was acbékv
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Chapter 5

Heterogeneous Collection Of
Synchronizing Jobs Under the
Round-Robin Scheduler

5.1 Introduction

5.1.1 Motivation

In the previous two chapters we have examined two fairly &nspenarios: (1) a synchronizing job in a
non-synchronizing environment and (2) a homogeneousatmte of jobs all having an identical profile.
The analysis of these scenarios suggested that when usiogd-robin scheduler, fine/medium grain jobs
behave as follows:

1. When the load is smaller or equal to the number of CPUspsmirs almost always successful and
worth while (trivial). Of course for such a load it's alwayseferable to spin (regardless of grain) as
there aren’t any other threads waiting for execution.

2. Forintermediate load (more threads than #CPU but less2i#@PU), the SSR gradually drops from
the neighborhood of 100% to some value below 50% as it faltsan alt-synchronization pattern.

3. For bigger (than 2#CPU) loads, the computation is alwaygedn an alt-sync computation pattern.

It is far more likely that an executing job collection will meore complicated and diverse than the two
scenarios described above. We would like to show that ourlusions are independent of the job collection
i.e. that regardless of its specifics, there exists an irediate load interval in which fine/medium grain
jobs will achieve SSR> 50%, gradually entering an alt sync computation pattern.

5.1.2 Method

Numerous simulations were conducted with all sorts of jdections — usually generated using some sort
of randomization mechanism — and all of them (aside for soxaeions) verified the above conclusions.
This chapter will present the results of some of these sitiaula and will point out the “exceptions to the
rule”.

The parameters that determine the grain of a job are maialydo. Therefore, our main focus in this
chapter will be on those two parameters. Section 5.2 wik@nethe result of a simulation that preserves
the connection we used so far betwgeand o namely: 0=90/15% (i.e. thesr-interval will always be
15% out ofy). However, jobs participating in this simulation will havarious sizes and-s. Section 5.3
will “break” this connection between ando for the first time: We will use a constastinterval across
different (relatively big)u-s. This simulation will present the only exceptions we fdtm the conclusions
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stated above. Finally, section 5.4 will present the redudt imulation that for each job chooses randomly
and independently both ando.

5.1.3 Distribution Representation

In this chapter the following notation is used to represéstrithutions ofu, o and size of jobs. A distribu-
tion is specified as a comma separated list of pairs in the:form

valueg : weighty , valuey : weighty , ..., value, : weight,

such that: ,
weighty
" 7
>, weight;

is the probability thavaluey, will be chosen. Each value may be expressed as an intervag ébtm:
begin — end

which means that some numbet - that satisfiesbegin < o < end should be uniformly chosen. For
example p may be defined to be:

1-20:3, 21-30:2, 31-40:1

This means that there’s a 50% chance thatill be some (uniformly chosen) number from the interval
1-20, 33.33% chance thatwill be from 21-30, and 16.66% chance thawill be from 31-40.
o may be expressed like this:

80/1—-15:3, 90/16—30: 1

which basically means the same thing as explained abovedwuthes-interval is chosen uniformly e.g.
there’s a 75% chance that= 80/« wherea is a number chosen uniformly form the interval 1-15.

5.1.4 End Point of Simulations

All the simulations presented in this chapter was configtweshd along with the first thread that finishes
its computation. This way the results of the simulationd wit be distorted by the load that gradually
decreases towards the end of the simulation (when only patteothreads have finished and the rest
operate in a less loaded system).

5.1.5 Simulator's Random Permutation Mode

Contrary to previous chapters in which each curve in eacplgmas associated with an independent
simulation sequence, curves in this chapter describeqmsrtdf the job collection executing in parallel
within the same simulation. Each curve describes the aee8&R of a differenpb class Each job class

is associated with one pair from either ther theo distributions (as defined above in section 5.1.3). In
each simulation we must choose the distribution accordirvghich the simulator will classify the jobs. A
sequence of simulations is constructed as follow:

1. As usual, the simulator receives a configuration file dpegj all the parameters describing the
simulation. These include the various distributions asneeffin section 5.1.3.

2. The simulator also receives two additional parameters:

(&) A number - N - that specifies the maximal number of threadsatticipate in the simulation
sequence, and

(b) The parameter according to which jobs will be classif@eb-classes( or o).
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3. Then, by using the given distributions, the simulatorateely chooses jobs and add them to the

job sequence up till the point where the total number of tlisemposing the jobs in the sequence
exceeds N.

4. Letjy, jo, ..., jr denote the randomly chosen job sequence. The simulatocaviliiuctt simu-

lations such that théth simulation will be composed from jobg; , jo, ..., j; . The number of
threads in the-th simulation is the-th x-value displayed in the graphs. Each y-value assatiate
with this x, denotes the SSR of some job class (achieved wazh x).

When the simulator is instructed to behave as describedeavevsay that the simulator runsriandom
permutation mode

5.2 Theo-Interval as a Percentage ofu

5.2.1 Description

In this section we chose to preserve the connection used smfaeen: ando and therefore define
to be 90/15%. However, the and the size of the jobs in this simulation are given as tistions. The
parameters used in the simulations are:

p q in | out| sync | nosync| barrier| spin 1 o randord | seed
64 100| 3% | 3% | 4-7:9 0 50 6% | 1-20%:1 | 90/15% 1 0
8-12: 1 200 21-30%: 1 1
1000 31-40%: 1 2
41-50%: 1 3

51-60%: 1

e Note that the simulation described in this section was eeebon a 64-processors SMP (as opposed

to 32 in previous chapters).

The simulation involves 5 gradually increasing classeg: ¢éll with equal weight) from which
the first one w=1...20% - represents the fine and medium grain jobs. The 288%«Wosen as the
biggest value of the fine & medium grain job-class becauseffieetive dispersal of the computation
intervals of a job withu=20% ando=90/15% is 6% of quantum, which is exactly the chosen spin
(and context-switch) length. Recall that (as explainethéngrevious chapter) jobs with biggeiare
expected to achieve very low SSR even when the number ofdbisamaller than #CPU.

We've chosen the: classes to demonstrate the intermediate-load princigaldsed above: We
expect that only the curve associated witkil. . . 20 will achieve SSR50 in the intermediate-load.
As for the othery interval: based on the results from the previous chapterexpect that bigger
values ofu will result in smaller SSR.

The chosen sizes of the jobs participating in this simuteisorelatively small in comparison to the
number of CPUs (about 5-20%). This sizes distribution wasseh so that the load will increase
gradually thus avoiding big (X-axis) leaps.

e As the randomization elements quantity gets bigger, it bexomore important to examine the re-

sults across various different seeds so as to make sure nbmdés are indeed the common case.
This is the reason why we've chosen to display graphs agedcwith more than one seed: Each
simulation results will be displayed using 4 graphs, eaaplylis associated with a different seed
(many more seeds that are not displayed here were used ahacprbrelatively similar results).
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e Note that this simulation uses an increasing number of é&r&riThe justification for this is empiri-
cal: we've noticed that for some seeds, a small number ofdyar{50) is not enough to produce a
consistent picture of the SSR. As we prolong the length ottmputation (i.e. increase the number
of barriers) the picture tends to stabilize, all the SSR pgadceived in simulations using a small
number of barriers disappear, and the SSR-curves beconmtsmo

5.2.2 Results

The results of the simulation are presented in figure 5.1ur€i$.2 zooms in on the intermediate load of
figure 5.1's last row’s graphs. These results confirm our etgtions:

When examining the 1000 barrier graphs we can see that thresassociated with the fine/medium
grain jobs manage to sustain a SSR higger than 50% in theriatkate load, until some point between
load=80...88 (i.e. surplus of 25-40% of CPU#). These finglicgjncide with the findings of the previous
chapter presented in figure 4.6 (page 44). Some of the sudEptayed in figure 4.6 is bigger than the
surplus displayed here in figure 5.1 but this can be explaivieeh considering that the SSR displayed
here is an average between fine and medium grain jobs and timegtiain” is defined to be < 20%,
whereas in figure 5.1 the SSR achieved by fine and medium grdisplayed separately and medium grain
is defined to be:=10%.

Also note that the other curves behave as we anticipatei@edlgger, values result in smaller SSR.
The only other curve that sometimes (barely) manages tdagispgSR> 50 (though very close to 50)
for load slightly bigger than CPU# (surplus of 2-6 threadshhie one associated with=21...30 . This
is understandable because we use a normal distributionofopuatation interval which have the nature
of being condensed around the expectation. Thus makingsgiple for jobs withu slightly bigger than
20% to still (sometimes) have an effective dispersal of cotaion intervals that is not bigger than 6% of
guantum (= spin interval = context switch length).

5.2.3 Other Values For the Parameters

Many simulations similar to the one defined above - but wiffedént values for some of the parameters -
were conducted. All of these simulations’ results coindidath the results presented here. The following
is a description of some of these simulations:

e Simulations using:-intervals containing bigger values (than 60%) achievedlts consistent with
our findings here: e.g:=71...80 produced lower SSR thar61...70, which produced lower SSR
thanu=51...60 etc.

¢ In the above simulation we used equal (uniform) weight farheainterval. Altering the various
weights of these intervals to several configuration didrétfuce a fundamental change in the result.
Again we received results supporting our understandingsadsd in section 5.1.1.

e Bigger job sizes (up till the number of CPUs) were used. Whenthe random choosing of the job
collection managed to grow steadily in the intermediatel Iastead of skipping it), these simula-
tions also produced similar results to the ones displayegl he

e Bigger numbers of barriers were used (2000, 5000, 10000)panduced curves that are almost
identical to those displayed here when 1000 barriers arm use

5.3 A Constanto-Interval

5.3.1 Description

Up till now, all the simulations we've conducted used90/15% i.e. ther-interval was always expressed
as a percentage of the The immediate result of this was that any job with a reldgi®g u (i.e. big
enough so thai x 0.15 x  is bigger than the spin interval) wasn't at all interestingarms of the behavior
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Figure 5.1: This figure displays the results of the simutatiefined in section 5.2.1 and analyzed in section
5.2.2. The Y axis is associated as usual with the SSR. The Xdigplays the total number of threads
participating in the simulation. Each graph title - sSNbK esffies the seed (=N) and the barrier number
(=K) that were used in the simulation. We can see that cureessgnoother” and peaks are eliminated
as the number of barrier is increased. It is also apparenttikeonly curve displaying SSB 50 in the
intermediate load is the one associated with the fine/mediaim jobs (:=1...20). A “zoom in” on the
intermediate load in the graphs of the last row is displayefitbure 5.2.
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Figure 5.2: This figure “zooms in” on the intermediate loadtsd graphs displayed in the last row of
figure 5.1. We can see that fine/medium grain jobs (red linedagea to achieve SSB 50 until the
load is somewhere between 80...88 (25-40% thread surplds)can also see that sometimes jobs with
©=21...30 manage to achieve a 2-6 surplus with SSR just abl@fe & fact that is explained in section
5.2.2.
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of its SSR (which was always close to zero). This led us to aohd number of simulations in which the
connection between theinterval and the, was arbitrary.

The first unsurprising result was that any job with-#&nterval that was bigger thaﬁ;—” , resulted (by
definition) with computation intervals with a dispersaldpdy than the spin interval, which in turn resulted
in a SSR close to zero (even for very smalfalues).

The second unsurprising result was that jobs with smdtitervals and small values produced similar
results to those already demonstrated for fine and mediuim jgitzs (i.e. SSR> 50% for some intermedi-
ate load after which SSR drops to some fairly constant vadl@b50% due to alt-synchronization).

The only new question was how do jobs with relatively pignd relatively smalr-interval behave.

The configuration of the simulation presented here is similar to the configomatsed in the previous
section:

p q in | out| sync no | barr | spin I o rand | seed
sync | ier ord
64100 3% | 3% | 47:9| O 1000 | 6% | 51-60%:1 | 90/0.15-15:1| 1 0
8-12: 1 61-70%:1 1
71-80%:1 2
81-90%:1 3
94-100%:1

The difference isinyu ando:

e Thep values were chosen to be bigger: all job classes paves1% and cover most of 50-100% of
a quantum.

e Theo is set to be:
90/0.15—-15 : 1

Note that thes-interval is not expressed as a percentagg bfit rather given directly as a constant
interval. Thiso-interval was chosen to match the interval derived from when

- 11=1%,10% , and
— 0=90/15%

i.e. the lower bound of the interval - 0.15 - was thénterval of 41=1% (fine grain) and the upper
bound of the interval - 1.5 - was theinterval of u=10% (medium grain) whe#=90/15% was used.

Recall that previous simulations proved that fer1%,10% andr=90/15%, there exists an intermediate
load with SSR> 50.. .. , now the question is how will jobs with biggewalue but equally smadt-interval
will perform.

5.3.2 Results

The results of the simulation are presented in figure 5.3 .€Sa#s1n the previous section, figure 5.4 zooms
in on the intermediate load. From a quick look at these figuwescan see that:

1. The job class associated wjtk94. .. 100% achieves surprisingly high SSR.

2. The order of the other curves is reversed with respecitottier we got used to: Up till now bigger
1 implied lesser SSR. Now it's the other way around.

3. The SSR achieved by all the job classes (other the oneias=bavith 4=94. .. 100%) suggest that
spinning will not be profitable (virtually no intermediateald with SSR> 50).

The following subsections will explain the above.
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Figure 5.3: This figure displays the result defined in sedi@nl . As usual, X-axis displays load (humber
of threads), Y-axis displays SSR, and the title of each gdmtotes the seed and the number of barriers
used. The job class associated witk94. .. 100% achieves high SSR for every load. The other suake
ordered such that curve associated with bigger closer to the 50%-SSR-threshold.
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Figure 5.4: This figure displays a “zoom in” on the interméeliaad of the simulation’s results presented
in figure 5.3 . All job classes (aside from the one associai#id y=94. .. 100%) achieve SSR that negates
spinning in the intermediate load.
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5.3.2.1 The High SSR of the Job Class Associated wiji=94. ..100%

The fact that jobs withu € {q — spin, ..., ¢} and a smalb-interval achieve very high SSR is easily
explained. Let/ be such a job. LeT" be a thread off. WhenT finishes a computation phase and starts to
spin, chances are that it will be preempted while it is spigreind moved to the tail of the ready queue. Let
X c J denoteJ’s threads that are waiting for a processor at the time igstarwas preempted (obviously

T is waiting for these threads to complete the current barrigy the timeT is rescheduled to execute, it
will usually continue to spin (because in its previous quamit was stopped by the scheduler in the middle
of this process) and immediately succeed sixcéhreads were already allocated a processor (they were
ahead ofl" in the ready queue).

5.3.2.2 The Reversed Order of the Other Job Classes

Since its behavior was explained earlier, our current disicun excludes the job class associated with
1=94...100%. Within the other job classes we notice a strahg@omenon: for load bigger than CPU#,
the curves’ order is reversed with respect to what we've getiuo see. Usually (when theinterval was
expressed as a percentage®fbiggery implied lesser SSR, and here we see exactly the opposite. Let
us represent as: i = q — d (whereq is the length of the quanturd, < 4 andu > ). As mentioned,
jobs with smallerd values achieve slightly better SSR. The job class with0...19% (=81...90%)
sometimes even achieves SSB0! However, in most cases these jobs achieve SSR which itesrtien

50 and even when the SSR is more than 50 it's not high enougé tedboth spinning. Having said that,
and after concluding that the jobs discussed in this sedimuld not spin (for load> CPU#) it is still
interesting to understand what is the cause for this “redeosder”. After carefully examining the events
of these simulations we've concluded that the reason isalterfing:

e Let's examine some job.J - when the system is very loaded.

e Unavoidably,J’s threads divide to two subse®$ andY as described in the alt-synchronizing sce-
nario.

e AssumeX has now began its quantunX computes fol: cycles and reachés (the k-th barrier)
causingY to move from blocked to ready stat&. then continues to compute fdrcycles, finishes
its quantum and gets preempted back to the tail of the reaelyeg(recall thatl < Z andy > Zand
thereforeX will not reachb,, 1 within the current quantum). Note that whénis preempted it has
1 — d more cycles to compute until reachibg, ; .

¢ Now, in orderforJ to “beat the system” and break the alt-sync pattériandY” should be dispatched
d-cycles apart (a¥ hasp cycles andX hasp — d cycles until reachingy ).

e At this point there are exactly 2 possibilities:

1. The difference between the dispatching’ofnd X is smaller/bigger thad, enough to make
Y failon by 1.

2. The difference between the dispatchingoind X is in the proximity ofd which will result
in the reunion ofX andY until such time whernJ splits up again to two subsets (this time is
actually very soon, namely the end of the current quantumeesty will be preempted! cycles
afterY’). In this caseJ has (temporarily) managed to break the alt-sync patterradiraf its
threads successfully completgs ; .

e The second possibility is exactly the reason why the cunvéisis simulation get really close (from
below) to the 50% SSR threshold and sometimes even excdadhe first possibility however, lies
the explanation for the fact that jobs with biggevalues are closer to that threshold.

e When the first possibility occurs (which is what happens nodten than not), the scenario described
above will repeat itself with the difference that now in arétr X andY to reunite, they should be
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dispatche@d-cycles apart: This is true because aftefails onb,; , andX successfully completes
it, X will have

g=(n=d) = (p+d) = (p—d) = 2d

more cycles to complete its quantum. This means that at thi@hieg of X's next quantum, it will
haveu — 2d cycles until reachingy o . ..

e This argument can be applied again and again i.e. ithenterval didn't work the scenario will
repeat itself with 8d interval etc. The argument may no longer be applied whemiieeval -n - d -
is bigger thart in which caseX will reach a second barrier in the same quantum, fail andklas
aresult,Y and X will simply flip the roles they play and everything will stdrom the beginning.

e Smaller values of result in a more refined interval series, i.e. the smallist the bigger chance the
job has to “get the dispatch interval right” and thus to uttite two subsets for a successful barrier.
The refined interval series is the reason why jobs with smdllalues are closer to the 50% SSR
threshold.

5.3.2.3 The Intermediate Load

Contrary to jobs with small: and o-interval values (i.e. fine and medium grain jobs), the jabshie
simulation currently discussed do not achieve SSBO0 in the intermediate load. The reason for this
is related to the explanation given in the previous subsectA high SSR in the intermediate load is a
function of the job’s threads’ success to execute simutiaaly from time to time . When this happeds,
andY (using the terminology of the previous subsection) haveaacé to complete a number of barriers
until the scheduler splits them up again. The smallés, the more barrierd’s threads may complete on
that period. However, in the current simulatiprn> £ and therefore the maximal number of barriers that
J's thread may complete on that period is bounded by 2, aftéctwibwill be a while beforeX andY” will
manage to execute simultaneously again.

5.4 A Randomoao-Interval

By now, it seems that most SMP (round-robin) executionslirimg most job collections are well under-
stood. However, we haven't yet conducted a simulation #watlomly chooses botlhando. Even though
we can probably predict what will be the result of such a satiah, for completeness, we conduct such a
simulation and present its results. The parameters usédsisitnulations are:

p q in | out| sync no | barr | spin 1 o rand | seed
sync | ier ord

64| 100| 3% | 3% | 4-7:9| O 1000 | 6% | 1-20%:1 | 90/0.15-0.75:1] 1 0

8-12: 1 21-30%:1| 90/0.9-1.5:1 1

31-90%:1| 90/1.65-3:1 2

90/3.15-15:3 3

The classification of the jobs will be done according todhiaterval. Leta denote the effective range
of the computation-intervals’ dispersal, then we get:

o-interval associated bigger
than spin
0.15 ... 0.75/03 ... 15 no
09 ... 15|18 ... 3 no
165 ... 3133 ... 6 no
3.15 ... 15{63 ... 30 yes
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Half of the jobs, those associated with the 4tldon’t have a chance to achieve SSP0 regardless of
their . This is the only concrete thing we may predict. As for theeoths: it depends on the chospnA
job with smalleru will achieve better SSR in the intermediate mode. On therdthad, a job with a very
big 1 may achieve SSR slightly bigger than 50 even after the irgdiate load. Contrary to simulations
conducted so far, these parameters were chosen with tim ideto have a clear “winning” job class or a
clear job classes hierarchy. We therefore expect thatrdifteseeds will produce different winners that may
change as the load increases. The result of the simulatiodigplayed in figure 5.5 (only the intermediate
load is displayed) and exactly coincide with our predicsion

Sigma Interval: 0.15-0.75%, 0.9-1.5%, 1.65-3%, 3.15-15% Of Quantum

Intermediate Load
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Figure 5.5: This figure displays the intermediate load ofrémilts of a simulation composed from a job
mix that was created by randomly choosing batlndo. The axes and title were defined in previous
figures in this chapter.



Chapter 6

A more Realistic Algorithm: the Linux
Scheduler

6.1 Introduction

So far, we have simulated and analyzed the Round Robin gigarivhich, though useful, common (es-
pecially in realtime applications/systems [12, chaptéy &hd formalized by POSIX.1b, isn’'t remotely as
popular and widely used as priority based algorithms. Ttadyais of Round Robin has a value of its own.
However, an important outcome of this analysis is that dvadl us to gain intuition and insights as a first
step towards understanding barrier-synchronizationiwitie context of priority-based scheduling algo-
rithms. The next step is to conduct and analyze simulationiéas to those performed in previous chapters
while using a priority based scheduler. The immediate guestat follows is which scheduling algorithm
to use. In order for the result of this work to have an addalqractical value, we wanted a real world
system scheduler. So the question became which commontiogesgstem scheduler to use. The most
convenient choice was Linux (a) because it's an open souojeqy, a fact that helps a lot (to say the least)
when one needs to re-implement the scheduler of the OS, abechuse of the vast amount and wealth of
books, articles, websites and other resources documesitiitg aspects. Aside from Linux accessibility,
our decision was also influenced by the fact that nowadagslits most popular flavor of UNIX.

There are many books and other resources that describerthir $¢heduling algorithm. Some of these
which we relied upon are [4], [22], [3] and most importantlye Linux kernel source code itself [26].
However, many readers will find it hard to extract all detadievant to this work from these references.
Though lots of resources review the Linux scheduler, manhein tend to drown the reader with a lot
of low level details that obstruct the actual algorithm, \ehithers are doing it in a too high level manner
(at least in th parts that are important in this work’s cotjteome give very good description but only
on partial aspects. We found no single resource that presdirthe pieces of the puzzle needed for the
following chapters. The goal of this chapter is thereforestdew the Linux-scheduler aspects relevant to
this work and describe their implication on it. Sections&n2l 6.3 specify the version of the Linux kernel
used and the scheduling details that are not covered byhhjgter. Section 6.4 deals with definitions that
are needed in order to present the scheduling algorithntidBe& 5 presents the algorithm. Finally, section
6.6 points out the misfeatures that we have identified in theduling algorithm and their implication on
the following chapters.

We remark that in the Linux-kernel, thread/process eumtitiee indistinguishable. The conventional
term used to represent them both imsk Consequently, this is the term used throughout this clhapte

6.2 Linux Kernel Version

The Linux kernel code is constantly updated and revised. M@vor version releases are a very common
event (sometimes more than one in one month). However, thouigor details have changed form time to
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time, the core scheduling algorithm has essentially reathihe same since Linux-2.2 (released in 1999).
While the simulator code that implements the Linux schedwkes written, the latest kernel version was
2.4.5 (May, 2001) and this was the latest version we've cbedwith. Currently, as these lines are written
(Aug, 2001), the latest version is 2.4.9 .

6.3 Ignored Details

As mentioned before, POSIX1.b mandates three scheduliiigjgso Since our focus now is on Linux’s
SCHEDOTHER, details regarding the other two scheduling polisigidbe omitted from the scheduler de-
scription. Note that though in general each task may seglgita¢ assigned with one of the three scheduling
policies, we assume all tasks’ policies are SCHBDHER throughout this work. Policies may be assigned
via thesched_set schedul er system call, tough one must have superuser privileges ierdodset a
policy to SCHEDFIFO or SCHEDRR. Another omitted issue is the nice value of tasks (whicly b
set through thai ce system call) . Again, throughout this work, we assume tHdaaks have a zero tra-
ditional nice value. The algorithm sections that deterntiveebehavior of the scheduler on a uniprocessor
were also omitted, only SMP related code is described.

6.4 Definitions

Before describing the algorithm, we first need some backutaefinitions . ..

6.4.1 Epoch

The Linux scheduling algorithm works by dividing the CPU{g)e intoepochs In a single epoch, every
task has a specified time quantum whose duration is computed the epoch begins (each task’s quantum
is refreshed exactly once in a single epoch). In generdkréifit tasks may have different time quantum
durations though this is possible only if tasks have difiérdce values or different scheduling policies
which we assume isn’t the case. The time quantum value is thénmum CPU time portion assigned to
the task in that epoch. When a task has exhausted its timeéuquaihis preempted and replaced by another
runnable task. Of course a task can be selected severalliyrtbe scheduler in the same epoch, as long
as its quantum has not been exhausted (for instance, if ehtesbklocked while waiting for a barrier, it
preserves some of its time quantum and can be later selegééd during the same epoch). The epoch
ends when all the ready-to-run tasks have exhausted thaitguon; in this case the scheduler recomputes
guantum durations of all tasks and a new epoch begins.

6.4.2 Priorities

SCHEDOTHER tasks have two different kinds of prioritysgatic priority and adynamic priority Pri-
orities are simply integers expressing the relative weilgat should be assigned to a task when deciding
which process should be allowed to spend some time on the @flhigher its priority, the better its
chances:

static priority Called static because it doesn’t change with time, only wgulicitly modified by the
user via a system call likei ce() . The scheduling algorithm derives from this value the mmam
duration of the quantum a task should be allowed, beforerfgiit to yield and allowing other tasks
to compete for the CPU.

dynamic_priority Declines with time as long as the task is assigned a CPU; wheadhes 0, the task is
marked for rescheduling. This field indicates the task’s am@f time remaining in this quantum.
Itis reinitialized at the beginning of each new epoch acitaytb the static priority value.
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6.4.3 Dynamic Priority Resolution

The Linux-kernel sets things up such that it will d&f clock interrupts per seconddZ is a macro with
platform dependent value, though on most platforms (Ie@0x86, Sun’s SPARC and more) this value is
set to be 100. Aick is defined to be the time that passes between each invocdtibe kernel’s interrupt
handler & ﬁ second). The kernel's clock interrupt handler performsatts of administrative work,
among which the updating of the dynamic priority. It follotfsat the dynamic priority resolution is in
ticks.

6.4.4 Data Structures
Each task descriptor (a C structure) contains five fields bgalde SCHEDOTHER scheduling algorithm:

ni ce This is the field that holds the static priority of the tasKs Initialization value is 20 (the macro
DEF_PRI ORI TY). The only way this field can be changed is through systens ¢i&# ni ce and
sched_set schedul er. As mentioned before, this work assumes that thee field never
changes. Although related, this field is not to be confuset tie traditionaini ce system call
argument: the former is always positive and actually may Hol. .40 (when SCHEIDTHER is
used); the latter has the possible values: -20...19.

count er This field holds the dynamic priority of the task. When a taskrieated this field is initial-
ized with half the value of its parentsount er (and the parent'sount er is reduced by half).
Whenever a new epoch is started, this field is reinitializetbiows:

task. counter « NI CETOTI CKS(task. nice) + fashcounter

The definition of the macrdll CE_TO.TI CKS is dependent on the value bZ. In Linux-2.4 it's
defined to scal®EF_PRI ORI TY (=20) to the number of ticks composing 50ms. Since on most
platformsHZ is defined to be 100 (and therefore a tick is 10ms), the defimagf NIl CE_.TO.TI CKS

is usually% (i.e. 5ticks). As explained earliarpunt er is decremented upon each invocation of
the kernel's interrupt handler, and a task is marked as “meestheduling” whenever tleount er
becomes 0. It follows thatount er holds the remaining number of ticks a task has till its quamtu

is exhausted and that in Linux-2.4 the default quantum ¢uras 50ms.

processor The logical id of the last CPU upon which the task has executkthe task is currently
executingpr ocessor is the logical id of the CPU upon it's executing now.

need._r esched This is a boolean flag checked by the kernel just before itche# back from system
to user mode (e.g. after termination of kernel's interrugndier). Ift. need_r esched is set,
the kernel checks far. pr ocessor whether a more desirable task thaexists, in which case a
context switch is performed. Since this flag is checked oofyctirrently-running tasks, it's usually
more convenient to think of it as associated with a proceathter than a task). This is true because
if a context switch will take place due to a seted_r esched, it will be on the processor that
previously ran the task that was markedhaed_r esched.

nm A pointer to the memory page table of the task. If two diffétasks have equatmit means they have
the same address space i.e. they are both threads beloaghegstame parallel job.

6.5 The Algorithm

Most of the Linux scheduler is implemented in a single filedf,[kernel/sched.c]. There are four functions
we must cover in order to understand the Linux schedulersd laee:

goodnessGiven a task, return how desirable it is: this is the valueatiog to which tasks are compared
in order to decide which will run next.
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schedule Actual implementation of the scheduling algorithm. Thiadtion useggoodness to decide
which task will run next on a given CPU.

__wake_up_common Wakeup a task when the event it has been waiting for happéres event may be
the arrival of all tasks of a parallel job to a synchronizatmint (barrier).

rescheduleidle Given a task, check whether it can be scheduled on some CRifefably on an idle
one, but if there aren’t any, by preempting a less desiraddk)t This function is used both by
_wake_up_conmon and byschedul e.

The following subsections describe each function in detalil

6.5.1 Thegoodness Function

Every timeschedul e is invoked it tracks the task with the best “goodness” in thady-queue. A task
with the best “goodness” is the one with the best claim to tR&CHigher goodness values are better. A
goodness value of 0 indicates that the task has exhaustabitdum. Theggoodness function is quite a
simple function, yet it's a crucial part of the Linux scheelullt is called for every task in the ready-queue
every timeschedul e executes, so it has to be quick. But if it makes a bad decisimnywhole system
suffers. The pseudo code @bodness is presented in algorithm 1.

Algorithm 1 Thegoodness function pseudo code.

1 goodness(task t, cpu thiscpu) {

2 wei ght < t.counter

3 if( weight == 0 )

4 return O

5 if( t.processor == thiscpu)

6 wei ght «— wei ght + PROC.CHANGE_PENALTY

7 if( t.mm== this_cpu.current_task.mm)

8 wei ght «— wei ght + SAME_ADDRESS_SPACE_BONUS
9 return wei ght

10 }

Line 1 Indicates that goodness is a function of both the task an@Hi¢ it's a candidate to run upon! As
will shortly be demonstrated, the same task may have diffeayeodness values on different CPUs.

Line 2 Initializing the local variablevei ght with the number of the remaining tickshas in the current
epoch.

Lines 3-4 If wei ght is 0 thent has exhausted its quantum in the current epgolmdness returns 0 to
indicate this.

Lines 5-6 t gets a huge bonus if the last CPU that executed it is the CPU which it is a candidate to
execute now. Giving this bonus is equivalent to penalizing tasks migration. fistign is penalized
because a migrating task will unavoidably have TLB and camlsses when it starts to execute on
a different CPU. However, the value BROC_CHANGE_PENALTY is 15 (at least since Linux-2.2).
This means it is 3 times bigger than the maximal valueadint er ! a fact that seems very strange
and is discussed later in section 6.6.2.

Lines 7-8 t gets a small bonus if its address space is the same as of khth&iss currently executing
ont hi s_cpu. This bonus may encourage less memory-pages swaps in theearfuture. In this
work context it may also help a fine grain parallel job’s tagksynchronize (this will be further
elaborated in the following chapters). The cons@ilvVE_ADDRESS_SPACE_BONUS doesn't really
appear in the original code and was named by us for futureereées as one of the scheduler’s
parameters. Instead, its value — which is 1 — is hard codeldaralgorithm.
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Line 9 Finally, the goodness value is returned.

6.5.2 Ther eschedul e.i dl e Function

Ther eschedul e_i dl e function is invoked both bychedul e and by__wake_up_conmon as will

be described later. It gets a task as its argument and chduéther it can be scheduled on some CPU;
preferably on an idle one, but if there aren’t any, by preéngpa less desirable task. The pseudo code
of reschedul e.i dl e is presented in algorithm 2. The reader shouldn’t be ovenigressed by the
apparent simplicity of the pseudo code, as the real implésmtien has little resemblance to it. However,
the pseudo code does faithfully describe the essence oflgoeitbtm. This is the appropriate place to
mention that in Linux, each CPU has a a special task whichliscctheidle task These tasks are special
in the sense that they are different (each CPU has a difféaek}, but share the same id which is 0 (no,
it is not “the swapper”, it's the idle task). Whenever a CPlitlls, the “current” executing task is the idle
task.

Algorithm 2 Ther eschedul e_i dl e function pseudo code.

1 reschedul eidle(task t) {

2

3 next cpu «— N L

4 if( t.processor is idle)

5 next _cpu « t.processor

6 else if( there exists an idle cpu)

7 next cpu « least recently active idle cpu

8 el se

9 max_pri o «— PREEMPTI ON.THRESHOLD

10 foreach cpu c in [all cpus]

11 di ff < goodness(t,c) - goodness(c.current_task,c)
12 if( diff > max_prio)

13 max_prio « diff

14 next _cpu « ¢

15

16 i f( next_cpu # NL)

17 prev « next _cpu.current task. needresched

18 next _cpu. current t ask. needresched < true

19 if( (prev = false) and (next cpu # thiscpu) )
20 i nterrupt next _cpu

21 }

Line 3 The purpose of thaext _cpu variable is to hold the CPU on whidhwill possibly be scheduled
in a short while. next _cpu is initialized to a non valid value. Towards the end of thection
(line 16) this value will be tested, if it's stiNl L this means that no suitable CPU was foundtfor
Otherwiseschedul e will be invoked fornext _cpu in a short while.

Lines 4-5t . processor isthe best CPU far to run on because this CPU’s cache may still hold relevant
values fort 's context. These lines ensures that ifpr ocessor is idle, it will indeed be chosen as
the next CPU.

Lines 6-7 If thet 's previous CPU isn't idle, try to find another idle CPU. Thgaithm prefers the least
recently active idle CPU because “it will have the leastw&ctiache context” (quote from the actual
code).

Lines 8-14 If reached here, there are currently no idle CPdlsf f is defined to be the difference between
the goodness of tasksandc. cur r ent _t ask (on CPUc). The algorithm searches far with
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the maximaldi f f . There is an initial constraint on suchca it's not enough thadi f f will be
positive (which means that is more desirable thao. curr ent _t ask onc), it is also required
that the goodness difference will be above some threshaitefy: PREEMPTI ONL.THRESHOLD.
Similarly to SAME_ADDRESS_SPACE _BONUS, The constanPREEMPTI ON_.THRESHCOL D doesn’t
really appear in the original code and was named by us fordutferences as one of the scheduler’s
parameters. Instead, its value — which is also 1 — is hardadodthe algorithm.

Lines 16-18 As stated above, if aext _cpu was found, then either it's idle or its currently runningkas
is less desirable than. In any case thaext _cpu. current _t ask. need_r esched flag is set
(not before saving its old value) which meashedul e will be invoked onnext _cpu in a very
short while. Note that there’s no guaramtywill be the next task chosen tschedul e, only that
it will be invoked. This is true because it's possible there even more desirable tasks thaon
next _cpu in the ready queue.

Lines 19-20 These lines take care of the case in whichrtbed_r esched flag ofnext _cpu was indeed
changed (and it’s a different processor then the one whiclriently executing theeschedul e.i dl e
code). In this caseext _cpu must be somehow notified that its current tasiéed _r esched flag
was updated. For this purpose thiki s_cpu interruptsnext _cpu using some interprocessor in-
terrupt instruction.

6.5.3 The_wake_up_common Function

When a task is waiting for some event to occur (e.g. inputalirsemaphore increment etc.), it is removed
from the ready-to-run task list and placed in some queyie associated with this event (in the context of
this work,q is what we refer to as “blocked mode”). The pseudo codewrdke_up_conmnon is presented

in algorithm 3 and is self explanatory. Although the codedgspasimple and straight forward, it seems we
have detected a bug (or a serious misfeature) in it. Thisb&iflurther elaborated in section 6.6.1

Algorithm 3 The __wake_up_common function pseudo code.

_wake_up_comon(wai t _queue q) {
foreach task t in [(q]
renove t fromgq
add t to ready-to-run-1list
reschedul e.i dl e(t)

6.5.4 Theschedul e Function

The schedul e function implements the scheduler proper. Its objectivioifind a task in the ready
gueue and then assign the CPU (that actually executes tle¢ twi. This function is invoked directly or
indirectly by several kernel routines:

Direct invocation The scheduler is invoked directly when the current task rbasblocked right away
because the resource it needs is not available. In this badeetnel routine should insert itself to
the proper wait queue, change its state from runnable torugtble and invokeschedul e. As
described in the_wake_up_conmmon section, the routine will be resumed exactly from wherefit le
of when the resource will become available. The schedulglsis directly invoked by many device
drivers that execute long iterative tasks. At each iteratigcle, the driver checks the value of the
need_r esched flag and if necessary, invokes schedule to voluntarily cglish the CPU.

Lazy invocation As explained earlier, the scheduler can also be invoked Bwzg Way by setting the
need_r esched field of the current executing task to 1. Since a check on thgevaf this field
is always made before resuming the execution of a user ma#iestahedul e will definitely be
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invoked at some close future time. For example, this flag isogehe kernel’s interrupt handler
whenever theount er of the current executing task reaches 0.

The pseudo code afchedul e is presented in algorithm 4. It is stripped from all synctization, ac-
counting and other administrative details.

Algorithm 4 Theschedul e function pseudo code.

1 schedul e(cpu this_cpu) {
prev < this_cpu.current task

if( prev's state is runnable )

next «— prev

next .g < goodness(prev, this_cpu)
el se

next g « -1

foreach task t in [runnable and not executing]
cur_g <« goodness(t, this_cpu)
if( cur_g > next_g)
next — t
next .g « cur_g

NRPRRRPRRRRRRR
COONOURWNRPROOONOUTDWN

if( nextg =-1) /* no ready tasks =*/
end function
else if( next g =0) /* start new epoch */
foreach task t
21 t.counter « Leounter 4+ NI CETOTI CKS(t. nice)
22 goto 5
23 el se if( next # prev )
24 next . processor «— thiscpu
25 next.needresched «— false [+ "next’ will run next =/
26 switch contexts: fromprev to next
27 if prev is still runnable: reschedul e.i dl e(prev)
28
29 /=
30 * 'next’ (which may be equal to "prev’) will run next
31 * |
32 }

Line 3 Throughout this functiorpr ev is the task that up till now was executing bhi s_cpu.

Lines 5-9 These lines ensure that in case of a (goodness) tie, theldehedll always prefeipr ev over
another runnable task with equal goodness. There’s notirgain by context switching between
tasks with equal priorities. It is best to avoid the contexitah.

Lines 11-15 This is the loop the tracks the best task to runtdm s_cpu by iterating through all the
runnable tasks that are not currently executing and chgakaone with the highest goodness. Note
that if even one runnable not executing task exisext _g will be nonnegative at the end of the
loop.

Lines 17-18 If next _g is negative then there are no ready tasks and there’s nagtsegchedule can do
(in this case the real algorithm sets the idle-task as theréati’ task).
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Lines 19-22 If next _g is zero it means there are runnable ready tasks but they fiamehausted their
guantum. This means a new epoch should be started and all#mumn durations are refreshed
as explained in section 6.4.4. Note the the loop in line 2@&ies though all the tasks (not just the
runnable ones). This is the only means in which the Linux datex favors I/O bound over CPU
bound tasks. Also note that the formula in line 21 prevéntsount er from ever exceeding twice
the value ofNl CE_.TO.TI CKS(t . ni ce) . After starting the new epoch, the function is restarted.

Lines 23-27 If the condition in line 23 evaluates to be true, then a cargestch will soon take place. The
schedulerd) updatemext with its new CPU and turns off iteeed_r esched bit, (b) performs
the context switch, and €) tries to assign another CPU pr ev — the task that had just been
preempted.

6.6 Linux-2.4 Scheduler Misfeatures

No scheduler is prefect. There is always the need to balaeteekn different aspects of the system
leading to unavoidable tradeoffs. It is probably correcigeume that for almost every proposed scheduler
algorithm, it is possible to derive a mix of events that wathtl to poor system results. The Linux scheduler
is no exception. Many of the Linux scheduler faults haveayebeen discussed (e.g. in [4, chapter 10,
pages 291-293]) and it seems pointless to mention them here.

However, while implementing the Linux scheduler in the dator, we came across (what we consider)
misfeatures that were never documented (to our knowledgb¥eem strongly related to our work. These
misfeatures are described in sections 6.6.1 and 6.6.2i086£6.1 describes the most serious misfeature
(or rather, a bug) we've encountered, which is a race canditi __wake_up_conmon. In this section,
two algorithm improvements will be suggested to overcongeegioblem. These improvements will be
referenced from later chapters. Section 6.6.2 will distlisproblem with the Linux scheduler parameters’
values as mentioned earlier in section 6.5.1 and 6.5.2.

Theschedul e drawback of iterating through the runnable task list in @dinfashion is obvious. As
the number of runnable task grow, the cost of context switthiecomes grater, a consequence that effects
a “spin or block” decision greatly. Section 6.6.3 discuss®d demonstrates this effect.

6.6.1 Race Condition in__wake_up_conmon

The algorithm in._wake _up_conmon iterates though the awakening tasks (see algorithm 3)afcin such
task it invokeg eschedul e_ dl e (see algorithm 2)r eschedul e.i dl e(t) is essentially divided to
four steps:

1. Ift. processor isidle thenitis chosen as the next CPU.
2. Otherwise, the least recently active idle CPU is chogeme exists.
3. Otherwise, the CPU of the task which is least desirabl®emparison td is chosen, if one exists.

4. If a next cpu was found, interrupt it if necessary.

The most obvious effect of the race condition is associafexborse with step 2. The following is an
example of a trivial scenario:

o 4 tasks -{to, t1, t2, t3} - are awakening on a SMP with 8 processfits: i = 0...7} andc is the
CPU which executes the code afvake_up_conmon.

e Assume that for each= 0...3 there existst;.processor = ¢; .

1when line 26 returns, we have changed contexts, and arentlyrie the context ohext . A little magic is involved here: It's
the 'much more previougr ev that is onnext 's stack, bupr ev is set to (the just run) ’last’ process by the procedure thtataly
performs the context switch. This might sound slightly emifig but really makes tons of sense: for one thing, it maikes47
operate on the correct “previous” task.
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e Further assume that; : ¢ = 0...3} are currently busy, whiléc; : ¢ = 4...7} are idle because there
aren’t any other runnable non executing tasks.

e Finally, assume that; is the least recently active idle CPU.

Worst case scenario goes like this:
e The first invocation of eschedul e_ dl e is ont,y which is of course mapped tg.
e ¢y is interrupted and begins to execute #ehedul e code.

e However, way before; reaches line 25 (algorithm 4),wake_up_conmon has already finished its
work.

e Sincetheneed_r esched the status of; was “idle” all through the execution time ofwake _up_common
, t1, to andts were also mapped e .

e The result: there are three idle CPU§c; : i = 4...6} - and 3 ready non executing tasks. In other
words, three CPUs “got lost”.

6.6.1.1 Possible Implications of the Race Condition

The above scenario isn’t the only drawback ofake _up_comuon. The fundamental problem is that
an awakening tasks’ set might be assigned a processorshsgt g smaller than possible. Tip@ssible
implications of this problem are:

1. CPUs get lost (as shown above).

2. Only part of the awakening tasks that may get a hold of a @Rlé¢ed get one. This doesn’t neces-
sarily involves lost CPUs. For examplg:andt, are awakened while only is idle. Howevet, has
enough priority to preempt which is the task that is currently executingan __wake_up_conmon
invokesr eschedul e_i dl e(ty) which is assigned toy (because its idle) even thoughcan pre-
emptto. Afterwardsr eschedul e_i dl e(¢;) is invoked and fails to find an assignment for Had
the order of the iteration through the awakening tasks beeersed (i.e. first; and thent,), both
tasks would have been assigned a CPU.

3. Context switch overhead might be doubled. This probleatsis related to the order of the iteration.
For example:ity andt¢; are awakening and the only possible assignment for bothewfitis ¢ (by
preempting, which is currently executing on it). Assume that:

goodness(ty,c) > goodness(ti,c) + PT > goodness(ts,c) + 2PT

wherePT stands foPREEMPTI ON_.THRESHOLD. At first, r eschedul e_i dl e(¢,) is invoked and
as a result, is preempted in favor of;. Afterwards,r eschedul e_ dl e(ty) is invoked and as
resultt; is preempted in favor ofy. Again, this extra context switch would have been avoidekéf
order of the iteration through the awakening tasks had bexarsed.

6.6.1.2 Wakeup Schemes Used in the Simulator

Simulating this race is extremely hard. However, we may &teuthe worst and best case scenarios, in
recognition that the truth is somewhere in between. Anoplessibility is to introduce the obvious fix
to reschedul e.i dl e (which is described shortly). In light of that, we defined fretsimulator the
following three wakeup schemes:

SILLY Implements the worst case scenarionake_up_conmon first assigns idle CPUs tall of the
awakening tasks and only therhedul e is invoked on the chosen CPUs. In this scheme, if an
idle CPU exists, all tasks will be assighedxdhe least recently active idle CPU (with the exception
of tasks that will be assigned their previous CPU, if idlelhefefore only theneed_r esched flag
associated witlp will be set and thuschedul e will be invoked only forp.
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SMART Implements an approximation of the best case scenario:fAlleoper task local considerations
done by_r eschedul e_i dl e are made global across all the awakening tasks. The coryptexi
this algorithm seems to make it unfit to use in a real systermeNeeless, it provides us a perspective
that will help us evaluate how crucial the wakeup schemetércontext of this work. Note that an
implementation of such an algorithm is a non trivial taskqak us= 400 lines of C++ code to do it
efficiently). As an example, think of the last phase of theetgm where it decides which awakened
task will be assigned to which busy CPU. The algorithm shealdehow generate the following set:

TRI = {(d, t,c) : d = goodness(t,c) — goodness(c.current_task, c) /\ d> PT}

sort it according to thel value of the triplets (larged-s come first), and then execute the code
specified in algorithm 5. Note that this scheme eliminatesrtite condition bya) first deciding
which CPUs’'need_r esched flag should be set (without actually setting therh), #dding all the
awakened tasks to the ready queue, apdiily after that setting theeed_r esched flags decided
upon in phase (a).

AIP Implements the obvious fix. AIP stands for: Avoid Idle Pitfalhis greedy algorithm simply modifies
reschedul e.i dl e such that instead of searching for “just” an idle CPU, thecfiom searches for
an idle CPU with an associated ofeed_r esched flag. This wakeup scheme is practical and is
guaranteed to eliminate the problem of CPUs getting lostdlwis an immediate fix to the bug). It
may also help with the other problems mentioned earlier.

Algorithm 5 A piece of (pseudo) code from the SMART wakeup scheme.
foreach (d,t,c) € TRI
if( (task t wasn’t already assigned a CPU) and
(CPU ¢ wasn't al ready assigned to sonme ot her task) )
assignt — c

Note that SMART is not the “optimal” wakeup scheme: The peoblpresented in section 6.6.1.1 is
actually equivalent to a maximum-bipartite-matching peot [5] namely finding a maximum bipartite
match between the two disjoint standC, where:

e T contains the awakening tasks,
e C contains (all) the processors, and

e Eisthe set of edges betwe&randC and is defined to be:
E ={(t,c) eT xC : (cisidle) or (t may preempt.currenttask) }

However, such an algorithm was not used because it ignoeeadiual priorities of the awakening tasks.
This leads to the following two unwanted results:

1. When given two tasks#, t2 - which may both run on processor, in order to achieve a bigger
match, such an algorithm may prefer assignintp ¢ and leave, without a processor even though:

goodness(ta, c) > goodness(ti,c)

2. schedul e of course is not aware of such an algorithm’s considerat{oesall that it is lazy in-
voked) and will chooseé, anyway (there’s a race condition here too).

Implications on next chapters’ simulations: For each simulation that we will conduct in the following
chapters, we will specify the wakeup scheme used.
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6.6.2 Tunable Scheduler Parameters

While describing the algorithm in former sections, we camr®ss three tunable scheduler parameters:
1. PROC_.CHANGE_PENALTY (=15, used irgoodness)
2. SAME_ADDRESS_BONUS (=1, used igoodness)
3. PREEMPTI ONLTHRESHOLD (=1, used irr eschedul e.i dl e)

The first one actually appears in the code whereas the otleeatgvhardcoded (and therefore named by
us). At this point, it is important the reader would be awafr¢he fact that the default quantum length
was changed from 20 ticks (=200ms) in Linux-2.2 to 5 ticksq=&s) in Linux 2.4. However, the above
parameters didn’t change accordingly. It follow that:

Parameter value | % of quantum| % of quantum
in Linux-2.2 in Linux-2.4
PROC_CHANGE_PENALTY 15 75% 300%
SAME_ADDRESS BONUS 1 5% 20%
PREEMPTI ON_.THRESHOLD 1 5% 20%

which means a considerable change in the scheduler behaMi@ most obvious change is that in
Linux-2.2 an awakening task had the ability to preempt an executing taskon a CPUc , even if
t1.processor # c. In terms of goodness values it's possible wheén:counter — ts.counter > 16
(=SAME_ADDRESS_SPACE_BONUS+PROC_CHANGE_PENAL TY). Recall that an I/O bound task may (and
usually does) accumulatecaunt er value of up to twice the default quantum duration (see linén21
algorithm 4) which translates in Linux-2.2 to an upper boohd0 ticks oncount er . As a result, a task
with count er =18...40 had a chance to preempt another task, even wheatinigwas involved. It's
therefore safe to speculate that a preemption of a CPU-btaskdn favor of an I/O-bound-task involving
the 1/0-bound-task’s migration, wasn'’t a rare event in biffu2. However in Linux-2.4 such an event is
impossible. After consulting with some Linux developerg, believe somebody simply forgot to update
these values along with the change of the quantum defaudtidar

Another important point to make is that the resolution of sbkeduler (as explained in section 6.4.3)
seems to be too coarse. For example, even if we chBRGEEMPTI ON_.THRESHOLD to 0 in Linux-2.4,
the threshold will still be bigger than it was in Linux-2.2e¢ause the difference must be at least one tick,
which is 20% of quantum in Linux-2.4). Recent research [7ihciales with this conclusion.

Implications on next chapters’ simulations: Unless stated otherwise, the scheduling algorithm used in
the simulations in the following chapters use the paramekres of Linux-2.2 (rather then Linux-2.4)
as specified above. In addition, theunt er field of each task participating in a simulation has cycle
accuracy.

6.6.3 Linearity of schedul e

After reviewing the Linux scheduler, we got tempted to measiie cost of the linear iteration through the
ready to run task list ischedul e (algorithm 4, line 11). Though not having a direct impliceation this
work, it was interesting to see “how bad is it” since the dimrabf a context switch has direct implications
on a “spin vs. block” decision. This is the sole practicaleaure we've embarked upon within this work.
In order to measure the duration of quantum as a functionaaf,lave did the following:

e Modifiedschedul e code as follows:

— A cycle measurement is taken at the beginningofiedul e and just before line 26 (the lines
that actually switched contexts). Note that the procedua¢ actually performs the context
switch is quite short. The main complexity factorafhedul e is its linear iteration through
the ready queue.
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— The difference between the two cycle measurements and thentmumber of runnable tasks
are copied to the kernel cyclic log buffer.

— A boolean flagdo_l og was added techedul e to “guard” the additional code we've added
to it. The flag was needed because we wanted to achieve anckrdal before starting the

logging process and to stop logging before this load decnésnélhis flag was initialized to
false.

e Added a module to the kernel which allows controlling theueabfdo_| og from user space (using
the /proc mechanism).

e The klogd daemon is a user level process the “listens” todgariessages printed by the kernel (to
its cyclic log buffer) and forwards them (via the syslog systcall) to the syslogd (it actually a kind
of proxy). The syslogd in turn usually writes the messagggts in an unbuffered fashion to some
log file. This logging mechanism was unsatisfying becausermdifiedschedul e version prints
very fasta lot of messages and many of them got lost along the way due toealtttious overheads
(the extra copy from klogd to syslogd via a system call anduthieuffered write of syslogd). We
therefore modified the code of klogd to intercept our log rages and (buffered) write them to some
log file.

e Next we've written a script that generates a certain load &tet this load is achieved, turns on
do_l og, waits for a few seconds, and turns it off (starting the logginly after the designated load
is reached turned out to be a non trivial assignment).

¢ Finally, the log was analyzed and the graph presented indfi§urwas produced.

The measurements were taken on a quad Pentium Il 550MHz IBM NetFinity server with 1GB RAM
running Linux-2.2.18 (which was the latest release whesahmeasurements were taken). Approximately
1.5 x 10° measurements were taken. The cost of schedule with a loagd tf 800 runnable tasks is
unacceptable. The Y-axis ends at 120,000 cycles but thet nesslts measured was 566,584 cycles !
(which is~ 1 millisecond on this machine).

When reviewing the results, the question that comes to mind is “why create a load of 800 runnable
tasks on a 4 CPU machine” ? The answer is divided to two paitig fifst one is that the results were
just as bad even if the measurements were performed on a 64r@ehine, because the runnable list was
of the same size. In fact the results would probably be wougetd contention for the synchronization
mechanism. The second part of the answer will shortly falldwery interesting and relevant discussion
revolved around this issue in the Linux kernel mailing listhathe participation of Linus Torvalds, Alen
Cox and others [27]. The discussion thread’s title was capgropriately: “a quest for a better scheduler”.
The main questions discussed were:

e whether applications that use several hundreds runnadkesteould be supported by Linux (which
is optimized for a small box),

o if it makes sense to write a parallel application that useralmer of runnable threads which is much
bigger than the number of CPUs of the machine,

e and do such applications exist

The majority’s opinion seemed to be: yes (to all questioS&)me think its the application responsibility
not to create a number of runnable tasks which is considetzibber than the number of processors.
The counter opinion is that this means every applicationrhest manage a (possibly virtual) context of
many tasks, must implement a scheduler by itself. This ¢d@scwith our opinion: if people write such
applications, the scheduler should support them.
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Context Switch Length / Load (SMP with 4 CPUs)
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Figure 6.1: The X axis specifies the number of runnable peEsin the system i.e. the load (5-800 tasks).
The Y axis specifies the number of cycles consumed while gostégtching (only samples below 120,000
cycles are displayed). It's clear there’s a linear depeageetween the load and the lower/upper bounds
of the context switch duration.
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A concrete example was given for such an application: Running DB2 on an SMP system. In DB2
there is a processes/thread pool that is sized based on mambithe number of CPUs. The size of this
poolis in the order of 100s for an 8-way system with reasansized database. Amaxagents parameter
determines the number of agents that can simultaneoustpgxan SQL statement. Requests are flying
in for transactions. The agents are grabbed from the poolcandurrently fire the SQL transactions.
Assuming that there is enough concurrency in the databi@ses is no reason to believe that the majority
of those active agents is not effectively running. Of codiséting the humber of agents would reduce
concurrently running tasks, but would limit the responsass of the system.

Related work: There has been significant progress in achieving a workingx.scheduler which is (a)
scalable, and (b) handles the case in which the number oahlemasks is much bigger than the number
of processors. However it hadn’t found its way yet to the @fitinux release. The effort is led by the
IBM Linux Technology Center and a summary of this work (irdihg the actual code of such working
algorithms) may be found in [11].

Implications on next chapters’ simulations: The maximal load generated by most simulations (in pre-
vious and following chapters) is usually a few hundreds (82/84 CPU machine) which according to the
above discussion is realistic. The linearity fault of thaux scheduler is ignored because:

1. Itis solvable [19] (while maintaining the existing schiézt behavior and semantics).

2. Even for large number of tasks, the maximal context swdigtation we found, is still a very small
fraction of quantum (according to our measurements wosst

max context switch measured 566, 584 cycles 2%
~ 270

speed of machine X quantum duration ~ 550MHz x 0.05sec
of quantum) which we just use as an upper bound on the contéixtsoverhead anyway.

3. Our main focus is on loads for whichtusk_num < 2 x cpu_num + (since on bigger loads
spinning almost always fails).



Chapter 7

Synchronization Job in a
Non-Synchronizing Environment
Under the Linux Scheduler

7.1 Introduction

After introducing the Linux scheduler in the previous claaptve will now follow the “round-robin path”
and conduct a series of simulations with increasing coniiylethe first one of which is of a single syn-
chronizing job in a non-synchronizing environment. Befpegforming any simulations, section 7.2 will
describe the minor changes made in the simulator in ordertpat the Linux SCHEDOTHER schedul-
ing algorithm. Afterwards, section 7.3 and 7.4 will deserthe first simulation and present its results. The
remaining sections will be dedicated to analyzing and ustdaeding these results and their implications.

7.2 Simulator Changes

Obviously, all the data structures and algorithm preseintethapter 6 had to be embedded into the sim-
ulator. Aside from that, the change in the simulator was mitize decision of “which is the next thread
to run” changed from “the first thread in the ready queue” te“one determined bychedul e”. The
structure of the simulator (see figure 2.1 page 16) has thereémained almost the same. Recall that
while executing, a thread may have one of the three SMP states

ready The thread may run and is waiting in the ready queue to beaitdca CPU.

running The thread is currently running on some CPU. Recall thatewitbils being preempted (by the
simulator-event with the duration associated with the patar context-switch-out) or being sched-
uled (by the simulator-event with the duration associatéti the parameter context-switch-in), a
thread is considered to be in “running” state.

blocked The thread was preempted and is currently waiting for therattreads of its job to reach the
next synchronization point.

In addition to the above states, while implementing the SOHETHER we've added a fourth simulator
state:wait4cs(stands fowaiting for context switch The reason it was needed is as follows:

e Lett¢; be an executing thread that has just “informed” the SMP igddjng its processoc (either
because its quantum is exhausted or because it finishedatbdpin period, failed, and is about to
enter blocked mode).

69
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e Now, in order to simulatechedul e, the actions taken by the SMP ag {o determine which will
be the next thread —+ — that will run onc (assume; # t,), and p) to push to the event-queue a
context-switch-out-event—; — on behalf oft;. Recall that untik; expiresg; is considered to be
the thread that is currently running on

¢ Inthe meantime (unti; will expire), ts is removed from the ready-queue so that it will not be chosen
by otherschedul e invocations to be the next thread to run on some other procegterent than
c. Itis then inserted to the container associated with thet4ga” mode.

e Whene; finally expires, only then the SMP pushes a context-switcevent —eo — on behalf oft,
which is removed from “wait4cs” mode and is assigned(iius changing its state to “running”). We
remark that the time consumed in order to exeeytande, represents the duration sthedul e
(and the other operations performed by the kernel beforeking back tas’s user context).

The “wait4cs” state therefore fits in figure 2.1 as a circlenssn “ready” and “running”, and the arrow
that passes through it is the one associated with a thread bidcated a processor.

7.3 Simulation Description

As the first step, we conducted a simulation which is almosniidal to the one conducted throughout
chapter 3. Namely, a synchronizing job composed from 1latts@xecuting on a machine with 32 CPUs
within an increasingly growing load of non-synchronizitggads. The difference of course is in the
scheduling algorithm which was previously SCHEHR and currently is SCHETHER. We will skip
the first few steps of gradually adding randomization anédlly jump into the deep water of a fully
randomized simulation (computation intervals are noryn@itributed and the ready queue is shuffled on
startup). For starters, we will use the SMART wakeup scheheevarious schemes will be compared later
in this chapter). The simulator parameters we use are threref

p q in | out | sync| nosync | barrier | spin 1 o rand | wakeup
ord | scheme

32| 100| 3% | 3% | 11 | 0...200| 50 6% 1% | 90/15% | 1 SMART
10%
100%

7.4 Results

The results of the first simulation are displayed in figure 7After briefly investigating the simulation
events in order to explain the many peaks and valleys disdléy the fine/medium grain curves, we've
quickly reached the conclusion that similarly to the themmbwobin-heterogeneous simulations, if we pro-
long the duration of the computation (i.e. increase the remaf barriers), the resulting SSR curves
stabilize and a clearer picture is received. This is dermatest in figure 7.2 in which we present the re-
sults of the original simulation after the number of basiems increased to 2000, 5000 and 10000. When
analyzing the resulting graph we see that:

1. When we increase the barrier number, the curves assteidtethe varioug: values become almost
indistinguishable, which means that when we prolong thatitom of the computation, the SSR of
each simulation is converging to some value.

2. There s a peak in the SSR curves whenever the number odyrwironizing threads i1 + 16n
i.e. whenever the total load 2 + 16n (when adding the 11 threads of the synchronizing job) .



7.4. RESULTS 71

SCHED_OTHER Shuffle + Normally Distributed Compute Intervals (out/out74-f-smart-1.7)
100

20

|
80 I
\

70 “}

60

SSR

50

40

[ I L

o T e LTI LR LI e i) |
P U w LR el

20 2 : }.‘ ERE Sgts 2 g Yl P -

10

Number Of Non Synchronizing Threads

Figure 7.1: The SSR of an 11-sized synchronizing job withimoa-synchronizing environment. Each
curve is associated with a differemtvalue: fine grain (1% of quantum), medium grain (10%) and s®ar
grain (100%). The curves associated with the fine and medram gpb present many peaks and valleys.
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Figure 7.2: The SSR achieved by the original simulation wh@fonging the duration of the computation
by increasing the barrier number from 50 to 2000/5000/100®@ SSR curves are almost indistinguish-
able. There’s always a peak when the total number of thresaasviultiple of 16. Both medium and fine
grain display an intermediate load with SSR50. Fine grain curves continue to do so on and off for very
high loads.
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3. Both medium and fine grain jobs display an SSE0% in the intermediate load (for the fine-grain
job, this intermediate load spans up to a thread surplus &f#CRor the medium grain job, the
surplus is only 5-6 threads). As usual, the fine grain jobeas better results than the medium
grain job while the coarse grain job fails in almost everynsgiven when the machine is not fully
utilized.

4. Aside from the peaks (when total load is a multiple of 1@ fjrain simulations sometimes manage
to achieve SSR- 50% on very high loads. The reader might think the fact that38R associated
with the fine grain job gets a little higher as the number of-sgnchronizing threads reaches 200
has significance. It doesn't. Different seeds producectidfit results while the large picture (as
currently described) has remained the same.

5. The nature of the curves is quite similar to those displagehe associated round robin simulation
(that was conducted without randomization, figure 3.4, [Z8)e

7.5 Analysis

When trying to understand the results of the simulation,@gnace to start seems to be in figuring out the
reason for the fine grain peaks that reach up to almost 1009m®®R the number of participating threads
(the synchronizing job included) equas+ 16n. The conjecture that the simulation has a cycle (based on
analysis of the similar round robin simulation) will be sqmoved wrong.

7.5.1 The Transition Point

Let J be the synchronizing job. The first step in trying to underdtthe nature of the peaks was to use
the tool developed in chapter 4 to monitor the distributiéd’s threads as it changes in time among the
various SMP states. Figure 7.3 presents the results of thistaring on fine grain jobs. Three rectangles
are displayed: the first one is associated withthreads distribution within the simulation that inclae
total number oB0 (= 16 x5) threads (including), the middle with the simulation of the si26 (= 16x6),
and the last with the simulation of the siz&2 (= 16 x 7). The X axis displays the time (in cycles). The Y
axis displays the number of threads, and each different cefmesent one of the four SMP states (wait4cs
as defined above included). The arrows at the top of eachngletdenote the time instance in which a
new epoch was started (see section 6.4.1 and algorithm € 1i9e . 22 in page 61). When we examined
J's threads distribution among the various SMP states owes,tive noticed that in all of them there exists
atransition-pointwhich is defined be a time instance such that:

1. prior to it,J's threads computed separately (as indicated by all thér¢stses” that came before it),
and

2. after it,J's threads manage to group and compute together (as indibgitthe green=running and
red=ready continuities) until the simulation ends.

For each simulation, the X-axis time range displayed wasehauch that the transition point will be
displayed. The transition point of the 80 sized simulatisrsémewhere between time=600...700, for
the 96 sized simulation it's between time=21,500. ..22,080d for the 112 it's in the neighborhood of
time=52,000.

7.5.2 J’s Point of View

Let's focus on the first rectangle associated with the 8Cattisdoad and describe what's going on there
form J's point of view:

e On startup, only 3 of’s threads “got lucky” and were allocated CPUs. These ttgeadpute for a
very short while (recall that this is a fine grain job i.e. {f's1% of quantum which is composed of
100 cycles), reach the first barrier, spin for a while, failgdlock.
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Figure 7.3: This figure displays the distribution 3$ threads among the four SMP states as a function
of time (cycles). The jobs were taken from simulations withd = CPU# + 16n. The maximal spin
duration performed by jobs that are displayed here equalduhation of a context switch (CS). The arrows
at the top of each rectangle indicate when a new epoch wasdtdthe X-range was chosen such that the
transition point of each job will be displayed. After thertsition point, threads are grouped and perform
their computation together and thus all barriers are sségkeBefore the transition point, the jobs either
perform a “tail chasing” alt synchronization or are confite@ small number of CPUs.
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e As a result of this blocking, their CPUs are “up for grabs” dhey are immediately assigned to 3
other ready threads. Evidently, these new three threadsbeleng toJ (as indicated by the sec-
ond green “step” in the first “staircase”). This wasn'’t judbw probability event that happened:
the 3 original threads were substituted by threads from #meesjob even though currently there
are 40 non-synchronizing and only 8 synchronizing threadthé ready queue, because of the
SAME_ADDRESS_SPACE_BONUS. Since all the 40 non-synchronizing threads in the readyugqu
don’t share address space with the original three, whilether 8 do, then the goodness of the latter
is higher than of the former which results in the choosingrafther 3 ofJ’s threads.

e The second thread threesome also spin, fail and blocks ordg replaced by the third threesome
of J's threads which soon enough also block. Now, as indichyethe size of the last green step in
the first staircase, there are only 23 threads in the ready-queue (the other 9 are blocked) and
thereforel “looses” one CPU in favor of some non-synchronizing thread.

e The last pair completes the first barrier (causing the othiereéads ofl to change state from blocked
to ready), reach the second barrier, spin, fail, and blockr the same reason as stated before
(SAME_ADDRESS_SPACE_BONUS) this pair is replaced by another paird$ threads ...

e This scenario repeats itself (in various forms) in the firéstaircases”. The first epoch that ended
somewhere between time=200.. . 300 didn’t change anyttiogever, towards the end of the sec-
ond epoch just after time=400, the computation patterngbsiand’s threads effectively get hold
of 11 CPUs at the same time (as indicated by the 11-threadis-gveen=running lines). For some
reason,] seems to “chase its tail”, in what can only be described as'{gaguessed it) alternating
synchronization (this will be further elaborated latemeTifference between the alt synchronization
displayed here and in previous chapters, is the time spediskireads in the ready queue between
each two consecutive barriers. In previous chapters, wiGHED_RR was used, this period was
long: After moving from blocked state to the end of the readgug, in order to execute again, a
thread had to wait until such time when it was the first thresithé ready-queue. This is not neces-
sarily the case for SCHE@THER as indicated by the very thin (or simply non existeatj=ready
lines between time=400...500. When a thread returns footkied to ready, eschedul e dl e
is invoked, allowing threads with high enough goodness &zppt other threads and begin to run
immediately.

e Towards the end of the third epoch, somewhere between tifte=6700, something happens which
allows all of J’s threads to get a hold of a CPU simultaneously and beginnmpeie together (this is
the transition point). From that point onwards, this typeofputation is maintained until the end
of the simulation.

7.5.3 The Effective CPU Set

A clue as to whyJ behaves like this is given to us when we notice that this typtit-chasing alt-
synchronization happemdwaysjust before the starting of a new epoch (see also the otherdgtangles).
The reason becomes clear when we make the following two wésens:

1. Towards the end of an epoch, theunt er of most non-synchronizing threads is zero or close to it
(otherwise we wouldn’t have been close to the start of a newetgp All of the non-synchronizing
threads in the ready queue have zeount er (a necessary condition for a new epoch to start) and
some of those that are currently running hawoant er that is close to zero (since they have been
running for a while).

2. This is not the case for synchronizing threads that spesgl of their time in blocked mode. In fact,
until the transition point, theicount er is usually bigger than the default quantum duration i.e. up
to 200 cycles (recall that “I/O bound” threads are favored/SGHED OTHER due to the formula
used inschedul e to refreshcount er fields at the beginning of a new epoch, which allows a
thread to accumulate up to twice its default quantum).
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Let ECS; (the Effective CPU Set of J) be defined as follows:
ECS; = {c: 3t e J,tprocessor = c}

It follows that towards the end of an epoch, the priorityisfthreads is very high (in comparison to the pri-
ority of non-synchronizing threads), so high, it allowsal)’s threads to overcome tHRROC_CHANGE_PENALTY
penalty and get hold of more and more CPUs yi#til’'S ;| = |J|. However, while] alt synchronizes (“en-
joying” the fact that EC'S;| = |J| and that all its threads have much higher goodness valuaesttiea
non-synchronizing threads that share with them the CPU«(ii$ ;), a point is reached wheschedul e
needs to find the next thread to run on some CPU and there ahegaas in the ready queue with a pos-
itive goodness value. This is when a new epoch is startedthalt ount er s of the non-synchronizing
threads are refreshed, causing these threads (like Pofieyeating a spinach can [24]) to instantly be-
come “stronger”. Indeed,s threads’count er s are also refreshed, but this is done with a decaying factor.
Meanwhile J's threads are continuously alt synchronizingJéshases its tail”) and therefore rapidly be-
come “weaker” due to the unsuccessful spins. Soon enoughke thon synchronizing threads that also
periodically run onEC'S ; become “strong” enough not to allow eachl&f thread to preempt them when-
ever it returns from blocked to ready state. Unavoidably,S; begins to shrink and the staircase-scenario
described above reoccur.

This scenario has the nature of repeating itself over andamy&n. This fact is illustrated in figure 7.4
that displays the evolving dZC'S ; in the 96 sized simulation over the first 10000 cycles.

Evolving of the Effective CPU Set (load=96, spin=CS)
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Figure 7.4: This figure displays the evolving BIC'S; of the 96-sized simulation as a function of time.
The size of this job has the nature of expending (towards tieaepoch) and shrinking (shortly after).

7.5.4 Reason for Tail-Chasing Alt Synchronization

We therefore conclude that there’s a time interval, spapfiom shortly before the beginning of a new
epoch till shortly after it, in which:

1. |[ECSy|=|J|,and

2. the goodness afs thread is much higher than the goodness of each non-symizitng thread —
— for whicht.processor € ECS;
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The first fundamental question that follows is why ddest synchronize under this circumstances i.e. if

1. all of J's threads have the opportunity to execute together (agifrtachine was dedicated to them),
and

2. those threads that first arrive to a barrier, wait whilesig for the duration it takes to perform a
context switch, thus enabling the other threads to join in,

then what'’s stopping’s threads from computing together without having to bloftkreeach barrier. The
second question is what eventually breaks this pattern bmdsal’s threads to compute simultaneously
without alt synchronization (i.e. what is the cause of tla@sition point). The answer to these questions is
a combination of two factors:

1. The serial nature of the simulator: Two simulator everith the same execution time are not ex-
ecuted simultaneously by the simulator because it's algemgram. Instead, they are serialized
according to the id of the CPU on which the events are “exeuteor example: if event; is asso-
ciated with a thread that executes on CPJand event; is associated with a thread that executes
on CPUc,, thene; will occur beforee, if and only if ¢; < ¢ (¢ # ¢ because two thread can't
execute on the same CPU).

2. The spin interval is too small: L&ES (= Context Switch) denote the time it takes to conduct a
full context switch (i.e the sum of the time consumed by crgsvitch-in and context-switch-out
events). Since the fixed spin interval usedXig exactly CS, a waiting thread 4 — spins just
enough for an awakened threadt— to join it. However, whert, finally begins to compute and
is about to synchronize, “gives up” and blocks. In order for this spin to have succeetieshould
have spun just a little bit more.

For example, We will now describe the exact chain of events that led to th#& thasing” alt synchro-
nization in the 80 sized simulation between trD0. . . 500. We usé to denote the thread dfwith rank

r for which thepr ocessor field value is currentlg. We use; to denote the-th barrier. Our description
starts at time=414. At this timd = {to, t4, to} are executing an® = {to, t1, ts, ts, te, t7, ts, t10}
are in blocked mode after failing to synchronizetgn

Time=414 A’s threads reach; and finish it successfully. As a resul®’s threads are awakened. All of
them are able to preempt currently executing (low prionitgh-synchronizing threads.

Time=415 A’s threads finish the computation phase.

Time=416 A’s threads reachs and start to spin: they will do so until no later than time=4&&e the
maximal spin duration is set to be CS=6.

Time=417 The context-switch-out events of the low priority non syrwtizing threads, that were trig-
gered by the awakenirBjat time=414, have expired. Consequently, the contextebwit events for
B’s threads are pushed.

Time=420 The context-switch-in events associated witk threads (triggered at time=417) have expired.
B’s threads start to compute.

Time=421 B'’s threads finish the computation phase.

Time=422 Two things happen “simultaneously”: (B'’s threads reach; for the first time, and (24’s
threads reached the maximal spin duration (since spinnéggui at time=416). As stated before,
events are serialized according to the CPUs they are exktapten. Currentlyd = {¢§3, t}*, 13°}
andB = {t§, t7, 130, ¢2°, 2', 132, ¢33, 13" }. Therefore, whemg®'s last synchronization attempt is
made, it fails, causing}® to block (because the first synchronization events'sfthreads with CPU
ids bigger than 13 weren’t executed yet).

Afterwards, the same scenario will repeat itself with thiéedénce that nowB’s threads will wait forA’s
threads.
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7.5.5 Necessary and Sufficient Condition for Transition Pait

The previous subsection explained the reason for the ¢taking” alt synchronization. This one will
explain the circumstances in which this computation patiebroken and the transition point occurs:

e Let A,,;, be the minimal CPU of a thread it (A,,,;, = 13 in the above example).
e Let A,,.. be the maximal CPU of a thread ih(A,,., = 30 in the above example).
e Let By, andB,,.. be defined respectively.

By following the example given above we get that the necgssamdition for the transition point to occur

IS:
Amin > Bmaz
or
Bmin > Amaz

because this will ensure the events will be serialized incttreect order. As the simulation evolves,
and B are constantly changing (the reason for this was explaimgaavious round-robin chapters). The
transition point will occur only when the above conditiorsatisfied.

So far, we've established the reason wig/threads manage to group together, but this is only half of
the work. We now need to understand what’s keeping themhegéee. what makes the scheduler continue
to scheduld’s threads as a group until the computation ends. There aregmsons:

1. One of the characteristics of a fine grain job, is that thematation time done by its various threads
is more or less the same at any given time instance. This isegtddiroduct of doing a lot of
(barrier) synchronization. 1d’s case for example, it is very unlikely fag to have computed for
1000 cycles ifts has only computed for 950 cycles. In general, the spin maxnation serves as
an approximation of the upper bound on the difference battleecount er fields of each pair of
J's threads. This usually ensures us that after grouplisghreads will exhaust their quantum and
be preempted together, i.e. will not split up again to twougpA and B in account of a quantum
which is exhausted only for some, while the others contioummpute.

2. Finally, this is where the assumption that the total nunolbéhreads is a multiplication of 16 comes
in. It has no mystic meaning, it is simply the smallest diviesbCPU# (=32) which is not smaller
than|.J| (=11) and thus able to contain it: Aftdis threads grouped and exhausted their quantum
together, blocking and preemption events ceased to ochis, dlong with the fact that threads have
a tendency to run on their previous processor (becaufR0C_CHANGE_PENALTY), allows the
CPUs to simply be partitioned between unchanging group$ ttirteads: whenever a 16 sized group
of threads (possibly containin) has exhausted its quantum, it is simply replaced by angftoemn
of 16 threads.

We now have complete understanding of the behavior of thalations displayed in figure 7.2:

e The peaks are caused due to the existence of a transitioh poin

e For loads that aren’t a multiplication of 16, SSR is highearttsimilar round-robin simulations,
revolving around 50%. The reason it's higher, is thiatthread indeed manage from time to time
to group and compute together beating the alt synchrooizgtattern for a while (at least until the
guantum is exhausted). The reason the SSR is not as high aawdasons with load which is a
multiplication of 16, is that the SMP cannot maintain consigroups of threads to be scheduled
together, and soon enouglsplits again to two alt synchronizing groups.

7.6 Bigger Maximal Spin Duration

The most important conclusion from the previous sectiohad & spin interval with a CS duration is not
enough (or more accurately, it is the biggest spin intendttvis not sufficient). We may safely assume
that if the duration of the spin interval was “a little” longéhe transition point would have happened much
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sooner (or more frequently for loads that aren’t a multigla €PU#-divisor which is bigger than or equal
to | J|), thus greatly improving the SSR achieved. &+ denote this spin interval duration. In real world
systems, “a little” means enough time such that all the awiakpthreads would succeed to synchronize
(i.e. overcome contention problems etc). However, withim simulator it is enough to define CS+ as
simply: CS+1.

Figure 7.5 displays the transition point of a simulationifamto the one conducted in the previous
section with the sole difference of using CS+ instead of Cthasnaximal spin duration.

The following is a comparison between figure 7.3 (CS) and &gub (CS+):

Load Transition Point Completion
Happened Beforg Time

CsS | Cs+ CsS | Cs+
80=16 x5 700 9000 || 14,217 20,877
96 =16 x 6 || 22,000 3000 || 33,903 19,707
112=16 x 7 || 52,000| 11,000 || 56,446 | 26,656

There are two “disturbing” aspects in these results:

1. Itis clear that as expected the transition points hapgpemech sooner for loads 96 and 112 when
CS+ was used as a maximal spin duration. This resulted in @dsipeof approximately factor of
2. However, for load 80, the transition point happened matérland as a result there has been a
considerable slowdown (with factor of approximately 1\8p will address this problem shortly.

2. Even though the results of the CS+ simulations with load 2% showed improvement with respect
to the their CS counterparts, it still takes these simutetia considerable amount of time to reach
the transition point. The question that follows is why.

The explanation for the second point raised above is simply that the maximal spin duration still
doesn't suffice. Indeed, threads frofn(as defined above) are spinning enough time to allow any blbck
thread —t — with high enough priority to join them. But what ifis only about to block, i.e. it has
just yielded its CPU after an unsuccessful spin and thegefohedul e was invoked (and is just in the
beginning of the process of choosing the next CPU to run)cedishedul e cannot be “stopped” while
it's executing, a new thread will be chosen by it to runigor ocessor andt will have to wait until
reschedul e.i dl e “reassigns” it its processor. Note thais considered to be running until line 26 in
algorithm 4 (page 61) is executed.

The following is an illustration of a scenario in which CS+ximaal spinning time is not enough. It is
taken from the CS+ simulation associated with load=80:

Time=858 22 fails onby, and a context-switch-out event is pushed on its behalf. Thalator-function
which is the equivalent afchedul e, decides which will be the next thread to runG#Us,. Let
this thread be denoted asIn order to faithfully simulate the originalchedul e, this decision will
take effect only after CS cycles will pass.

Time=860 ¢} is the last of)’s threads to reachy, and thereforés is complete.

Time=861 The context-switch-out event ¢§* has expired. Even though it is now known tht may
(and will) continue to compute because the event it has bexting for has occurred, nothing may
be done at this stage because the origgehedul e cannot be interrupted while it is executing.
A context-switch-in event on behalf of is therefore pushed. In addition; finishes its current
computation phase.

Time=862 t} reached,; and starts to spin. It will continue to do so for not longemti@s+ cycles i.e.
not later than time=869.
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Transition Point for 16-Multiplication-Load
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Figure 7.5: This figure is similar to figure 7.3 with the diffaice that the jobs displayed here used CS+
maximal spin duration. We can see that for loads 96 and 11&dhsition point occurred earlier than for
the CS simulations. However, for the 80 sized simulatiorg@sult is reversed.
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Time=864 The context-switch-in event af has expired. This is equivalent to the point whecdedul e
is after switching ta:’s context (the completion of line 26 in algorithm 4).

Time=865 However, since3? didn't block after all, and is a runnable taskeschedul e_i dl e(t3?)
is now invoked (line 27 in algorithm 4)t2? has the highest goodness value @®U,; and it is
high enough in order to preempt Consequentlyy.need_r esched flag is set. As the “kernel” is
about to return toy(’s) user mode, it checks theneed_r esched flag (which is set) and therefore
invokesschedul e, which in turn choose&? to be the next thread to run. As explained before, this
schedul e decision will take effect only after CS cycles will pass. Gequently, a context-switch-
out event is pushed on behalfof

Time=868 The context-switch-out event afhas expired. A context-switch-in event has been pushed on
behalf oft32.

Time=869 ¢} has unsuccessfully finished spinningfen and yields its CPU.
Time=871 The context-switch-in event @§> has expired. It begins to compute.
Time=872 2 finishes the computation phase.

Time=873 t3? reache®s;, but by now it is too late fot} which has already yielded its CPU at time=869.

We therefore conclude thatin order for a fine grain job to have a maximal chance totréiae transition
point as fast as possible, its maximal spin duration shootdadly be in the order o2CS+ This will
supply other threads from the job, that yielded their CPUslase proximity to the barrier completion,
with enough time to join their waiting counterparts.

The explanation for the first point that was raised above, regarding the fact that the CS simulation
(with load=80) achieved better results than of the CS+ satmn, is also simple: sheer luck. The division
of J to two alt synchronizing groupd and B (as defined in the previous section) was such that the
condition stated in subsection 7.5.5 was satisfied immelgiathen the simulation began. In order to
prove this was just a lucky event, we've conducted the samalation (load=804=1%) using maximal
spin durations of CS/CS+/2CS+ with 100 different randonhigsen seeds. The resultis displayed in figure
7.6.

The figure shows that generally, simulations that used 2G@G3feamaximal spin duration, reached the
transition point more quickly than CS+ simulations, whintturn reached the transition point much more
quickly than the CS simulations. The average time it tookvds@ous simulations to reach the transition
point, as well as their average SSR and completion time islks\s:

maximal spin|| transition| SSR| completion
duration point time
CSs 17,016 | 81.1 26,194
CS+ 4,986 | 96.6 17,644
2CS+ 2,282 | 99.2 17,013

These results coincide with our findings so far. Note thatifi@se kinds of loads which are a mul-
tiplication of a CPU#-divisor bigger thay|, when making the computation duration go to infinity, the
difference between the averages achieved by simulatiathsvarious maximal spin durations, is expected
to go to zero. This is true because once the transition peaEiched, all the barriers are successful all the
time and the maximal spin duration is never used to its falthis case, the difference between the various
simulations is found only in their early stages, which haagser relative weight the longer we make the
computation. However, different maximal spin durationl\piby a much more important role for loads
different than the above.
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Comparison Between Maximal Spin Duration Over 100 Random Seeds
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Figure 7.6: Comparison between the fine-grain 80-sizedlatmns that use CS/CS+/2CS+ as their max-
imal spin duration. Each such simulation was executed 18giusing 100 different random seeds. The
X-axis displays the serial of the random seeds. Figayalisplays the transition point comparison. The
seed with serial 100 is the one used in the simulations we &aaly/zed in figures 7.3 and 7.5. For this
seed, we can see that the transition point of the CS simulatieed occurred much before than of the
CS+ simulation. Evidently, this is an exception. Figuogdisplays the SSR comparison. The sooner the
transition point occurs, the higher the SSR is. This is tlasoa why the highest SSR is achieved by the
2CS+ simulations and the lowest SSR is achieved by the CSations. Figure €) displays the comple-
tion time comparison. It turns out that the higher the SSRegaster the simulations end, even at the cost
of longer spin durations.
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7.7 Comparison Between Wakeup Schemes and Spin Durations

In the previous sections, we have analyzed the behaviomapiitations of a single synchronizing job exe-
cuting within a non-synchronizing environment on a systeat tises the Linux SCHEDTHER schedul-

ing algorithm. Our focus was on loads that generated SSRsp@aknely a multiple of a CPU#-divisor
which is bigger than or equal {d|), but we were able to generalize our understandings ang #pgin to
other loads. We have concluded that in order for a barriesrdhgn to be successful, a CS maximal spin
duration is not sufficient and that better SSR will probatghalchieved when prolonging it to CS+ or better
yet to 2CS+. This conclusion was demonstrated for peakslolddwever, it was not demonstrated for the
other loads. In addition, we would now like to affirm the inggliconnection between better SSR and faster
executions within all possible loads. We would also like donpare between the various wakeup schemes
and examine what are their effects. This section will presetomparison between simulations that are
similar to the one we discussed up till now with:

e three maximal spin duration of: CS/CS+/2CS+, and

o three wakeup schemes: SMART/AIP/SILLY

7.7.1 SSR Comparison

The SSR comparison of fine and medium grain jobs is displayéidures 7.7 and 7.8 respectively. Here
is the average SSR and its absolute deviation (defined tgll BE;_, [measurment; — p|) across all the
different loads that are bigger than CPU#:

wakeup fine grain medium grain
scheme CS | CS+ | 2Cs+ CS | Cs+ | 2Cs+
SMART || 54iw06 | 83.17 | 94.2026 || 28.1e7s | 41.6:135 | 76.7488
AIP 48.9;&10.3 7918,1 93&3 24.716,8 37.&12,5 75.21»9.2
SILLY 38.5t89 | 69.9¢104 | 91945 || 23458 | 34.7cus | 73.8k0s

Here is the analysis of the above results:

e Regardless of the wakeup scheme used, we can see a dranpateément in the SSR as the maxi-
mal spin duration is enlarged: The difference between tie &®ieved by CS and 2CS+ simulations
is 40-50% in favor of 2CS+. The difference between CS+ and+2€i@ulations is 10-20% for fine
grain jobs and 30-40% for medium grain jobs in favor of 2CS+.

e Notice how SSR achieved by fine grain jobs in the 2CS+ simariatis almost always above 90% !
The meaning of this is that by fine tuning the maximal spin larawe have managed to transform
all loads to “peak loads” i.e. if previously, only jobs thaieeuted within a specific load enjoyed a
SSR close to 100% (load which is a multiplication of a CPUvisdir not smaller thafJ|), now J
enjoys similar SSR regardless of the load.

¢ Also notice that while fine grain CS+ simulations manage i@ a decent SSR when AIP and
SMART are used« 80%), for medium grain jobs, the only practical spin duration @3 (oth-
erwise the SSR is below 50%). The reason for this is impliechfour analysis above: A spinning
thread must wait for an awakened thread enough time for @)tpreempt another thread (usually a
CS duration but occasionally up to 2CS duration) andd finish the next computation phase before
reaching the next barrier (an expecjeduration). For fine grain jobs (b) is much smaller than (a)
thus allowing CS+ to achieve reasonable SSR. However, fdiumegrain jobs, the relative weight
of the duration of (b) increases. This fact is partially ewiled in 2CS+ but not at all in CS+. As a
result, a CS+ maximal spin duration is usually not enouglsic@umost spins to fail while 2CS+ is
big enough to allow a considerable amount of spins to succeed
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e When comparing the various wakeup schemes, we can see ¢hdiffiérence in the average SSR
(achieved by simulations using the same maximal spin durpts quite small: For medium grain
jobs, the differences are in the order of 2-7% (7% being tfferéince between SMART and SILLY
when CS+ is used). For fine grain jobs the differences are?2-16 any case, when 2CS+ is used,
the difference between the various schemes is only 2-3%.

Although the SILLY scheme introduces a bug (CPUs might “get”) and the idle pitfall (a group
of threads might be assigned to the same “oldest” idle CRWgdms that wakeup schemes do not
play a crucial role in the context of this work. The main reastor this are:

1. The probability of idle CPUs is nonnegligible only in th#érmediate load, when the number
of non-synchronizing threads is smaller than CPU# whiletthal threads number is bigger.
For this load, the combination of the following two factosaVes” SILLY from assigning all
the awakened threads to the same (oldest) idle CPU:

(a) eachthread has a strong association with its previolls(@&cause dPROC_CHANGE_PENALTY
and algorithm 2 lines 4-5), and

(b) |[ECS;| — |J| towards the starting of a new epoch (when the threads agthalle a
chance to group together) i.e. the previous CPU$'®threads are pairwise disjoint.

2. For bigger loads, idle CPUs simply do not exist and the jgrobis avoided altogether.

7.7.2 Maximal Spin Duration Speedup Comparison

A comparison between the conducted simulations accorditttgir maximal spin duration, is displayed in
figures 7.9 and 7.10 for fine and medium grain jobs respegtielorder to compare a pair of simulation
(X,Y) according to their maximal spin duration (wheXeis considered to be the simulation that uses a
“better” maximal spin duration in the sense that 2CS+ istdy&than CS) we've used the formula:

completionTime(Y) — completionTime(X)

speedup = x 100

completionTime(Y)
i.e. we display the speedup &f with respect toY” in percentage. The title “2CS+ vs CS” implies that
the left term (2CS+) is associated with and the right term (CS) with’. Note that a positive speedup
means thalX is faster thart” and a negative speedup means the opposite. Also note thaextbeiterm
“speedup” in a non conventional way: in this work this termame “relative improvement”. For example,
60% means: a reduction of 60% in the time, which is equivalemt “conventional speedup” of 2.5 (i.e.
2.5 times faster).

Here is the average speedup and its absolute deviatiorsatdise different loads that are bigger than
CPU#:

maximal spin fine grain medium grain
duration |[SMART | AP [ SILLY |[SMART | AP [ SILLY
2CS+vsCS 45.9:7 5 50.5:7.7 53.6:06 20.3:75 22.2:84 | 21. 71103
CS+vsCS || 36.8trs | 35.0x100 | 32.9:103 5.4i5.4 545 4.3:5.1
2CS+vs CS+|| 13.4t111 | 2121134 | 28.8t15s 15.6:67 | 17.976 18:0.2

The results displayed above coincide with our findings réigarthe SSR:

e 2CS+ simulations are considerably faster than CS simulsitie 50% faster for fine grain jobs and
~20% for medium grain jobs.

e Fine grain jobs within CS+ simulations axe85% faster than within CS simulations (but for medium
grain jobs the speedup is ony5%).
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Fine-Grain: Wakeup-Scheme SSR Comparison
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Figure 7.7: This figure compares the SSR achieved by fine grbgwhen different wakeup schemes and
maximal spin durations are used. Generally, bigger spiatthr resulted in better SSR. For 2CS+ most
measurements are in 80-1008§ ~ 96%), for CS+ in 50-100%dvg =~ 77%) and for CS in 25-75%
(avg = 47%). This means that when choosing a correct spin durationeafiamin synchronizing job within

a non-synchronizing environment may successfully compmgardless of the load. When examining the
difference between the various wakeup schemes, we seédhdifference is fairly small, and shrinks as
we enlarge the spin duration (in 2CS+ the the curves are alimdistinguishable).
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Medium-Grain: Wakeup-Scheme SSR Comparison
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Figure 7.8: This figure compares the SSR achieved by mediam fbs when different wakeup schemes
and maximal spin durations are used. The results are sitildnose obtained for fine grain jobs (figure

7.7) but here the SSR is much lower. The only practical spmatitan for these kinds
others are below 50%).

of jobs is 2CS+ (the
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Recall that the connection between better SSR and high@&rpgance isn't a given since SSR in not a
prefect metric: Indeed, when the SSR is low, we may safelytisalyit was preferable not to spin at all.
However, the immediate drawback of achieving higher SSRrbjopging the spin duration is that syn-
chronizing threads spend more time while spinning whicltagcally might prolong the total computation
time. The results above show that higher SSR indeed led testexecution time.

7.7.3 Wakeup Schemes Speedup Comparison

The wakeup schemes speedup comparison of fine and mediumigjpaiis displayed in figures 7.11 and
7.12 respectively. The comparison is done in the same manmwas done in the previous subsection (i.e.
each pair of schemes is compared and the speedup percentdigelayed). Here is the average speedup
and its absolute deviation across all the different loadtdhe bigger than CPU#:

wakeup fine grain medium grain
scheme CS | CS+ | 2CS+|| CS [ CS+ [ 2CS+
SMART vs SILLY || 22.6:106 | 25.3t153 | 8.4:n T dsaa | 79558 | 41453
AlIP vs SILLY 13.7+101 15.3c17.1 6.1+0.s 2.3:2s 3434 1.7+4.2
SMART vs AIP 9.8+10 10.1t127 | 1.340.2 4.8:356 5147 2.3:43

The results here, also coincide with our analysis from eacti.7.1 that suggested only a minor im-
provement when 2CS+ maximal spin duration is used (SMARYT &% faster than SILLY for fine grain
jobs and less for medium grain jobs; the difference betwel€hahd SILLY is even smaller). However for
smaller spin duration done by fine grain jobs, the improverisemore meaningful{ 25%).
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Fine-Grain: Spin Speedup Comparison
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Figure 7.9: This figure displays the speedup achieved by agfiam job using different maximal spin
duration (each pair of spin duration was compared). The alesults coincide with the SSR findings
presented earlier, i.e. there’'s a strong association legtwlee SSR and the overall performance: 2CS+
simulations are 25-75% faster than CS simulatieng (=~ 50%); CS+ simulations are 25-50% faster than
CS simulationsdvg =~ 35%).
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Medium-Grain: Spin Speedup Comparison
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Figure 7.10: This figure displays the speedup achieved bydumegrain job using different maximal spin
duration. The comparison is done similarly to the way it wasain figure 7.9. It is evident that a 2CS+
maximal spin duration is more suitable for medium grain jabshere almost no difference between CS+
and CS simulation. 2CS+ simulation ar20% faster than the other simulations.
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Fine-Grain: Wakeup-Scheme Speedup Comparison
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Figure 7.11: Comparison between the various wakeup spiri;égrain jobs. AIP and SMART are about
20-25% faster than SILLY on average when using CS/CS+ mdspiiaduration. This speedup is reduced
to an average of not more than 8% when 2CS+ is used.
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Medium-Grain: Wakeup-Scheme Speedup Comparison
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Figure 7.12: Comparison between the various wakeup spmséalium grain jobs. Curves are almost
indistinguishable and are in the neighborhood of 0. Thedsggverage speedup-is8% (CS+, SMART
vs. SILLY).



Chapter 8

Homogeneous Collection of
Synchronizing Jobs Under the Linux
Scheduler

8.1 Introduction

In this chapter we will conduct a series of simulations ideaitto those conducted throughout chapter
4 (the associated round-robin chapter) with the sole diffee of changing the scheduling algorithm to
Linux SCHEDOTHER. In chapter 7 the Linux scheduler managed to allowhadlthreads of a single
fine grain job to execute simultaneously even with extrentnégjh loads, thus considerably shortening
the elapsed execution time of this job. We believe that tieciollections presented in this chapter, in
which an increasing number of synchronizing jobs will cotepen the system resources, will prevent this
extraordinary success from re-occurring and establistotimbas being a crucial parameter.

8.2 Description and Results

The simulations series is composed of an increasingly grpwollection of jobs with an identical profile.
The parameters shared by all the simulations we will conthuittis section are:

p q in | out | nosync| barrier o randord
32| 100 | 3% | 3% 0 2000 | 90/15% 1

The simulation will differ in:
Size which may be one of 17 = {2, 3, 4, 5, 10, 11, 15, 16, 22, 25, 32}
Maximal spin duration which may be one o6 PN = {CS, CS+, 2CS+}, and
Wakeup schemewhich may be one oW SCM = {SMART, AIP, SILLY}
Grain which may be one of RN = { fine(1%), medium(10%), coarse(100%)}
The total number of simulation sequences is therefore:
|SIZ| x |[SPN| x [WSCM| x |[GRN| = 11 x3x3x3 = 297

Each simulation-sequence begins with a simulation thatates a single job, the next simulation in the
sequence adds another job and thus composed from two jobsawitdentical profile, and so on until

91
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the total number of threads in the job collection exceeds(32@' PU# x 10). Figure 8.1 displays the
results of the all the simulation sequences that used 2C8+reximal spin duration and AIP as a wakeup
scheme.

We have chosen to display only the results of AIP 2CS+ sirfaniatbecause:

1. this seems to be the most practical choice: SILLY wouldphly be fixed (at least a minor fix like
the one presented by AIP); SMART is probably too expensi@S£seems to be superior to CS and
CS+,

2. we would need eight more pages to present the other sctspingairs (becaug§ PN |x |W SCM| =
9), and

3. mostimportantly, after comparing these pages, we casrtrbpre that they are quite similar and the
differences between them are best presented here in theofawerages and deviations.

When examining the resulting graph, we notice:

e The difference between the results of the simulations coteduhere and of those that were con-
ducted in the previous chapter within a non-synchronizimgrenment: Our prediction that a col-
lection of competing jobs will not allow a high SSR regardlesthe load, proved to be true i.e. from
a certain point, spinning doesn’t pay off and is better a@did

e For all the simulation sequences displayed, there existstarmediate load range in which the SSR
is bigger than 50%. Job collections composed from smalles jnanage to achieve a bigger thread
surplus (this will be further elaborated in the next sedtion

e The difference between the results of the fine grain sinutatconducted here and of those that were
conducted in the round-robin homogeneous chapter: Higlsloause the SSR curves to go to zero
rather than converging to some value in the south side of S0%.reason for this is obvious: when
using the Linux SCHEDOTHER scheduler, the order in the ready queue plays an iifisigmt role
in choosing the next thread to run (simply a tie breakerhe next thread to run form within a pair of
threads with equal goodness is the one that is closest tetbdf the ready queue). This is contrary
to the round robin algorithm in which the fact that all the &etaed threads are moved together to
the ready queue and are contiguously ordered there, alsoesrthat they will be scheduled in close
proximity to one another, which ensures in turn that the S8R/ in the neighborhood of 50% (as
each group of threads fails and succeeds to synchronizeaidy) .

8.3 Threads Surplus

This section will discuss the threads surplus for whichz > 50% was achieved within the various sim-
ulations and its dependency on jobs size, maximal spin idurand wakeup scheme. Note that the surplus
analysis is an important perspective which may be viewedrémgonal to the speedup considerations
(speedup considerations say: “when running simulafgrit ends faster when we use 2CS+ rather than
CS+7; surplus consideration say: “spinning is worth white foad X when using 2CS+ but isn’t worth
while for the same load when using CS+"). Figures 8.2 and Bdaly the threads surplus achieved by fine
and medium grain simulations respectively. These figursrditiate between jobs sizes. The following
however is the average number of threads surplus acroszses! s

wakeup fine grain medium grain
scheme|| CS | CS+] 2CS+| CS | CS+ ] 2CS+
SILLY 10.4| 23.8| 416 || 6.9 | 104 | 24.7
AIP 16.7| 31.1| 455 12 | 14.2| 29.9
SMART || 16.5| 31.1| 48.9 || 10.6 | 13.8 | 29.9
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Figure 8.1: This figure displays the results of all the AIP 2@8nulations. The Y-axis is associated with
the SSR. The X-axis is associated with the number of thresatgdbs) that participated in the simulation,
and it ranges up t6'PU# x 10. Curves associated with fine and medium grain jobs managestais
SSR > 50% in the intermediate load but eventually (contrary to theultssdisplayed in the previous
chapter) drop under the 50% threshold and converge to 0 ésatiéncreases. Collections composed from
bigger jobs achieve smaller thread surplus in whichR > 50%.
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Maximum Threads Surplus of Simulations Achieving SSR > 50
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Figure 8.2: This figure displays the maximal threads surpfu@e grain simulations for whicls SR >
50%, as a function of the job sizes, the maximal spin duratiod,the wakeup scheme used. Longer spin
durations achieve bigger surplus. SILLY bars tend to disapfor bigger job sizes. With the exception of
CS, collections composed from smaller jobs tend to prodigge surplus.
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Maximum Threads Surplus of Simulations Achieving SSR > 50
[SCHED_OTHER, Homogeneous, Medium Grain]

100
80
Spin: 2CS+
60
40
g II II il E A II
0 - I I I I I |I |II I ! I I
2 3 4 5 10 11 15 16 22 25 32
100
()]
©
g 80
£ Spin: CS+
c 60
8 40 A
2
=] -
o II R R :
. f1 RN cfw cEm BN A cE
I I I I I I I I I I I
2 3 4 5 10 11 15 16 22 25 32
100
80
Spin: CS
60
40
20 I
0 - ll !I l ll l. !I ! l ‘ I I
2 3 4 5 10 11 15 16 22 25 32
Job Size
SMART o AIP B SILLY

Figure 8.3: This figure is similar to figure 8.2 with the di#ece that the threads surplus displayed here is
associated with medium grain jobs. The same observati@isvire made for the fine grain figure, also
hold for this figure.
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Our conclusions from the surplus figures and the average table are as follows:

¢ Difference between sizesAs mentioned earlier, the difference between the restilsinoulations
with different job sizes was that smaller sizes seemed watrgsa longer intermediate range with
SSR > 50%. This is evident in both figures associated with fine and nmadjuain jobs. However,
this observation seems slightly incorrect when examinireggurplus of jobs witlyize > %.
The reason is that for these sizes, a job collection is “aol€bntain only a single surplus job while
sustaining the SSR above the 50% threshold. For examplegiBa sized job collection the surplus
is 12 threads becauge x 2 — 32 = 12 (22 x 2 is the minimal collection of 22-sized-jobs that is
bigger than the&” PU#). The reason that collections composed from smaller jobsageto sustain
SSR > 50% on bigger loads is prosaic: when the last thread—— of some job completes a
barrier, than all the threads that were awakened as a resudt,preempt currently executing threads
in order to joint;. In a competing environment, the probability that this \wélppen (i.e. that all the
awakened threads will be able to preempt currently exegtitireads) gets smaller as the number of
the awakened threads gets bigger (for 2-sized jobs, itsigimthat 1 awakening thread will be able
to preempt; for 3-sized jobs, 2 threads must be able to datithso on).

e Maximal spin comparison: In general, when we examine the average surplus, we se®uhat
conclusions regarding the maximal spin durations are gdptiGable to the threads surplus: For fine
grain SMART/AIP simulations, 2CS+ achieve a surplus-oR.5 x C PU#, while CS+ achieve a
surplus of~ CPU#, and CS achieve only & %surplus. We conclude that for fine/medium
grain jobs, in addition to the fact that bigger spin duragiogsult in a better SSR (and therefore better
speedup) they also greatly effect the maximal load in whihrgng is worth while.

e Wakeup scheme comparisonWhen comparing the averages of the various wakeup schemes,
see the difference between them is not as dramatic as whepacomg spin durations. However, the
fine grain jobs average specifies that SMART was able to sustéiz > 50% for ~7 (=~ 20% of
CPU#) more surplus threads than SILLY. This difference inmagligible. AIP performs almost as
well as SMART (and sometimes even better) while the surpthgeaed by SILLY is always equal
to or less than the surplus achieved by the other schemes.

e Jobs of size 2 Note that for jobs with2 < size < CPQU#, abouts0% of the associated bar clusters

display a difference between the surplus achieved by theusmwakeup schemes. Moreover, for
each size in this range, there existégaain, spin) pair for which the associated wakeup-scheme
bars present an unequal surplus. This is not the case ferXifer which the surplus achieved is
always equal among the different schemes. The reason isviteat only one thread is awakened
(which is always the case for jobs of the size 2), there is fferdince between the various wakeup
schemes. They differ only when a number of threads wakeuplimeously i.e. for a single awak-
ened thread, the actions taken by all three schemes are:

1. iftprocessor isidle, assign t ta.pr ocessor , otherwise
2. if there exists an idle CPU assigto the one that is the least recently active, otherwise

3. try to preempt some currently executing task in favat. of

had there been another awakening thread, SMART would haidex/assigning it to the same CPU
while SILLY might have not done the same.

e SILLY operating on jobs with size > %: Notice that the bars associated with SILLY are
usually non existent for these job sizes. The reason is tiiat¢llections that are composed from
relatively big jobs constitute an environment in which SY’¢ vulnerability expresses itself the
most: Consider the case in which a fine grain job collectioroimposed from two jobs —; and
Jo — of the size 25. In this case we would expect from the schedullgorithm to gang schedule
the jobs in an alternating fashion while virtually packihgi into two intersecting CPU sets ([9]),
such that:
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— At the “first” time slice (quantum duration) the schedulerlgballow .J;’s threads to continu-
ously execute on 25 out of the 32 CPUs whilgs threads are round-robin-like alt synchroniz-
ing on the 7 remaining CPUs.

— At the following time slice,.J»’s threads (with gradually increasing priority due to spegd
long periods in blocked mode) would become “powerful” enotmytake over (via migration)
18 out of J;’'s CPUs and thus replach as the currently executing job, leaving it to alt syn-
chronizing on its 7 remaining CPUs.

The above gives a fairly good description of the executioemwAIP or SMART are used. How-
ever, when SILLY is used, wake_up_conmon is constantly placed in the position where it must
assign a big number of awakening threads to an equally bigoeuwf CPUs, and most of these as-
signments involve migration. In this situationwake_up_conmon simply doesn’t turn on enough
need_r esched flags (even though all the awakened threads are powerfulggnimumigrate) and
therefore (a) prevents the powerful job from managing taugrand compute together, and (b) de-
prives the “weaker” group at least one CPU thus splitting tito alt synchronizing groups. Here is
the SSR achieved by the 2CS+ simulation that involved twsi2&d jobs:

[ Grain ]| SMART [ AIP [ SILLY |

fine 93.4 94.1| 35.2
medium 72 63.3| 33.6

These rates coincide with the above explanation.

8.4 Wakeup-Scheme Speedup Comparison

This section will describe the difference between the wariwakeup schemes in terms of speedup. Figures
8.4 and 8.5 compare between each pair of wakeup schemesdarfihmedium grain respectively.

Note that the displayed speedup is an average across alltlseps that were discussed in the previous
section. When examining this figures it is clear that theedéfhce between the various schemes is found
only in the intermediate load somewhere between CPU#. .U2CHhe difference between SMART and
AIP for all spin durations is negligible. SMART/AIP are up306%(fine grain) / 20%(medium grain) faster
than SILLY. However the average speedup is much more maalerae following is the average speedup
for loads betweed PU# + 1...2C PU+#. Speedup is expressed in percentage by using the same formul
that was used in the previous chapter:

Grain SMART vs SILLY AIP vs SILLY SMART vs AIP
CS | CS+ | 2CS+ || CS | CS+ | 2CS+ || CS | CS+ | 2CS+

fine 4 10 6 5 9 6 -1 1 -1

medium|| 2 2 3 2 2 3 0 0 0

The same table for load” PU# + 1... 10C PU# contains only zeros (i.e. since almost all the spins
fail anyway in such loads, wakeup schemes have no effect).

When comparing the average completion time of SMART/AIP tbLS simulations (all sizes in-
cluded), we get only a minor speedup of 5-10%. However thisage is somewhat misleading: When
we computed the average, we gave each load an equal weigh8-siged job simulations have a much
larger relative weight in this average than of 25-sized $tons, because the former are associated with
loads=33,36,39,...,63 whereas the latter are only agsdcwith load=50. Following the example given
in the previous section, the table below contains the spesedssociated with the job collection composed
from 2 jobs of the size 25:
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Fine-Grain, Homogeneous, Wakeup-Scheme Speedup Comparison (across all job sizes)
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Figure 8.4: This figure displays a completion time comparisetween each pair of wakeup schemes for
fine grain jobs. The displayed data is an average acrossuadliies (e.g. load=33 is an average between
the results associated with a collection of 11 jobs of the 8izand a collection of 3 jobs of the size 11).
AIP and SMART are quite equivalent and are faster than Slthdugh only when the load is smaller than
2C PU#. For bigger loads, all the spins fail anyway and thus thame'slifference between the various
wakeup schemes.
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Medium-Grain, Homogeneous, Wakeup-Scheme Speedup Comparison (across all job sizes)
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Figure 8.5: This figure is similar to figure 8.4 with the diffeice that the data displayed here is associated
with medium grain jobs (rather than fine grain). The resultthis figure are similar to those displayed in
figure 8.4, but the difference between the various schenmasiie moderate.
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Grain SMART vs SILLY AIP vs SILLY SMART vs AIP
CS| CS+| 2CS+ CS| CS+| 2CS+ CS| CS+| 2CS+

fine 56 | 57 73 49 | 59 73 14 -4 -2
medium || 7 10 31 5 8 24 1 2 9

Again, this shows that the speedup for these kinds of loadslistantially bigger than the average
speedup that was computed across all sizes (up to factor 66r12CS+ fine grain simulations and 1.2-1.3
for medium grain).

8.5 Maximal Spin Duration Speedup Comparison

The previous section compared between the various wakédwgorees for any given maximal spin duration
(i.e. keep spin constant, change scheme). This sectiorcertipare (in terms of speedup) between the
simulations completion time when using the various maxspat durations, for any given wakeup scheme
(i.e. keep scheme constant, change spin). Figures 8.6 @mbBipare between each pair of maximal spin
durations for fine and medium grain respectively. The metifocbmparing is the same one used in the
previous section.

When examining these figures, we can roughly divide the dysul load-range into three intervals:

1. [a] = CPU#+1...2CPU+, where bigger maximal spin durations tend to be faster thaallsr
ones.

2. [8] = 2CPU# + 1...3CPU#, an intermediate range in which there is no obvious “winner”
sometimes bigger spin duration are faster but sometimgstteesiower.

3. [y] = 3CPU#+1...10CPU#, where the bigger the maximal spin duration is, the longeikieés
a simulation to complete.

Recall that the displayed speedup is an average of all ¢mlfexcof jobs (which vary in size) and therefore
graphs associated with different wakeup scheme look quitdes. However, when examining the speedup
of jobs for whichsize > % we were able to see a more meaningful difference. By agaioviaig

the example given in previous sections, when comparing 2(0S3S, the speedup associated with the
collection composed from 2 fine-grain jobs of the size 25 wW&366 when AIP was used, but of -47% (i.e.
a considerable slowdown) when SILLY was used (becauseiab $piled, a smaller spin duration resulted
in a faster completion). Having said that, we can now conme¢mon the difference between the various
maximal spin durations regardless of the wakeup scheme tUibedefore, we will now present the average
speedup over the intervals defined above, only for AIP sitrarla (other wakeup schemes have similar

average):

maximal spin fine grain medium grain
duration L [P [ [8] 1
2CS+vsCS|| 25| 0 | -34| 4 | -16 | -24
CS+vsCS || 17 | 2 -4 0 -3 -3
2CS+vsCS+|| 11| -4 | -28| 4 | -13 | -20

Fine grain jobs spinning for 2CS+ when load is ifn] are 25% faster than when spinning for CS.
This coincides with all our findings so far: Since spinningynsaicceed within this intermediate range
(as indicated by figure 8.1 page 93), then by choosing a deitgtin duration and thus actually allowing
(more) spins to succeed, the system indeed reduces thdldweesof execution even at the cost of longer
spins. Although not effective as in the last chapter, therea doubt spinning for 2CS+ is better than
its counterparts for homogeneous job collections alsoh{withe boundaries ofn]). Even within the
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Figure 8.6: This figure displays a completion time compartsetween each pair of maximal spin durations
for fine grain jobs. Since the data displayed constitutesvanage of all the job collections (which vary
in size), the results associated with different wakeup s&elook very similar. We can roughly divide
load into three intervals: (1) unt!C PU# in which a bigger spin duration seems to result in a faster
in a faster completion: The curves associated with CS+ vsr€& it below zero, because CS+ is bigger
than CS in only one cycle; 2CS+ is much slower than its copaits because it doubles the spinning

preferable than shorter spinning, and (3) frA@PU # + 1 and onwards, in which shorter spinning results
duration.

completion, (2) betweeRC PU# + 1 until 3C PU+# in which it is not clear whether longer spinning is
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Figure 8.7: This figure is similar to figure 8.6 with the diffeice that the data displayed here is associated

with medium grain jobs (rather than fine grain). Its analisiguite similar, but here the load-range should
be divided into two intervals (untC PU#, and from it) such that in the former spinning is probably

preferable and in the latter it's not.
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[0] interval, spinning for longer durations sometimes manageutperform the other options. However,
this is balanced by simulations in which the situation wa®rsed, leading to a speedup/slowdown in the
neighborhood of zero. Finally, ify], almost all spins are unsuccessful and therefore the lests spjns,
the better: The difference between CS+ and CS is very snmlhflicated by the green curve that is just
below 0 and by the above averages) because CS+ in these timsilis simply one cycle more than CS.
Since it spins double the time, 2CS+ looses30% on average) to both CS and CS+.

For medium grain jobs, the analysis is quite similar. The difference is thalih2CS+ is only slightly
faster than its counterparts, afff] is incorporated intdy].

8.6 Spin vs. Always-Block

In the previous section we have compared three maximal spitidn — 2CS+/CS+/CS — against each
other and showed that for fine and medium grain jobs, withoad that does not exce2d PU #, spinning
for 2CS+ achieves better results than the other options.aderythis does not prove that spinning is a better
option than not spinning at all. Theoretically, it is possithat the “always-block” policy would achieve
even better results, because then no CPU time would be wastspinning at all. Figures 8.8 (associated
with fine grain jobs) and 8.9 (associated with medium graisjgrove this to be wrong.

These figures compare each of the above maximal spin dusatiaine results achieved by a similar
simulation in which the always-block policy was used. Sariif to the previous section, the load range
seems to be naturally partitioned into three intervals:

1. [a] = 1...CPU#, where there are more CPUs than running threads, so theegsin from
blocking.

2. [8] = CPU#+1...2CPU+#, the intermediate range in which it seems that spinninglis\&irth
while. For medium grain jobs, this interval should be furttizided by splitting it two sub intervals:
[61] and[B:] at1.5C PU#, before and after, respectively.

3. [v] = 3CPU# + 1...10CPU#, where most spins are unsuccessful.

As in previous sections, the difference between the vam@ieup schemes is quite small so we will allow
ourselves to display the average speedup of AIP only (werethat SILLY’s averages are smaller within
[8] in 5-10%):

load fine grain medium grain
[a] 6] O] | [e] [61] [62] | D]
2CS+ vs always block| 60 41 -107 || 22 10 -9 | -54
CS+ vs always block|| 60 34 -64 || 22 7 -13 | -29
CS vs always block || 60 18 -59 || 21 6 -13 | -25

There is nothing to gain from blocking when the number ofdldiseisn’t bigger than number of CPUs
and therefore it comes as no surprise that withii spinning is preferable leading to an average speedup
of 1.6 for fine grain jobs and 1.2 for medium grain jobs (ac®dbspin duration since only a small portion
of them is used).

The interesting interval is of cours$g] ([31] for medium grain jobs). In this interval all the maximal
spin duration achieved a positive speedup which meansdh#tig type of jobs, spinning is always prefer-
able than blocking, even when the number of running threadsmsiderably bigger than the number of
CPUs (up t@C PU # for fine grain andl.5C' PU # for medium grain jobs). After we've established that
spinning is preferable than always blocking within thisemvial (regardless of the spin duration) and based
on the previous section (affirmed by the above averages)owelude that 2CS+ is indeed the preferable
choice for a maximal spin duration within this interval.
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Figure 8.8: This figure compares between the maximal spiataurs CS/CS+/2CS+ and the always-block
policy (fine grain jobs). Obviously, when there are more CRds threads there is nothing to gain from
blocking. In the intermediate load-rangePU# + 1...2C PU# it seems that 2CS+ usually maintains
a speedup in the neighborhood of 50%. Afterwards, most spmsinsuccessful and it is better to avoid
spinning all together.
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Figure 8.9: This figure is similar to figure 8.8 but is assaadawvith medium grain jobs (rather than fine
grain). The findings are the same but the speedup/slowdowroie moderate since spinning takes a

smaller portion of the overall computation time.
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Within [v], most of the spins are unsuccessful thus spinning for lodgeations results in longer
completion times: up to 100% slowdown for 2CS+ fine grain $ations and approximately half for CS
and CS+ (slowdown is more moderate for medium grain jobsussxthe relative weight of spinning in
respect to the total amount of computation is smaller).

8.7 Longer Spin Durations

The last issue (briefly) discussed in this chapter concegyebspin durations. Our experiments show that
a maximal spin durations longer than 2CS+ usually lead tseperformance. Furthermore, for durations
dy andd, for which2C'S+ < d; < do, we found that on averagg yields shorter execution times than
ds. This result is demonstrated in figure 8.10. It seems that dwaited (fine grain) thread didn’t “show
up” after a period of 2CS+ has passed, chances are slim ishollv up in the “near” future.

2CS+ vs. Bigger Spin Durations (SCHED_OTHER, AIP, Homogeneous)
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Figure 8.10: This figure displays how much faster are finengfdP 2CS+ simulations in comparison
to similar simulations that use longer maximal spin duraiof 4,8 and 12 CS. Evidently, longer spin
duration leads to longer execution time.



Chapter 9

Heterogeneous Collection of
Synchronizing Jons Under the Linux
Scheduler

9.1 Introduction

In chapter 7 our discussion revolved around a job colledti@b contained a single fine grain job within
a non-synchronizing environment. All the system resouatesmechanisms that were designed to favor
“I/0 bound” processes (and were described in chapter 6esddhis job and only this job, thus allowing
its threads to execute simultaneously most of the time. Witerosing the correct spin duration, this
resulted in a close to 100% SSR regardless of the load. Imoibrels, it is always preferable to spin rather
than block within such a configuration (for a fine grain jolm) chapter 8, we have presented the “opposite”
scenario, namely a job collection in which all participgtthreads are competing on the system’s resources
and doing it in a similar manner (same job size, same graihis las generated a growing burden on the
system’s resources until a point was reached when everyf apirming was doomed to fail. The domain
found between these two extremes — non-synchronizing @mvient on one side and a homogeneous
job collection on the other — contains all conceivable jobemtions. Obviously, we can’t even begin to
analyze every possible heterogeneous job collection. Mexyee can safely speculate that the results of
such an analysis would be located somewhere between thesxtiemes.

Though we have conducted numerous simulations of variotesdgeneous job collections in order
to verify this speculation, it seems pointless to preseair ttesults here and analyze their every aspect
(as we did in the previous chapter) because we would simphgpeating on arguments we have already
stated almost word by word. Instead, we chose to give a fairhple example of a heterogeneous job
collection (constructed randomly using a large number efisg and through this example to demonstrate
the above. We believe that such a job collection that costaivariety of jobs with different profiles, will
have a positive effect on the scheduler and will allow it tonfbere successful in handling fine grain jobs
within bigger loads. Constructing such a job collection igalagous to taking one step away from the
homogeneous job collection and towards the non-synchrapénvironment scenario.

9.2 Description

In order to simulate a heterogeneous job collection we usedimulator random permutation mode (as
described in section 5.1.5 page 46). We will classify thedds according to thejr values. The only
constraint on the chosen random job-permutations was tlegirasentative of each job-class must appear
in their “beginning” (i.e. if there are 3 job-classes, thea will find a job from each such class within
the first 3 “places” of the permutation). The parameterseshay all the simulations which we will now
analyze are the same as those that were used in the previapiec(section 8.2 page 91).

107
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The size of the jobs that will participate is expressed byféiewing distribution:
2—-8:2, 9-16:1

(this distribution syntax was defined in section 5.1.3 paije #he reasons for choosing this distribution
are:

1. We wanted to allow the total number of threads that p@die in the simulations sequence, to
gradually increase (instead of jumping for example frondl8& to load 60) so that we will be able to
continuously monitor the change in the SSR. We thereforildddhat only jobs witlyize < CPQU#
would participate in the example presented here.

2. The weights of the two intervals in the distribution weh®sen such that approximately half of the
threads in each simulation will belong to jobs for whizk< size < %, and the other half will
belong to jobs for which:“2Y# < size < YEU# . This is the reason the weight of the — 8’
interval equals double the weight of thie— 16’ interval (i.e. for each one “big” job there are two
“small” jobs). Note however that on average, there are a bitenthreads belonging to “big” jobs
because the expected size of such a job is 12.5 while the &tjpecof the size of a “small” job is 5
(which means the actual small:big thread ratio is 4/5).

The 1 (computation interval expectation) of the jobs is givervaisa distribution form:
1% —2% : 1, 3% —20% : 1, 21% —90% : 1

such that the first, second and third intervals are assacwith fine, medium and coarse grain jobs re-
spectively. Recall that in this simulatien= 90/15% andC'S = 6% and therefore 20%-of-quantum is the
largest, value for which 90% of the computation-intervals will be fmuwithin its “CS-neighborhood”
(i.e. 90% of the computation intervals will be jlm — 3%, 1 + 3%]). Biggeru values will result in a wider
dispersal of computation intervals. Note that we chose toais “traditional” value ofr (expressed as
a percentage qgf) rather then to define it as a distribution. The implicatiohsandomly choosing the
(regardless of:) were discussed in the analysis of the heterogeneous robirdsimulations (sections 5.3
and 5.4). Our findings here regarding this issue are sintldrdse described in the associated round robin
chapter, namely that a job’s granularity is determined ligthy and byo, if both of them are not small
enough then the job should avoid spinning. Other then thateffects of such jobs — with smalland
big o or vice versa — on other job classes within the job collecti@ne minor.

Much like in the previous chapter, we have compared betweerdrious wakeup schemes and maxi-
mal spin durations. Each simulation was conducted 20 timegy 20 different seeds.

9.3 Results

Within the context of this work, the SSR metric proved to b@adgymethod for assessing whether spinning
is worth while and a strong correlation between SSR and sjpeeds established. Therefore, we chose to
present the SSR achieved by the various job classes in ompdagob collection. Figure 9.1 displays the
SSR evolution of AIP 2CS+ simulations (only four out of theetwy seeds used are displayed).

Let's examine the graph associated with seed=0:

e The load in the last simulation that achiev8d R > 50% was 91 (surplus of 59 threads).

e The (randomly created) job collection was composed at thiait from ten jobs:

| jobsize [[2[5[7[10]11]13]16]
| numberofjobs[[ 1 [2[1[ 1 [ 3] 1] 1]
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Heterogenous SCHED_OTHER: SSR of AIP, 2CS+

100 —Seed=0 seedil\ see\dz\z\ seed=3
50 s \
- )
0

0 32 64 96 128 160 0 32 64 96 128 160 0 32 64 96 128 160 0 32 64 96 128 160

— fine grain — medium grain coarse grain

Figure 9.1: This figure displays the SSR evolving of AIP 2C8rudations (associated with 4 out of the
20 seeds we used).

e These jobs divided into job classes as follows:

| grain [ size | 7 |
fine 57,11 1

medium | 5,11,13,16| 7,14,17,20

coarse 2,10,11 68,74,88

It is therefore interesting to compare the fine grain curvéhizfgraph to the homogeneous collection SSR
graphs associated with sizes 5...11 (figure 8.1, page 93yungrisingly, the former achieves better rates
than those displayed by the latter.

Figure 9.2 presents the average SSR (across all seeds) achieved by fine and medium grain jobedass
When comparing this surplus to the average surplus of theobgemeous simulations that was presented in
the first table in section 8.3 (average over all sizes), wesesnthat the heterogeneous surplus is usually
similar to or higher than of the homogeneous simulationstufp4 threads difference). For example,
homogeneous AIP 2CS+ fine grain simulations achieved arageesurplus of 45.5 threads while the
associated heterogeneous surplus is 52.2 threads. Thetiexce this rule is medium grain AIP/SMART
2CS+ simulations for which homogeneous simulations aeidyetter average than their heterogeneous
counterparts. However this make sense when consideringtmaverage surplus of the homogeneous
simulations was computed: as explained earlier, smaltes fad much higher relative weight than larger
ones (recall that smaller jobs achieve better SSR). Witlerheterogeneous average however, all jobs have
equal weight. Actually, when considering this explanatitwe difference between the heterogeneous and
homogeneous fine grain surplus, seems more impressive.

Another interesting issue is the comparison between the completion time achievediwylations using
the various spin durations and the completion time achiewseh always-block was used. It was hard to
predict what would be the results of such a comparison beczarstrary to job collections in the previous
chapter that only included jobs of a certain type (fine grabsjfor example), the heterogeneous collections
include a variety of jobs. This means (for example) thatdad< 2C PU+#, a 2CS+ maximal spin duration
works in favor of the fine grain jobs within the collection. Bthe collection also contains coarse grain jobs
for which any spin period is a total waste of time that onlyagsithe end of the computation. The same
argument could be applied for example on the CS maximal apiatihn (bad for fine grain, but better than
2CS+ for coarse grain jobs). Figure 9.3 displays this compar The result is quite nice: it shows that
the above pros and cons were balanced in this particulardgeteeous job collection. When examining
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Maximum Threads Surplus of Simulations Achieving SSR > 50
(SCHED_OTHER, Heterogenous, Avg Over 20 Seeds)
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Figure 9.2: This figure displays the average surplus acHibyghe heterogeneous simulations. The num-
ber within the brackets specify the absolute deviation e&tirplus achieved. Usually, the surplus presented
here is similar to or higher than the average surplus actlibyghe homogeneous simulations. This is true
even though smaller jobs had a much higher relative weigin targer ones within the homogeneous
average surplus computation.

the associated homogeneous graph (the AIP section in fig8yev@ can see that the 2CS+ curve usually
presents & 1.5 speedup all through th@ PU# + 1...2C PU# intermediate range, while the CS curve
presents a sharper decline and intersects with the zerslaaitly afterload = 1.5C PU#. In figure 9.3
this is not the case: The CS curve is much closer to the 2CS-batidof these curves present a positive
speedup untiload = 2C PU#. The reason for the first observation was already explaithed2CS+ fine
grain gain is balanced with its coarse grain loss). The refmthe second observation seems to be simply
because of the positive effect a heterogeneous job caltebtis on the scheduler performance.

Fixed Spin vs. Always block - Completion Time Comparison (SCHED_OTHER,Heterogenous)
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Figure 9.3: This figure displays the average speedup of theusfixed spin durations in comparison to
the always-block policy. The average was computed overeatls for AIP heterogeneous simulations.
Forload < 2CPU#, it seems that CS simulations present a speedup which is olosér to the 2CS+
speedup in comparison to the results displayed in figured8.Bdterogeneous job collections. In addition,
heterogeneous CS simulations manage to achieve a speedigifer loads than those presented in figure
8.8.

The final point  we will discuss is what happens when we increase the mash@U number. In order
to examine this, we have conducted an additional numbemadlations sequences which are similar to
those described in section 9.2 with the following paransetbange:
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| number of CPUS

size distribution

64 2—-16:2, 17— 32:
128 2-32:2, 33-64:
256 2—-64:2, 65—128:

111

For these simulation sequences, figure 9.4 displays theadsop between the completion time achieved
by 2CS+ and always-block AIP simulations (similarly to figud.3 but only for 2CS+ and with various
machine sizes). As before, all the simulations were exélcRfetimes using 20 different seeds and the
displayed results constitute the averages of all theseuéioes. Evidently, as we enlarge the machine,
the intermediate range in which it is preferable to spinirgtst Nevertheless, for larger machines in the
magnitude of 128 and 256 CPUs, it is clear that while the leahialler thari.8C PU# spinning will still
achieve better performance than blocking.

2CS+ Spin vs. Always-Block - Completion Time Comparison - Enlarging Machine Size (SCHED_OTHER, Heterogenous)
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Figure 9.4: This figure displays the comparison between @8+2and always block AIP simulations.
Different curves are associated with machines with difiermmber of CPUs. We can see that the effect of
enlarging the machine is the shrinking of the intermediatege in which spinning is a better option than

blocking.
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Chapter 10

Discussion and Conclusions

Our goals in this research were to gain a better understgrdiparallel-barrier based applications oper-
ating in a multitasking environment, and check the impiara of high loads on such applications. We
hope these understandings will serve designers and imptenseof barrier algorithms. The following is a
discussion and a summary of the central issues presenteid iwark.

Load Based Barrier Algorithm

A main contribution of this work is identifying that withitné barrier synchronization context, load should
be a dominant factor in the decision of whether to spin orlkldtost of our empirical results have shown
that when the total number of threads in the system exc2€dd/#, most spins will fail and therefore
are better avoided. We have shown that any fixed spin algoigtinferior to the always block algorithm
for loads higher tharC' PU#. When comparing the performance of the fixed-spin (2CS+)atwdys-
block algorithms under such loads, we have witnessed a slewaf up to a factor of 4. We conclude that
whenever there’s a threads-surplus (i.e. the number ohdisrés bigger than the number of processors), a
barrier algorithm should consider spinning only within theermediate loagnamely when this surplus is
smaller tharC PU #.

We have pointed out one exception to this rule: a single symihing job executing within a non-
synchronizing environment. For such a job collection, westshown that by choosing the appropriate spin
duration, the job’s threads succeed to execute simultamhemost of the time regardless of the load (the
transition point effect). We conjure this will also be theseavhen a small number of synchronizing jobs
(with a total number of threads smaller th@@ U #) will execute within a non-synchronizing environment.
We remark that such job collections are probably less comthan the more diverse collections. The
reason is that the only form of “I/O” that was done by threadshis work was barrier synchronization
and therefore non-synchronizing threads played the rofeéRif bound threads. This means that a “non-
synchronizing environment” actually means “non-synclaimg environment of CPU bound threads”. It
is reasonable to assume that in real world heavily loadeisys we will also find sequential 1/0 bound
threads and threads that perform other types of synchribmizaNevertheless, this type of job collections
present a real dilemma to the barrier algorithm describexvexb Although chances are that when the
threads-surplus is bigger th&ahPU # it is better to block immediately rather than to spin, theeepositive
probability that spinning is actually worth while. This eiihma will be further addressed towards the end
of this chapter.

Alternating Synchronization

Another important contribution of this work is the ident#ton of the alternating synchronization pattern:
When jobs do not manage to synchronize, they tend to fall inito computation pattern, in which the

job’s threads form two contiguous groups in the ready quétree first group reaches the barrier, spins,
and blocks. When the second group runs, the barrier is caethland all the processes in the first group
are released again into the ready queue. Alt synchronizatas found to be the dominant computation
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pattern of barrier based applications executing withirdémhsystems. Almost all our findings are related
and can be explained based on this phenomenon (e.g. the $8Rtates, the scenario before a transition
point etc). A popular assumption among researchers islihaidcurrence of synchronization events obeys
some time invariant canonical probability distributionrfL& Agarwal [21] assumed Poisson arrivals of
synchronizing threads, and based on this assumptions hawnghat uniform distribution is reasonable
model of wait times for barrier synchronization). Alt symghization refutes this assumption for barrier
based applications (indeed, Lim & Agarwal's experimengalits didn't support their theoretical model).

The SSR Metric

Within this work we have frequently used the SuccessfuhSpate as a metric. This metric was defined to
be the percentage of cases in which a thread succeeds taggizehwhile spinning, excluding the last one
to arrive. We have established a strong correlation betweerall speedup and SSR, namely when the SSR
was high (higher than 50%) it meant that spinning was worthHenaih terms of shortening the execution
time. Generally, when evaluating a synchronization spigisitrategy, the best way to do it is by measuring
a suite of programs to see whether the performance is béter(for example) the traditional always-
block approach. However this method’s main drawback (astioweed in [16]) is that many programs
(such as operating systems components or window systemspiche measured by elapsed time because
machine clocks’ resolution might be too coarse and beciedaghaviors of the programs depend on many
unpredictable, non-repeatable factors. In such casesIRen®tric is a reasonable option. We remark that
the SSR metric must be used carefully because it can be @edsied, e.g. an always-spin algorithm will
always achieve 100% SSR.

Barrier vs. Lock Synchronization

Within the context of (mutex) lock synchronization, Karéhal. [16] have considered spinning as worth
while only when the lock which a thread is attempting to acgis held by another concurrently-running
thread. We have shown that the barrier synchronization arésin is fundamentally different than the lock
mechanism in the sense that when a thread reaches a syreettimmpoint, its very own arrival probably

means that the awaited threads (in the consecutive synehtim point) are now being scheduled to run.
The alt synchronization computation pattern implies tihat practical meaning of following the policy

suggested by Karlin et al. (in barrier context) would be twals block. This is contrary to our findings

that within the intermediate load, always block is infetiothe fixed spinning policy.

Optimal Spin Duration

For our example priority based scheduling algorithm, weehstvown that the very popular CS duration
of fixed spinning is not enough for a fine grain parallel jokeatpting to complete a barrier. Indeed,
a CS duration gives an awakened thread enough time to redarareicution. But, it denies from this
thread the possibility to actually complete its short cotation phase and therefore from reaching (in
time) to the synchronization point in which its peer threadswaiting (while spinning). We have further
shown that before all the threads of a job succeed to growgthegand execute simultaneously, the job
usually performs what we referred to as “tail chasing” attayronization. This type of computation pattern
mandates an even longer spinning period of 2CS+.

Some might be tempted to think that a 2CS+ period of busy mguis too long. The obvious rational
behind such an option is that this period is longer than thatdhn it takes to suspend and resume the
waiting thread. However, we have shown that a spin duratf@G&+ maximize the probability of the
event in which all the threads of a job execute simultangodghen such an event occurs then (a) frequent
context switching (due to each barrier !) is avoided and (y @ small portion of the maximal spin
duration is actually used. The combination of these twoolacteads to shorter overall execution time.
2CS+ has been proven to be superior to any shorter maximaldgpation (including always-block as
mentioned before). Our experiments have also shown thgelanaximal spin duration led to performance
degradation.
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We remark that within the context of communicating proceseea cluster of workstations, Arpaci-
Dusseau et al. [2] have chosen 5CS to be the optimal maxirivatispation.

Job Granularity Classification

In general, we would like coarse grain jobs not to spin. Thagien whether to spin or immediately block
is trivial when the granularity of a job is known. This is a luy we had in the context of this work, but

a real world barrier algorithm will most likely be forced tormehow conclude or guess this information.
In case this algorithm will produce a bad decision, a loadestesn might suffer due to coarse grain jobs
performing “hopeless” spinning. When 2CS+ is a very shorigak then this issue should probably be
ignored by a barrier algorithm [21]. However, this work sagts that for the Linux scheduler, such a
duration might be in the order of thousands of cycles (whersyfstem is loaded). It is therefore reasonable
to consider some sort of a granularity classification mersman For the priority based algorithm, the
usually unavoidable alt synchronization computationgrattbefore a job’s threads succeed to execute
simultaneously, suggests that guessing the granularitydban the near past spin successes/failures (such
as the variable-competitive-algorithms presented in)[is6hot a good option. This is true because when a
fine grain job is alt synchronizing, then most recent synotaation attempts have probably failed which
will lead such an adaptive algorithm to decide to block rathan spin (even though the job has potential
to soon reach a transition point). A possible alternativthtse methods is for the barrier mechanism to
maintain (for each thread) an average of the elapsed tinveeket its few recent synchronization trials
(within the same quantum!). The largest average constitutgood approximation on the job’s granularity
for barrier synchronization purposes. On modern procesamgasuring this elapsed time can be done very
efficiently [8] (order of tens of cycles i.e. few nanosecnds

Wakeup Schemes

When the last thread of a parallel job completes a barrier ('s the last to arrive to a synchronization
point), the priority based scheduler checks whether caresaity awakened threads (if they exist) can be
immediately scheduled to execute. It is therefore faceth Wit problem of determining which awak-
ened thread would be assigned to which processor. The gnéktt follows is how much computational
resources should a scheduler invest in this decision. Thik Was presented and evaluated three such
wakeup schemes (with an increasing complexity):

1. SILLY, the is simplest wakeup scheme. It iterates throilnghawakened threads and tries to find the
“best” processor for each such thread. The current itevdias no recollection of previous iterations’
decisions.

2. AIP, which is a mildly improved version of the SILLY schenlé performs exactly the same oper-
ations, but “remembers” its previous decisions and theeefahenever possible) avoids assigning
two awakened threads to the same processor.

3. SMART, the most sophisticated (and probably impractisaheme. All the local considerations
done by SILLY/AIP for each individual thread, are made gldbaSMART.

When not considering the actual cost of SMART, our findinggehshown that usually SMART leads to
faster results than AIP, which in turn leads to faster reghitin SILLY. However, they have also shown that
(a) when choosing the proper maximal spin durations, and/ign the job collection is diverse, then the
difference between the various wakeup schemes is not marelih% speedup. For job collections that
were composed from fairly large jobsife > %), SILLY was found to have a serious flaw and the
other two schemes were found to be approximately 70% fasaerit (within the intermediate load). The
answer to the question of how much effort should the scheguiein to the decision of which awakened
thread to assign to which processor is therefore: not muehAlP suffices. Requiring that the wakeup
scheme will not assign more than one thread to a given procseesms reasonable and easy to (efficiently)
implement. In addition, AIP is much simpler than SMART, yexdidls to almost identical performance.
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Possible Barrier Algorithm and a Retrospect on Round-Robin

The analysis of the Round-Robin scheduler as the first phiaggsowork, helped in providing insights
and intuition regarding the manner in which barrier basegliegtions behave within high loads. This
intuition proved to be valuable when we proceeded to theyaisabf the more complex priority based
Linux-2.4 scheduler. However, after completing the anialgéthe latter, it too seems to shed some light
on the former. The Round-Robin algorithm may be viewed asmplfied version of the more complex
priority based scheduler in which all threads have equalriyi all the time. When a thread reaches
a synchronization point and triggers the awakening of eulyeblocked threadshoth algorithms try to
immediately schedule the awakened threads. The differierfoend in the means at the disposal of each
algorithm: a priority based algorithm may schedule an awelehread (a) by preferably assigning the
awakened thread to an idle processor or (b) by preemptinthantow priority thread in favor of the
awakened thread. Round-Robin however, may only perforrfottmeer, i.e. if no processors are idle at the
time in which a thread is awakened, then there is probabtilg thance for its peers to complete the next
barrier successfully. This notion suggests the followiagier algorithm (in the context of Round-Robin):
when a spinning thread has successfully completed a baraied the following two conditions hold:

1. as a result of the completion bf other threads from its job have changed state from blocked t
ready, and

2. currently there are no idle processors

the spinning thread should immediately release its praecassher than continuing for another iteration,
in an effort to join the other threads in a single sequenchérréady queue, thus enhancing the chance of
future synchrony. The virtues of jobs being contiguoushjered in the ready queue were demonstrated in
this work when we identified and discussed the “grace period/hich the SSR is high, and spinning is
generally worth while.

The above algorithm also seems to settle the conflict reggndhat is the optimal maximal-spin-
duration within a system that uses a Round-Robin sched@lghreadt will spin if at least one of the
above two condition doesn’t hold: If (2) doesn’t hold theert exists an idle processor and therefore
need not surrender its processor. On the other hand if (ddw®old, then there’s a strong possibility all
the threads of's job are currently executing and therefore the widely pteg maximal spin duration of
CS seems like a reasonable choice.

We remark that a similar algorithm may also work for priofitgsed algorithms when changing the
second condition from “currently there are no idle processtm something like “currently the number
of ready tasks is bigger than the processors number”. Anadlea of a fairly simple barrier algorithm
(which is perhaps a generalization of the suggested altgosit both for Round-Robin and for priority
based schedulers) is for a spinning thread to release itepsor if condition (1) holds, and if one of the
awakened threads was not assigned a CPU by the wakeup sdhésweil({ often happen when the system
is heavily loaded with competing jobs). Such an algorithrh sglve the dilemma presented earlier in this
chapter when the load based barrier algorithm was intratluce

These algorithms may overcome the CPU# surplus boundaryawe presented in this work, and
possibly allow successful synchronization even for diggob collections executing within higher loads.
The design and evaluation of such algorithms are left farritesearch.

Misfeatures of the Linux-2.4 Scheduler

Finally, a specific remark regarding the Linux schedulerilé&mnalyzing the Linux-2.4.5 SCHEDTHER
scheduler as an example priority based scheduling algoyritte came across three misfeatures:

1. Aside from its drawbacks which where mentioned above StihéY wakeup scheme introduces a
race condition that might cause processors to “get lostitisgpossible to have ready threads waiting
for a processor, while some processors are idle. We haveesteghja very simple and efficient
solution to eliminate this race (AIP).
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2. Changing the default quantum duration form 200ms (LiguX-to 50ms (Linux-2.4) caused the
value of thePROC_CHANGE_PENALTY parameter to be arbitrarily large. Its value in the current
configuration precludes I/O-bound threads from preempiiRy-bound (low priority) threads when
this preemption involves migration. The quantum duratibarge had a similar effect on both
SAME_ADDRESS_SPACE_BONUS andPREEMPTI ON_THRESHOLD.

3. A 5 ticks quantum duration (as a result of om¥=100 clock interrupts per second on all archi-
tectures aside from Alpha) seems to be too coarse. The tuaswpiution of the Linux scheduler
makes it impossible (for example) to defin@REEMPTI ON_.THRESHOL D smaller than 20% of the

maximal (default) priority. Recent studies [7] have showattiZ=1000 (and therefore 50 ticks per
guantum) seems to be feasible.
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