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Abstract

Little work has been done on the performance of barrier synchronization using two-phase blocking, as the
common wisdom is that it is useless to spin if the total numberof threads in the system exceeds the number
of processors. We challenge this view and show that it may be beneficial to spin-wait if the spinning period
is set to be a bit more than twice the context switch overhead (rather than being equal to it). We show that
the success of our approach is due to an inherent property of general-purpose schedulers, which tend to
select threads that become unblocked for immediate execution. We find that this property causes applica-
tions based on barriers to fall into a previously unnoticed pattern, denoted “alternating synchronization”,
which is quite different from the patterns typically assumed in theoretical analyses. By merely choosing
an appropriate spinning period, we leverage alternating synchronization to implicitly nudge the system
into simultaneously co-scheduling the application’s threads, thereby dramatically reducing the overhead of
synchronization and significantly improving the performance.
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Chapter 1

Introduction

1.1 Parallel Computers and Applications

A parallel computer is “a collection of processing elementsthat communicate and cooperate to solve large
problems fast” [13]. The main motivation for developing such computers is that “whatever the perfor-
mance of a single processor at a given time, higher performance can, in principle, be achieved by utilizing
many such processors” [6]. Nowadays, high performance multiprocessors range from the fastest and most
expensive supercomputers to scalable Internet servers to individual desktops.

Simple parallel applications are composed from a number of independent sequential programs that
are executing simultaneously. However, the more interesting parallel applications involve cooperation,
communication and synchronization between the concurrently computing entities. The former applications,
namely those that seldom synchronize or communicate, are usually referred to ascoarse grain. The latter,
namely applications that perform frequent synchronization, are known to befine grain. The smaller (finer)
the application’sgranularity, the greater the potential for parallelism, and hence speedup. Keckler et al.
[17] have shown that parallelism can be exploited with grainsize as small as 20 machine cycles.

The manner in which threads of a parallel application communicate is dependent on themachine class
on which they execute. Parallel machines may be divided intotwo classes:

Shared memory machinesA collection of processors that may access a collection of memory modules
through some kind of hardware interconnect. The key property of this class is that communication
takes the form of conventional memory access instructions.Threads can be configured in such
a way that portions of their address space are shared. Coordination among threads is therefore
accomplished by reading from and writing to shared variables located within the shared memory
portion.

Message passing machinesSuch multiprocessors employ a cluster of complete computers or nodesas
building blocks. Each node has its own microprocessor, memory and I/O devices, though typically
it doesn’t have a monitor and a keyboard. Nodes are interconnected by a high performance network
(often with much higher capability than the standard local area network). Communication between
threads executing on different nodes is done via explicit I/O operations i.e. by message passing.

This work is related to the first machine class. Of particularinterest are the dominant bus basedsymmetric
shared memory multiprocessorsor SMPs that “form the bread and butter of modern commercial parallel
machines” [6]. Such multiprocessors are of small to moderate scale and provide a global physical address
space and symmetric access to the main memory from any processor.

1.2 Synchronization Mechanisms

A common operation in SMP synchronizing programs is acquiring a lock to achieve mutual exclusion,
thus protecting access to shared data (a thread my access some predefined memory location only if it has

9



10 CHAPTER 1. INTRODUCTION

acquired the appropriate lock). Nowadays, all microprocessors support instructions that allow this type of
synchronization.

In addition, most numerical parallel applications make heavy use of collective communication known
asbarrier synchronization. These type of applications obey the following computationmodel: Each thread
from thejob (the parallel application) computes alone for a while. Then, it reaches a point where it should
communicate with its peers. Since communication is done viaglobal data structures located on shared
memory, the thread must somehow make sure its peers have already written the information it needs. In this
case we say that the thread has reached asynchronization point.The barrier synchronization mechanism
will allow threads to continue to compute only upon the arrival of the last thread to the synchronization
point.

1.3 TradItional Waiting Algorithms: Spin & Block

Synchronization between peers in a parallel application istherefore a common operation. Assuming other
threads are waiting for a processor, a thread that needs to wait for synchronization is faced with a dilemma:
how should it wait for the synchronization-event ?
The two canonical waiting algorithms are:

1. busy-wait, a threadspinsin a loop while repeatedly testing some condition that indicates whether the
synchronization event occurred.

2. block, when a thread becomes aware that it needs to wait, it blocks (suspends) itself by releasing its
processor and is enqueued to some waiting queue, until such time in which the awaited event occurs
and the thread is made ready-to-run again.

Note that the choice of the waiting algorithm is quite independent from the particular nature of the syn-
chronization mechanism. If the awaited event will happen within a short period of time, it is usually better
to spin, both in terms of progress of this thread and in terms of the system resources lost to overhead due
to context switch(saving thread’s state, deciding which will be the next thread to run and dispatching it).
However, for longer time periods, it’s presumably better toimmediately block and avoid wasting valuable
CPU time otherwise utilized by other ready-to-run threads.

Drawbacks of making the wrong choice are obvious: When parallel applications synchronize fre-
quently, the overhead of synchronization can be very significant. Jiang & Singh [14] have examined where
parallel applications (from SPLASH-2 [28] and more) spend their time when executed on a real large scale
machine (SGI Origin2000 [20] with up to 128 CPUs). Their findings indicated some applications may
spend up to 55% of their elapsed time while trying to synchronize (usually due to barriers). Karlin et al.
[16] have witnessed that with immediate blocking, some applications spend over a third of their elapsed
time on context switches. Theoretically, the penalty ofalways-blockmay converge to 100% of the exe-
cution time (for very long context switch durations). Likewise, on systems with no preemption, the worst
case performance ofalways-spinis arbitrarily bad since it might introduce a deadlock (if threadt1 spins
while waiting for synchronization witht2, and consequentlyt1 deprivest2 of a processor).

1.4 Competitive Waiting Algorithms and Other Related Work

The two waiting algorithms mentioned above are seemingly reconciled by usingtwo phase waiting, in
which a period of busy waitingLspin is followed by blocking. Two phase waiting was first proposed
by Ousterhout [23] in 1982 who observed that blocking shouldbe avoided if wait times are short, and
suggested “pausing” a waiting thread for some (user defined)fixed time before blocking.

For lock synchronization, Karlin et al. [15] (1990) have shown that a variant of this method, where the
time spent spinning is equal to a context switch durationC, is2-competitive. This means the amortized cost
of this strategy is at most twice that of the optimal off-linealgorithm (which has complete knowledge of
synchronization wait times). The justification of this claim is trivial. They have also analytically proven that
there is no deterministic algorithm that has a competitive ratio smaller than 2. Finally, they have proven that
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a randomized algorithm can achieve strongly competitive ratios approaching e
e−1 ≈ 1.58 (when compared

to the optimal off-line algorithm) under the assumption that wait time distributions obey some unknown
but time invariant probability distribution.

Later, Karlin et al. [16] (1991) have empirically evaluateda collection of parallel applications on a
small scale SMP (7-processor Firefly [25]) while using a suite of two phase waiting competitive algorithms
that included variousfixed spinningdeterministic algorithms with constant maximal spin durations (among
themLspin = C andLspin = C

2 ), and variousvariable competitivealgorithms with an adaptive maximal
spin duration (among which the algorithm with the competitive ratio that converges toe

e−1 ). They have
concluded that fixed spin algorithms are usually better thantraditional always spin or block, and that
adaptive algorithms are usually better than fixed spinning.

Inspired by the work presented in [15] and [16], Lim & Agarwal[21] (1993) have investigated two-
phase waiting algorithm through analysis and experiments in the context of a larger machine (a simulator of
the 64-processor MIT Alewife machine called ASIM [1]). Eachprocessor in the Alewife has fourhardware
contexts. A hardware context is a set of registers that implement the processor-resident state of a thread. A
waiting thread on such a multithreaded processor, can switch rapidly to another processor-resident thread
in a round-robin fashion. This type of waiting, where the wait time is interleaved with executions of other
threads, is calledswitch-spinning, and was the only type of spinning used in this work. Consequently, Lim
& Agarwal focused on methods for statically determiningLspin, arguing that the run-time overhead of
doing it dynamically can be comparable to the cost of blocking on machines similar to the Alewife.

A key difference between the work of Karlin et al. and the workof Lim & Agarwal was that the lat-
ter were motivated by the observation that different synchronization mechanisms (barriers, locks) exhibit
different wait time distributions, and therefore need separate evaluation. Under the conjecture of Poisson
arrivals of synchronizing threads, they have shown that theexponential and uniform distributions are rea-
sonable models of wait times for lock and barrier synchronization, respectively. They have proven that a
static choice ofLspin can yield close to optimal on-line performance against an “adversary” algorithm that
is restricted to choosing wait times from a fixed family of probability distributions. This result allowed them
to make an optimal static choice ofLspin based on synchronization type. For exponentially distributed wait
times (associated with locks), they have proven that setting Lspin = ln(e − 1)C ≈ 0.54C resulted in a
competitive ratio of e

e−1 in comparison to the optimal off-line algorithm. For uniformly distributed wait

times (associated with barriers), they have proven that setting Lspin = 1
2

(√
5− 1

)

C ≈ 0.62C results in a
competitive ratio of12

(√
5 + 1

)

≈ 1.62 (the golden ratio).

In their practical experiments, Agarwal & Lim have differentiated betweenmatchedandunmatched
programs. A program is matched if the number of concurrentlyrunnable threads assigned to any processor
never exceeds the number of hardware contexts on that processor; otherwise, the program is unmatched. In
practice, unmatched programs were simulated by running theoriginal (matched) programs while reducing
the number of hardware contexts from four to two. Always-block (Lspin = 0) was found to be a good
waiting algorithm with performance that was usually close to the best of the algorithms compared. Fixed
spinning ofLspin = C or Lspin = C

2 usually produced slightly better results. A particularly relevant
conclusion to this work was that unmatched barrier based application should always useLspin = 0 (i.e.
always-block). Since most popular microprocessors have only one hardware context, the practical mean-
ing of this recommendation is that any barrier based application should usually choose the always-block
waiting algorithm when other ready threads are waiting for aprocessor.

Based on the work described above, Kontothanassis et al. [18] (1997) developed a set ofscheduler
conscioussynchronization algorithms, that contrary to earlier work, are supposedly suited for a multipro-
grammed preemptive environment. Such algorithms may interact with the kernel in order to ensure (for
example) that a lock holding thread will not be preempted. Unfortunately, their proposed barrier algorithm
doesn’t handle multiprogramming and assumes processors are partitioned among applications. However,
it does allow an application withT threads to execute onP processors even whenT > P . Kontothanassis
et al. have pointed out that fixed spin algorithms lead to uniform policy for all threads: either all will spin,
or all will block. Their suggested barrier algorithm makes the trivial optimal spin-versus-block decision in
each individual thread: for a job composed ofT threads running onP processors, the firstT − P threads
to reach a barrier will block while the remainingP will spin.
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1.5 Motivation

Though theoretically pleasing, the analytical results presented in [15] and [21] have an inherent flaw: the
“optimal off-line algorithm” does not qualify to be theactualoptimal algorithm. The following is a simple
example that demonstrates this. Assume a 2-processors machine executing two jobs:J1 andJ2, each
composed of two threads. Let

{

t11, t12
}

and
{

t21, t22
}

be the threads composingJ1 andJ2 respectively.
Assume all threads profiles are identical, such that each thread computes forµ cycles and then needs to
synchronize with its peer (this can be viewed both as lock andbarrier synchronization). Further assume
thatt11 andt21 are currently executing and that the waiting algorithm usedis Lspin = C (which was proven
to be 2-competitive compared to the optimal off-line algorithm). t11 andt21 compute forµ cycles and reach
a synchronization point, they spin forC cycles and block.t12 andt22 take their place, compute forµ cycles,
spin forC cycles and also block, only to be replaced byt11 andt21 . . . and so on. LetN denote the total
number of synchronization points in the computation. Consequently, the total duration of the execution
described above is:

|J |N
(

C(spin) + C(block) + µ(compute)

)

= 2N (2C + µ) = 4NC + 2Nµ

Of course the duration of the optimal off-line algorithm would have been:

2N (C + µ) = 2NC + 2Nµ

because it would have avoided all the useless spinning. Indeed, a factor of approximately 2 (whenC is
considerably bigger thanµ) as implied by the competition ratio. However, the durationof the actual optimal
algorithm would have been≈ 2Nµ, if J1’s threads would have spun (for example) for2C instead ofC,
because this would allowt11 andt21 to execute together and therefore to avoid the context switch associated
with each synchronization point (same goes forJ2). It follows that the optimal off line algorithm may be
arbitrarily bad in comparison to the actual optimal algorithm. For example, ifµ = 1 andC = 100, then
the former is approximately 100 times slower than the latter.

The scenario specified above is the simplest we could find in order to demonstrate our claim. However,
it fails to emphasize the source of the defect of the optimal off-line algorithm. Let{Wi}Ni=1 denote the wait
times series of some threadt within an execution of some parallel application. The philosophy behind the
optimal off-line algorithm (compared for example to a waiting algorithm withLspin = C) is the following:
If Wk < C, than it was advantageous fort to spin while it was trying to synchronize for thek-th time. If
on the other handWk ≥ C, thent should have immediately blocked. The underlying assumption that lies
beneath this concept is that a change of thek-th spin-vs-block decision will not affect{Wi}Ni=k+1 which is
of course erroneous.

The focus of this work is on barrier synchronization. Indeed, Karlin et al. [16] have claimed that
spinning is only worth while if the awaited thread is currently executing (because when waiting for “a thread
which is waiting for a processor, it makes little sense to spin”). This implies that barrier based applications
will have little chance to synchronize when running on a heavily loaded SMP. In addition, Lim & Agarwal
concluded that unmatched barrier based applications should never spin, which for most processors means
that whenever the number of threads exceeds the number of processors, then threads should always-block
(which in any case is a good waiting algorithm according to Lim & Agarwal). However, the flaw that
we have identified in the analysis related to the optimal off-line algorithm, leads us to believe that it’s
possible that there exists a waiting algorithm which will achieve better exploitation of the SMP, by allowing
barrier based application to compute without having to always-block at each synchronization point. Our
experience has indicated that threads either always manageto synchronize during their busy-waiting period,
or else they always block. We set out to examine this phenomenon by a detailed study of how two-phase
waiting for barrier synchronization depends on system load. Our goal is to gain a better understanding of
parallel barrier based application operating in a multitasking environment, and check the implications of
high loads on such applications. We hope these understandings will serve designers and implementors of
barrier algorithms and will allow better utilization of SMPs.
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1.6 Choosing a Scheduler

Aspiring for this work to have a practical value, we wanted toevaluate barrier synchronization on a SMP
that uses a popular and common scheduler. Nowadays, most popular operating systems (even non UNIX)
conform toPOSIX1.b(formally known as POSIX.4) which is thePortable Operating System Interface
[12]. POSIX1.b defines three types of scheduling policies:

SCHED FIFO Processes running under this policy, run until they give up the processor, usually by block-
ing for I/O, waiting for a semaphore, or executing some otherblocking system call.

SCHED RR Operates just like SCHEDFIFO, except that processes run with a system given quantum
(RR stands for Round-Robin).

SCHED OTHER Is not defined by POSIX but its presence is mandated. This is the default (and thus,
arguably, the most important) timesharing scheduler used by the operating system.

Of course, since it is the most common and widely used, we are primarily interested in the last policy.
Unfortunately, its semantics are not defined by POSIX. However, we do know that the default schedulers
of general purpose operating systems such as all the flavors of UNIX and Windows are:

1. preemptive, based on quanta, and

2. priority-based, such that I/O bound (interactive) processes are favored.

Our chosen method to evaluate barrier synchronization within loaded systems is therefore:

1. Evaluating the standard (and relatively simple) SCHEDRR scheduler, which can be thought of as a
simple version of SCHEDOTHER where all the priorities of the various processes are equal all the
time, and

2. Choosing a popular scheduler as a representative from within the various operating systems’ im-
plementations of SCHEDOTHER; use the previous step’s understandings in order to evaluate this
scheduler, and hopefully be able to project our findings to any preemptive priority-based scheduler.

1.7 Thesis Outline

We will evaluate barrier synchronization within a loaded system in a number of stages, with increasing
complexity and realism:

1. One synchronizing job with a compute-bound background load,

2. A set of identical synchronizing jobs,

3. A set of heterogeneous jobs, with different synchronization behavior,

4. Same as above with priority based scheduling rather than round-robin scheduling.

Chapter 2 will give a detailed description of the SMP simulator we have used in this work. Chapters 3,
4 and 5 will evaluate the SCHEDRR scheduler according to the steps described above. Chapter 6 will
introduce the Linux scheduler, which we have chosen as a representative for SCHEDOTHER. Chapters 7,
8 and 9 will evaluate this scheduler similarly to SCHEDRR. Finally, chapter 10 will discuss and conclude
this work.
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Chapter 2

The SMP Simulator

Throughout this work we use an event driven SMP simulator. This chapter describes this simulator in detail.
Only SCHEDRR aspects of the simulator are reviewed. Details regardingthe chosen SCHEDOTHER
policy will be discussed in chapter 7 (after the Linux scheduler is introduced in chapter 6).

2.1 General

The simulator distinguishes betweensynchronizing and non-synchronizing jobs. Since threads of a non-
synchronizing job do not interact with each other, it has no significance if we view each individual thread as
an independent job. Consequently, within the context of thesimulator, a non-synchronizing job is always
composed of a single thread. The only form of interaction between threads belonging to a synchronizing job
is barrier-synchronization. Synchronizing jobs may vary in many parameters, among which are size, gran-
ularity and more. A fixed-spinning waiting algorithm is usedin order to perform barrier-synchronization.

At any time instance, each executing thread within the simulator is in exactly one of four possible
states:

Ready: The thread is found in the ready queue waiting to be allocateda processor.

Running: The thread is currently running (possibly spinning).

Blocked: The synchronizing thread has decided to block until its peers will reach the current barrier. The
thread will be moved back to the tail of the ready-queue when the current barrier is completed (upon
the arrival of the last thread from the job).

Finished: The program executed by the thread has terminated.

Figure 2.1 demonstrates how threads may move between the above states.

The simulator is event driven. Future events are held in a global priority-queue, ordered according to
their execution time. Execution times are expressed in cycles (integral number). Obviously, at most one
event may be executed, in any given time instance, for each processor within the SMP. This means that
two different events may have the same execution time iff they are executed within the context of different
processors. When an event is executed, it updates the globalSMP clock with its time of execution (since
the simulator is a serial program, there is only one clock). Each transition between the various thread states
described in figure 2.1 is associated with an event. In addition, synchronizing threads use events to simulate
the end of a computation-phase and the implementation of thebarrier synchronization mechanism:

• repeatedly polling to check for barrier completion (maximal spin duration is fixed)

• upon success, push the next end-of-computation-phase event

• upon failure, trigger a yield-event and enqueue to blocked state.

15
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FinishedRunningReady

Blocked

thread was allocated
a processor

thread m
ust w

ait
to synchronize

thread finished quantum

thread terminated

thread finished waiting (last thread reached barrier)

Figure 2.1: possible states and state-switches for a synchronizing thread. The diagram associated with
non-synchronizing threads is similar, with the differencethat the ’blocked’ circle and the arrows attached
to it should be removed.

We remark the contention due to synchronization was not simulated. This is a reasonable simplification
when assuming that a barrier completion time (with contention) is significantly shorter than a context switch
duration. This work focuses on SMP systems for which this is indeed the case. Chapter 6 will demonstrate
that the popular general purpose operating systems with priority based schedulers (like Linux), are such
systems.

Each execution of the simulator gets as input a configuration file which describes the various SMP
parameters (e.g. how many processors it has, how long is a context switch etc.) and the parameters of
the jobs it executes (e.g. granularity, number of barriers,number of threads etc.). The configuration file is
described in section 2.2.

The output of the simulator is a table describing how well the synchronization policy performed, as a
function of the load on the SMP. The output is described in section 2.3.

2.2 The Configuration File: Simulator’s Input

The configuration file specifies all the information necessary for the simulator to simulate a complete SMP
run and output a “graph” describing the results of this execution. There are three types of lines acceptable
in the configuration-file:

1. Global lines: These type of lines may contain specification of general properties of the output graph
such as the title etc. (not significant).

2. Curve lines: Each such line describes one curve in the resulting graph. This line should contain the
description of the machine: the number of processors composing the SMP, the quantum duration,
how long it takes to perform a context switch etc. Each curve line is followed by one or more
synchronizing-job lines.
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3. Synchronizing-job lines: Each such line relates to the curve-line that preceded it. Such a line
describes a profile of a synchronizing job (size, granularity etc) within the mix of jobs that will
eventually be displayed as one curve in the graph.

Each line is composed out of a sequence of tokens in the formatParameter=Valueseparated by white
space. As the simulator evolved, a large number of acceptable parameters was defined. Table 2.1 specifies
the more important parameters that may appear in a configuration input file and are used throughout the
following chapters.

# parameter name m
an

da
to

ry

pe
rc

en
t

description
curve-line parameters
1 p * Processor number.
2 q * Cycles per quantum.
3 in * * Cycles per context switch - in (wakeup).
4 out * * Cycles per context switch - out (preempt).
5 nosync * Number of non-synchronizing jobs (each with one thread).
6 rand ord Nonzero if the threads in the ’ready-queue’ should be shuffled

beforethe execution begins, zero otherwise. If this parameter is
not given than noshuffling will be performed.

7 job configs The number of sync-job-lines following the curve-line. These
lines willspecify the synchronizing-job mix which will partici-
pate in the simulationdefined by this curve-line.

synchronizing-job-line parameters
8 sync * Number of threads composing the synchronizing job.
9 barrier * Number of barriers performed by the threads of the specified job.
10 spin * * Maximum number of cycles for a thread to spin while tryingto

synchronize (before entering the blocked-state).
11 cmput * * The expectation -µ - (in cycles) of the time interval a thread

“computes”between barriers. The computation-intervals are
normally distributed around this value.

12 rand cmput sigma The standard deviation -σ - of the normal distribution used to
generate computation intervals.σ can be specified in various for-
mats(see section 2.2.1 for detailed description).If this parameter
is not given it is assumed to be zero.

13 instance num Number of instances of the job with the profile defined in the
current sync-job-line.If this parameter is not given it is assumed
to be 1.

Table 2.1: Simulator’s main parameters.

• All parameter marked with ’percent’ may be followed by a ’%’ sign which means the associated
value specifies a percent out of the quantum interval (value associated withq).

• All parameter marked with ’mandatory’ must be specified.

2.2.1 Theσ Used to Generate Computation Intervals

This subsection describes the acceptable formats ofσ, the value associated with the parameterrand cmput sigma.
If this parameter appears, it means computation intervals of the synchronizing job represented by the sync-
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job-line should benormally distributedaroundµ (the value associated withcmput). The associated value
may be given in 2 formats:

1. Direct-format: Only one floating value is given. This value is the actualσ of the normal distribution
used (must be positive).

2. Symbolic-format: The value must be in the format: DENSITY/INTERVAL

• DENSITY: A float from the open domain: (0,100) specifying thepercentageof the points to be
found in the interval which is defined as follows:
Λ = [µ-INTERVAL , µ+INTERVAL]

• INTERVAL: A number which defines the domain ofΛ as described above. It must be positive.
In addition, if this number is followed by ’%’ it means the number is given as percentage out
of µ (the value associated withcmput) in which case it must be in the open domain: (0,100).
Note that in any case the lower bound ofΛ must be positive.

If this parameter doesn’t appear in the job-config-line thenthe computation interval is alwaysµ.

2.2.2 Convertingσ’s Symbolic-Format to Direct-Format

Let X be a random variable such thatX ∼ N(µ, σ). Givenp = DENSITY
100 andz = INTERV AL, we

want to compute the value ofσ. According to the definition ofp andz there exists:

Pr (µ− z ≤ X ≤ µ + z) = p

⇒ Pr (−z ≤ X − µ ≤ z) = p

⇒ Pr
(

−z
σ
≤ X−µ

σ
≤ z

σ

)

= p

⇒ Pr
(

−z
σ
≤ Z ≤ z

σ

)

= p whereZ ∼ N(0, 1) i.e Z is normalized,

⇒ Pr
(

Z ≤ z
σ

)

− Pr
(

Z ≤ − z
σ

)

= p

and because of the normal distribution symmetry:

⇒ 1− 2Pr
(

Z ≤ − z
σ

)

= p

⇒ 1− 2k = p wherek = Pr
(

Z ≤ z
σ

)

,

⇒ k = 1−p
2

Sincep is given thenk is know. Now, we may look for the value ofy = −z
σ

such thatk = Pr (Z ≤ y)
using theunit normal distribution’s area table. Finally, we may computeσ using the formulaσ = − z

y
.

2.3 The Output Of the Simulator

The output of the simulator is a table specifying how well thesynchronization policy performed as a
function of the load on the SMP. The following subsections will describe this output in detail.

2.3.1 The SSR Metric

Throughout this work, we will use thesuccessful-spin-rate (SSR)in order to evaluate the advisability of
spinning. This metric is defined to be the percentage of casesin which a process succeeds to synchronize
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while spinning, excluding the last one to arrive. More formally it is:

SSR =

∑

t∈ST successfulSpin(t)
∑

t∈ST totalSpin(t)
× 100

where:

• ST is a group containing all theSynchronizingThreads participating in the simulation.

• successfulSpin(t) is the number of timest did not block after spinning (because all the threads of
its job have reached the barrier while it was spinning). Thisnumber does not include the timest was
the last thread of its job to reach a barrier, since no spinning was performed. The last thread to reach
a barrier always succeeds, we are not interested in these cases.

• totalSpin(t) is the number of timest entered a spin mode. Again, this number does not include the
timest was the last thread of its job to reach a barrier.

As a rule of thumb, if the SSR is smaller than 50%, we will consider spinning as not worth while, because
threads failed more than they succeeded to synchronize due to spinning.

2.3.2 Elapsed Time

We remark that SSR is not a perfect metric and should be used carefully. For example, if the always-
spin waiting algorithm is used, jobs executing on a preemptive scheduler (which is what we use in this
work) will always achieve SSR of 100%. This subject will be further elaborated later on. Throughout
chapters 3-5 we will solely use the SSR metric in order to evaluate the profitability of spinning and to gain
understandings of the computation patterns of barrier based applications. However, throughout chapters 7-
9 we will also expend our discussion to include applications’ elapsed execution time, and we will establish
a firm connection between speedup and high SSR.

2.3.3 The Load

Usually, when we discuss SSR (or speedup, when comparing various waiting algorithms) it is associated
with or displayed as a function of load. Various aspects of load are considered. For example, in chapter 3,
|ST | is constant, and therefore load is usually associated with|NST | (NSTis defined to be the group that
contains all theNon SynchronizingThreads participating in the simulation). Another example is the size
of the setTHREADS = ST

⋃

NST , which defines thetotal loadon the SMP. This measure is usually
used when we discuss heterogeneous job collections.
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Chapter 3

Synchronizing Job in a
Non-Synchronizing Environment
Under the Round-Robin Scheduler

3.1 Introduction

This chapter describes the behavior of a single synchronizing job in a very simple scenario: the job is
“disturbed” by an increasing number of non-synchronizing threads. We will show and explain the effects
of adding two types of randomization to such a simulation:

1. shuffling the order of the threads in the ready-queue on startup, and

2. adding imbalance by normally distributing the computation intervals of the synchronizing threads
(as explained in section 2.2.1).

We will establish a connection between the SSR (successful spin rate), the length of the spinning-interval
and theσ-interval (as defined in 2.2.1). We will also introduce thealternating synchronizationconcept.

The X axis of all the graphs presented in this chapter are the number of non-synchronizing threads that
participated in the simulation.

3.2 Simulation with No Randomization

In this section we will analyze a very simple scenario of somesimulation in which there is no randomiza-
tion. The purpose of this section is to allow us to get familiar with the subject of barrier based application
in a loaded environment, as fast as possible.

The parameters used in the simulations are:

p q in out sync nosync barrier spin µ (cmput)
32 100 3% 3% 11 0. . . 200 50 6% 1%,10%,100%

The chosen length of the quantum is arbitrary, it has no meaning on its own outside the context of the
other parameters. It was chosen to allow easy conversion from parameters that are expressed as percentage
of a quantum, to the actual number of cycles they represent. The total duration of context switch (6% of
quantum) may seem (and is probably) too long. However, asidefrom being considerably shorter than a
quantum duration, it too has no actual meaning of its own in the context of this work. Its real importance
lies in the manner we classify granularity of jobs. Roughly,and without (currently) addressing the role of
σ, the following specify how we classify jobs’ granularity:

21
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1. We usually consider jobs withµ value which is smaller than the duration of a context switch to be
fine grain(and therefore a job withµ=1% of quantum, is fine grain within this simulation).

2. Jobs for whichµ is longer than the duration of context switch but not longer than 4 or 5 times this
duration, is classified as beingmedium grain(and thus in this simulation,µ = 10% is considered as
medium granularity).

3. Jobs withµ values higher than that, are consideredcoarse grain(e.g.µ = 100% is coarse).

The resulting graph is presented in figure 3.1.
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Figure 3.1: The result of a simple simulation with no randomization. The fine-grain jobs (µ = 1%, red
line) achieve the best SSR. The coarse-grain jobs (µ = 100%, blue line) achieve the worst SSR. The SSR
achieved by the medium-grain jobs (µ = 10%, green line) is somewhere in between.

3.2.1 Analyzing the Fine-Grain Job’s Behavior:µ = 1%

The fine-grain job’s behavior is presented by the red line in figure 3.1. This job must synchronize each 1%
out of quantum i.e. each cycle (because the quantum was takento be 100 simulator cycles). The following
subsections constitute a detailed analysis of the behaviorof this job.

3.2.1.1 The First Quantum

To understand the graph we must first understand what happensin the first quantum from the point of view
of - J - the synchronizing job:

• On startupJ’s threads occupy the beginning of the ready-queue1 .

• Immediately after the execution begins, ALL the threads areallocated processors and move to
running-state (becauseJ’s size is 11 and there are 32 processors).

1This is true because the simulator decides the startup orderof the threads in the ready queue according to the ordered pair <job-id,
thread-id> and the id of J in this simulation was chosen to be 0.
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• By the time the first quantum ends,J’s threads have finished the 33rd barrier. This is true because:

– It takes one cycle for each thread to reach the “next” barrier.

– It takes two cycles for the job to synchronize: all the threads try to synchronize; only the “last
one” succeeds; the other threads start to spin and after one cycle (their first “polling”) they
succeed and continue computing . . .

– considering the above, the number of barriers performed in the first quantum is approximately:

cycles per quantum

1(compute) + 2(synchronize)
=

100

3
≈ 33

The above scenario is not dependent on the number of non-synchronizing threads participating in the
simulation, what happens next however, does.

3.2.1.2 The Second Quantum for|NST | = 1...42

Recall thatNST was defined in section 2.3.3 to be the group of non-synchronizing threads participating in
the simulation. We will now show that for|NST | = 1...42, all of J’s threads will immediately be allocated
a processor after returning to the ready-queue. It’s enoughto show this for|NST | = 42 and the argument
used may be applied to|NST | = 1...41 in a similar manner.

Along with J’s threads there are 21 non-synchronizing threads that havealso finished their quantum.
The number of ready threads found in the ready queue after startup and before the first context switch is:

total threadnum− 32(running) = 〈42(nosync) + 11(sync)〉 − 32(running) = 21
This means that after the first quantum ends and these 21 threads get allocated a processor, there are
11 = 32 − 21 vacant processor to use, just enough for all ofJ’s threads. Unsurprisingly these processors
are indeed allocated to them2 . SinceJ’s threads will complete all the barriers in the second quantum (we
chose 50 barriers for the simulation), the simulation will end with 100% SSR.

3.2.1.3 The Second Quantum and Onwards for|NST | = 43...52

The above “ideal” ends of course when|NST | = 43. In this situation there aren’t enough processors to
allocate for all ofJ’s threads: ten threads get allocated processors but the eleventh remains in the ready
queue. As a result, the jobs fall into analternating synchronization patternin which the processes in the
job occur as two contiguous groups in the ready queue. The first group reaches the barrier, spins, and
blocks. When the second group runs, the barrier is completed, and all the processes in the first group are
released again into the ready queue and so on. Alternating synchronization is discussed in detail in section:
4.3. As a result of the alternating synchronization, the SSRis reduced.

The argument explaining whyJ is divided to two thread-groups (of the sizes: 10-running + 1-ready)
for |NST | = 43 after the first quantum, may also be applied to|NST | = 44...52:

• |NST | = 44: the job is divided to thread-groups: 9-running + 2-ready

• |NST | = 45: the job is divided to thread-groups: 8-running + 3-ready

• . . .

• |NST | = 52: the job is divided to thread-groups: 1-running + 10-ready

The SSR achieved for|NST | = 43...52 is further discussed in section 3.2.1.5.

2This is true because J’s threads occupied the beginning of the ready queue on startup. Therefore they were allocated processors
first. Therefore they were the first to have finished the first quantum. Therefore they are again occupying the beginning of the ready
queue.
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3.2.1.4 The Cycle of the Simulation:|NST | ≥ 53

From the point when|NST | = 53 - which means that the number of threads participating in thesimulation
is |THREADS| = |NST | ∪ |ST | = 64 - we notice the simulation enters a cycle. After the first quantum
finishes there are 32 non-synchronizing threads waiting in the ready queue and therefore synchronizing
threads do not get allocated a processor. This means that thesecond “chunk” of 32 threads executing
on the SMP doesn’t influence the resulting graph at all, they simply consume one complete quantum.
After the 2nd quantum is over, the other 32 threads (J’s 11 threads + the remaining 21 non-synchronizing
threads) will get a processor and the simulation will behaveexactly is it did when|NST |was 21 (i.e. when
|THREADS| was 32) .We conclude that forc = 1, 2, 3... andi = 0, 1, ... , 31 there exists:

SSR (|NST | = 21 + i) = SSR (|NST | = 21 + i + 32c)

or in other words:

SSR (|THREADS| = 32 + i) = SSR (|THREADS| = 32 · (1 + c) + i)

The cycle is demonstrated in figure 3.2.
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| THREADS | :
 | NST | :

Figure 3.2: The various stages ofJ in the simulation and the simulation’s cycle:

(1) The SMP is not fully utilized, there are more processors than threads.

(2) |THREADS| isn’t smaller than the number of processors but is small enough forJ’s threads
to be allocated processors immediately after returning to the ready queue (in the beginning of
the second quantum).

(3) The load is big enough to causeJ to alt-synchronize: in the begin of the second quantum only
a portion ofJ’s thread are allocated processors.

(4) The simulation’s cycle.

3.2.1.5 Increasing the Number of Barriers

The sections above imply that the high SSR of the fine-grain simulation (always more than 77%) was
achieved purely because of the relatively low number of barriers that was performed byJ and the relatively
big weight the successful spins of the first quantum have. After this initial “grace period”, the simulation
starts to perform alternating-synchronization and the SSRdrops below 50% (this 50% boundary is ex-
plained in section: 4.4). Therefore increasing the number of barriers should reduce the weight of the grace
period and cause the SSR to decline. Figure 3.3 demonstratesthis.

3.2.2 Analyzing the Medium and Coarse Grain Jobs’ Behavior:µ = 10%, 100%

All the arguments that were applied to analyze the case in which µ - the computation interval - is 1% of
quantum, also hold forµ=10% andµ=100%. Forµ=10% the difference is that by the time the first quantum
ends,J’s threads have finished only 8 barriers or so because:

cycles per quantum

10(compute) + 2(synchronize)
=

100

12
≈ 8
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Figure 3.3: This figure shows the effects of increasing the number of barriers in the fine-grain simulation.
It is obvious the more barriers there are, the lesser the SSR gets since the weight of the grace period
diminishes.

Forµ=100%,J didn’t finish even one barrier in the first quantum.
The curve associated withµ=1% appears to present a far better SSR than the curves associated with

µ=10% andµ=100%. But, as explained in section 3.2.1.5 (and demonstrated in figure 3.3), this happens
due to the relatively small number of barriers in the simulation, causing the weight of the successful spins
in the first quantum to be much smaller for 10% and 100% than for1%.

To further demonstrate this, figure 3.4 shows the result of three simulations identical to those displayed
in figure 3.1 (in the beginning of the chapter) with the difference that now, more than 50 barriers are used.
By increasing the number of barriers we decrease the weight of the first few quanta successful spins and
increase the weight of the unsuccessful spins caused by alternating synchronization. As expected, as we
increase the number of barriers, the graph shows that the curve associated withµ=1% gets closer to the
other curves.

3.3 Randomizing the Order of the Ready-Queue

This section describes the results of a simulation which is identical to the previous simulation we discussed
(defined in the beginning of section 3.2) , with the difference that the order of the threads in the ready-queue
was shuffled on startup. Figure 3.5 presents the result of this simulation.

The main effect of this shuffling was that the scenario of the first few quanta in the simulation - which
was described in detail in the previous section - didn’t happen: Since the threads aren’t continuously
ordered in the ready queue,J enters an alternating synchronization pattern from the beginning of the sim-
ulation and doesn’t get the “grace period” as before. As the figure shows (and as expected), the results are
fairly similar for the different computation intervals.

3.4 Adding Variability to the Computation Intervals

This section describes the results of a simulation identical to the one described in the previous section (in
which we shuffled the order of the ready queue on startup), with the difference that now we add imbalance
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Figure 3.4: As we increase the number of barriers, the difference between the SSR achieved by fine grain
jobs, gets closer to the SSR achieved by coarse grain jobs.
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Figure 3.5: The results of the simulation after shuffling theready queue on startup: no grace period causing
the SSR to be low from the moment the number of running threadsis bigger than the number of processors.
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to the simulation by normally distributing computation intervals of the synchronizing threads (as explained
in section 2.2.1). Figure 3.6 presents the result of this simulation. The computation intervals of the synchro-
nizing threads were normally distributed withσ=90/15%,which means 90% of the computation intervals
fall into [85%...115%] out ofµ (the value associated with thecmput parameter). Making the length of the
computation interval random, influences its values as follows:

• For 1-cycle-computation-interval (computation intervalis 1% of quantum, quantum is set to be 100
cycles), 90% of the values will be in the range[0.85...1.15]. Since a computation interval represents
a number of cycles, it must be discrete and therefore the values are always (or with probability close
to 1) rounded to 1.

• For 10-cycle-computation-interval (i.e. computation interval is 10% of quantum), 90% of the values
will be in the range[8.5...11.5] which means that the effective values are in[9...11].

• For 100-cycle-computation-interval (i.e. computation interval is 100% of quantum) the effective
values are in[85...115].
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Figure 3.6: Adding imbalance to the simulation by normally distributing computation intervals aroundµ
with σ=90/15%, resulted only in the decline of SSR associated withcoarse grain jobs. The SSR of fine and
medium grain jobs have (more or less) stayed the same.

The figure shows that the results for computation-interval 1% and 10% stayed more or less the same
while the results for computation interval 100% have declined. To make sure the reason for the curves
associated withµ=1%, 10% have stayed the same wasn’t the discrete nature of the simulation, we ran the
same simulation but with 10000-cycles-quantum instead of 100. Figure 3.7 shows that the results of this
simulation (10000-cycles per quantum) which are almost identical to the results displayed in figure 3.6
(100-cycles per quantum). This fact verifies our hypothesis.

3.4.1 The Reason Why Only Coarse-Grain Jobs Were Affected Bythe Random
Distribution of Computation Intervals

Let the quantum be 10000 cycles. The spinning interval in this case is 600 cycles (6% out of quantum).
Let’s examine the computation interval expectation (µ) and effective values, relatively to theσ-interval (=
90/15%):

µ range of 90% σ-interval σ interval
spin interval

out of quantum in cycles of the values

1% 100 [85...115] 30 0.05
10% 1000 [850...1150] 300 0.5
100% 10000 [8500...11500] 3000 5
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Figure 3.7: This figure presents the results of a simulation identical to the one presented in figure 3.6. The
difference between them is that in this simulation the quantum used was 10000 cycles instead of 100. Since
the two figures are almost identical, it proves that the discrete nature of the simulation wasn’t the reason
why only the coarse-grain jobs (blue line,µ=100%) was affected by the normal distributing of computation
interval’s length.

For coarse-grain jobs (µ=100%), theσ-interval is much bigger than the spin-interval. On the other
hand, for fine and medium-grain jobs (µ=1%,10%), theσ-interval is smaller than the spin-interval. For a
coarse-grain job, if we get two threads with different computation intervals that are far enough apart (say
the first is near 8500 cycles and second is near 11500 cycles ) then obviously the first thread will spin
unsuccessfully. Theσ-interval (= 3000 cycles) is big enough compared to the spin-interval (= 600 cycles)
to make most of the spins unsuccessful. This is the reason whyonly the curve associated with coarse-grain
jobs was affected by the random distribution of computationintervals.

Most of the SSR associated with the coarse-grain jobs is found around 10% which means that for each
barrier, on average, only one out of 10 threads that actuallyspun performs successful spinning (the eleventh
thread to reach the barrier doesn’t count since it doesn’t perform spinning) .

We will now demonstrate the principal stated above in the next section using a few simulations . . .

3.4.2 Various Computation-Intervals with 15% σ-Interval

In this simulation we choose theσ-interval to be 15% out of variousµ values. We will show (for a constant
spinning-interval) that increasingµ - which means increasing theσ-interval - causes the SSR do decline.

The parameters of the simulations are:

p q in out sync nosync barrier spin rand µ (in percents σ
ord out of quantum)

32 1000 3% 3% 11 0. . . 70 50 6% 1 20,25,30,35,40,45,50,60,70,9090/15%

The σ-intervals and the effective values for the various computation-intervals are displayed in table
3.1.

The result of the simulation is displayed in figure 3.8. The figure strengthens the hypothesis stated
above. It is clear that for biggerσ-intervals (with respect to the spinning-interval), lowerSSR is achieved.
Notice also the implied continuity - demonstrated by the figure - between the medium (µ=10%) and coarse
(µ=100%) grain curves displayed in previous figures.
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µ range of 90% σ-interval difference
out of quantum in cycles of the values from σ interval

spin interval

spin-interval

15% 150 [127.5...172.5] 45 -15 0.75
20% 200 [170...230] 60 0 1
25% 250 [212.5...287.5] 75 +15 1.25
30% 300 [255...345] 90 +30 1.5
35% 350 [297.5...402.5] 105 +45 1.75
40% 400 [340...460] 120 +60 2
45% 450 [382.5...517.5] 135 +75 2.25
50% 500 [425...575] 150 +90 2.5
60% 600 [510...690] 180 +120 3
70% 700 [595...805] 210 +150 3.5
80% 800 [680...920] 240 +180 4
90% 900 [765...1035] 270 +210 4.5

Table 3.1:σ-interval values and computation interval effective values as a function ofµ. Recall the the
spin interval is 60 cycles (6% of the quantum which is 1000 cycles).
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Figure 3.8: This figure shows 12 simulations with various computation-interval. Theσ-interval is 15%
of the computation-interval which means that if the computation-interval gets bigger then so does theσ-
interval. The figure proves that for biggerσ-interval a lesser SSR is achieved.
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3.4.3 Variousσ-Intervals with a Constant Computation-Interval

The simulations performed in this section are similar to those performed in the previous section with the
difference that now theσ-intervals changes with respect to a constantµ. We expect of course that for bigger
σ-intervals we will get lower SSR.

The parameters of the simulations are3 :

p q in out sync nosync barrier spin rand µ σ
ord

32 1000 3% 3% 11 0. . . 70 50 6% 1 5% 90 / 20-100:20 %
10% 90 / 5-55:5 %
100% 90 / 5-55:5 %

The result of the simulation is displayed in figure 3.9. This figure also strengthen the hypothesis stated
above. Again, it is clear that for bigger ’σ’s, lower SSR is achieved.

3The meaning of: x-y:j is the list of values that starts from x,ends in y with a difference of j between each two successive elements
in the list.
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Figure 3.9: Figures a,b,c show simulations withµ=5%,10%,100% respectively: we can see for eachµ that
for biggerσ (interval) a lesser SSR is achieved.
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Chapter 4

Homogeneous Collection of
Synchronizing Jobs Under the
Round-Robin Scheduler

4.1 Introduction

This chapter describes the behavior of a collection of homogeneous synchronizing jobs and explains the
alternating synchronizationconcept mentioned in the previous chapter. Each simulationcontains an in-
creasing number of synchronizing jobs with an identical profile. We will show that such simulations be-
have more or less the same regardless of the chosen size of thesynchronizing jobs and (from some point)
regardless of the load, due to the alternating synchronization effect. There are no non-synchronizing-jobs
participating in the simulations described in this chapter. The X axis of most graphs presented in this
chapter displays the number of synchronizing jobs participating in the simulation.

4.2 Simulation and Results

The parameters Used in the simulations are:

p q in out sync nosync barrier spin µ σ randord
32 100 3% 3% 2, 3, 4, 5, 0 50 6% 1%,10%,100% 90/15% 1

10, 11, 15, 16,
22, 25, 32

The resulting graphs are presented in figure 4.1.

4.3 Alternating Synchronization

4.3.1 Motivation

When examining figure 4.1, an immediate question that comes to mind is why do curves associated with
µ=1%,10% converge to a fairly high value regardless of the load ? For instance, how come there’s no
difference between the SSR achieved by a system running 15 jobs of the size 10 (150 threads) and the
SSR achieved by a system running 150 such jobs (1500 threads). This result is quite surprising as we

33
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Figure 4.1: TheX axis specifies the number of jobs participating in the simulation. Jobs’ size is specified in
the graph’s title. TheY axis is the SSR. We notice that(1) the lines associated withµ=1,10% start at 100%
SSR and(2) drop until they converge to some value below 50% but above 25%(except for jobs composed
of two threads that converge to zero, the difference is explained in section 4.3.5).
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expected that more jobs participating in the simulation will result in smaller SSR. As mentioned before -
with the exception of jobs composed out of two threads - the SSR is non negligible both for 1% and for
10% computation intervals. Table 4.1 specifies the SSR to which the various curves converge.

Job’s µ
size 1% 10% 100%

3 25 24 20
4 32.4 32.1 18.5
5 36.1 35.9 16.5
10 41.5 39.1 11.5
11 41.7 38.5 10.9
15 41.9 35.6 9.2
16 41.8 34.8 8.8
22 40.7 30.8 7.2
25 39.9 29.9 6.6
32 37.6 24.9 5.5

Table 4.1: The SSR to which the various simulation converge.

4.3.2 Threads’ Dispersal in the Ready Queue

The first thing we did when we tried to understand this phenomenon was to check how do threads of some
arbitrary job -J - “scatter” in the ready queue. The simplest thing to do was tomeasure the distance
Dist(J) betweenT1 andT2 whereT1 is J’s thread which is closest to the tail of the ready queue andT2 is
J’s thread which is closest to the head of the ready queue.

For example: in the following figure,J is composed out of four threads:T1, T2, T3 andT4, all of them
are in the ready queue. In this exampleDist(J) = 8 :

T2H1 H2 H3 H4 T4 H5 H6 H7T1 T3 HeadTail

Distance between T1 and T2 is 8

The Ready Queue

We’ve changed the simulation such that forµ=1%,10%, wheneverALL of J’s threads are found in the
ready queue,Dist(J) will be printed. To our surprise, the simulation didn’t print even a single number.
This of course means that there’s no time instance in which all of J’s threads are in the ready queue
simultaneously (with the exception of the beginning of the simulation). We refined the simulation such that
whenever there’s a change in the dispersal ofJ’s thread among the various SMP’s states, it will print the
pair: <Dist(J), |RQ(J)|> where:

RQ(J) = {J ′s threads found in the ready queue}

We found that if we defineDist(J) to be (-1) whenRQ(J) = ∅, through out all the simulation (except on
startup) the following invariant holds:

Dist(J)− |RQ(J)| = −1

which means the threads inRQ(J) are contiguous in the ready queue at any time instance.
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4.3.3 Reason WhyRQ(J) is Always Contiguous

After carefully examining the events generated by the simulation, we discovered why jobs are contiguously
ordered in the ready queue:

The first step: is to show that the probability that all ofJ’s threads will be allocated a processor on startup
is very small:

• Let J be some job in the homogeneous job collection.

• Let α be the above probability (that all ofJ’s threads are allocated a processor on startup).

• Let p be the number of processors in the SMP (in our casep = 32).

• Let j = |J | , 2 ≤ j ≤ p.

• Let k be the number of jobs participating in the simulation.

• Let n be the number of threads participating in the simulation:n = k × j, n > p.

Before the simulation begins, the ready queue is shuffled by uniformly choosing a permutation of the
threads. This means:

α =

[(

p
j

)

· j! · (n− j)!

]

· 1

n!
=

(

p
j

)

·
(

n
j

)−1

because

[(

p
j

)

· j! · (n− j)!

]

is the number of permutations in which all ofJ ’s threads are found at the

p “first” places of the ready queue (i.e. all of them will be allocated processors on startup) andn! is the
total number of permutation. By developing the above expression we get:

α =
p!

j! · (p− j)!
· j! · (n− j)!

n!
=

p · (p− 1) · (p− 2) · ... · (p− j + 1)

n · (n− 1) · (n− 2) · ... · (n− j + 1)
=

j−1
∏

i=0

p− i

n− i

which actually also have a combinatorial explanation because the numerator is the number of combinations
to arrangej items in (the first)p places and the denominator is the number of combinations to arrangej
items inn places. By further developing the above expression we get:

α ≤
( p

n

)j

since forb > a ≥ 0, r > 0 there exists:

a + r

b + r
− a

b
=

(a + r) · b− (b + r) · a
(b + r) · b =

ab + rb − ab− ra

(b + r) · b =

=
r · (b− a)

(b + r) · b =
positive

positive
> 0

which means thata+r
b+r

> a
b

and therefore we can replace eachp−i
n−i

in
∏j−1

i=0

(

p−i
n−i

)

with p
n

.1

By using the above formula we conclude that in our simulation(for n ≥ 100, j ≥ 3) α is smaller
than 0.03 and for larger values ofn (bigger load) andj (bigger jobs),α converges to zero.

1Actually, we could have approximatedα’s upper bound to be
(

p

n

)j
from the beginning, because this expression’s combinatorial

meaning may be: the probability to choosep items (in our case the “first”p locations in the ready queue) from within a collection
of n items (all the possible locations in the ready queue). This probability is bigger thanα because it allows the same location to be
chosen more than once.
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Now, we will explain why RQ(J) is contiguous: Let A denote the group ofJ’s threads that were allo-
cated a processor immediately when the simulation began. Assume (without loss of generality) thatA 6= ∅.
Also assume thatA ⊂ J i.e. J containsA but is not equal to it. As stated in the previous paragraph this
assumption holds with probability close to 1.

Sinceµ - the expectations of the computation intervals we’re discussing - is 1% or 10% (out of the
quantum),A’s threads reach the first barrier in the first quantum. They start to spin, but fail because threads
in J \A aren’t running yet. As a resultA’s thread move to “blocked” state.

Let T0 be the last thread ofJ to be allocated a processor for the first time.T0 starts to compute and soon
enough it reaches the first barrier. It immediately succeedsto synchronize with the rest ofJ ’s threads as it
is the last one to reach the first barrier. Note that currentlyfor everyT 6= T0, T ∈ J , T is either “running”
(spins while waiting forT0) or “blocked”.

Let B denote the group ofJ ’s threads that are currently in “blocked” state. We know that B 6= ∅
becauseA ⊆ B andA 6= ∅. B’s threads move from “blocked” state to the end of the ready queue due
to the factT0 has reached the first barrier. Of course whenB’s threads are moved to the end of the ready
queue, it is done in a contiguous manner and thereforeRQ(J) is continuous.

In the meanwhileT0 (along with the other threads inJ \B if exist) continue to compute and reach the
second barrier. Now, becauseB’s threads are currently at the end of the ready queue:J \ B’s thread start
to spin, fail and block. They will remain in this state untilB’s thread will be allocated processors again.

This scenario repeats itself untilJ finishes. WhenJ performs this type of computation we say thatJ
performsalternating-synchronizationor thatJ is alt-synchronizing.

4.3.4 Illustration

Figure 4.2 illustrates alternating synchronization.
The data presented in the figure was taken from a simulation containing 19 jobs where each job is of the

size 10 andµ is 10% out of the quantum. The figure shows how threads of threearbitrary jobs are divided
between the three states: “ready”, “running” and “blocked”as a function of time.

Let’s focus on the rectangle associated withJ0 (job number 0). On the simulation’s startup all ofJ0’s
threads are in the ready queue. After a while as indicated by the green color (time=22. . . 23) we can see
that two threads of the job are allocated CPUs. These threadsrun for a while, reach the first barrier, spin,
fail (since the other threads aren’t running yet as indicated by the red color) and go to blocked state as
indicated by the blue color (time=44. . . 45). The width of a green stair is approximately 22 cycles:

3(context switch in) + 10(compute) + 6(spin) + 3(context switch out)

This scenario continues to happen as indicated by the green staircase and every time the executing threads
end up in the blocked state. This is true untilT0 - the last thread ofJ0 - gets allocated a CPU and reaches
the first barrier (time=141) in which case all the blocked threads move to the ready queue as indicated by
the red “wall”.

T0 continues its computation and reaches the second barrier, spin, fail and block as indicated by the
blue “corridor” with the green beginning above the red “wall” (time=141. . . 259).

At time=260. . . 268 the threads inRQ(J0) reach the head of the ready queue and are allocated CPUs.
Note that they don’t get the CPUs all at once but rather get them gradually because there aren’t nine CPUs
available at the same time instance. This is the reason why attime=281. . . 282 two threads joinT0 in the
blocked state (the thin blue line) only to move immediately to the end of the ready queue because the last
thread ofJ0 has finally reached the second barrier.

Note that at time=283. . . 284, three more threads join the three threads that are already at the end of the
ready queue (height of the red “wall” at this point is 6 not 3).It happened because the SMP has finished
preempting them (due to unsuccessful spinning) but after the context-switch-out ended, the second barrier
was already complete, so instead of placing these threads ina blocking mode, the SMP moved them to the
end of the ready queue. The five threads that joinedT0 didn’t contribute even one successful spinat that
time.
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Figure 4.2: This figure describes how the threads of three arbitrary jobs are divided between the SMP
states: ready, running and blocked. Each job has 10 threads.The simulation was composed of 19 such
jobs. Theµ of these jobs is 10% of the quantum.
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4.3.5 Difference Between Jobs Composed of Two Threads and the Rest

In figure 4.1 we notice that the graph associated with jobs of the size 2 doesn’t behave as jobs composed
out of more threads. Instead of converging to some value between 25 to 50 the curves converge to zero.
This should come as no surprise in light of alternating synchronization since - as mentioned before - the
SSR metric doesn’t embody the “successful spin” of the last thread to arrive to a barrier because this thread
actually didn’t perform spinning. This means that only the “unsuccessful spin” of the first thread to arrive
to a barrier affects the SSR thus making it converge to zero.

4.4 The Consequences of Alternating Synchronization

4.4.1 Expected SSR

We’ve seen that jobs with relatively small computation intervals (with respect to the quantum) i.e. jobs that
perform “a lot” of synchronization have a tendency to fall into an alternating synchronization pattern. For
this type of computation the SSR has a 50% upper bound. This istrue because the best we can expect from
a thread is to successfully spin at the first barrier it reaches in the quantum (causing the blocked threads in
its job to move to the end of the ready queue) and fail spinningat the next (causing it to be preempted and
enter blocked state). For every successful spin a thread performs, it also performs an unsuccessful one.

As shown at the end of section 4.3.4, sometimes a thread doesn’t contribute even a single successful
spin in a quantum. Instead it joins the group of threads that are in blocked state. This is the reason why the
overall SSR is always less than 50%.

4.4.2 CPU-Time Wasted

When a job is alt-synchronizing, the SMP system pays a heavy price in terms of CPU time:
Let J be a job that performs alternating synchronization. This means thatJ ’s threads are divided in to

two subsets -A andB - which compute alternately such that each group causes the other to move from
blocked state to the end of the ready queue. We will (optimistically) assume that each thread inJ always
manages to contribute one successful spin when it is allocated a processor.

The following is a description of what happens when the threads of a subset (A for example) are
allocated processors:

• Each thread in A is scheduled. This consumestcontext switch in cycles per thread.

• All of A’s threads begin to compute, reach the first barrier in the current quantum and spin while
waiting forT0 - the last thread to reach that barrier. Ift0 is the number of cycles it tookT0 to reach
the first barrier then this stage consumedt0 cycles per thread. Since the computation intervals are
normally distributed, it is safe to say that in most cases:t0 ≥ tcmput wheretcmput is the expectation
of the normal distribution. We therefore conclude that thisstage consumed no less thantcmput cycles
per thread.

• A’s threads continue to compute, reach the second barrier, spin, fail and block. This stage consumes
on average:

tcmput + tspin + tcontext switch out

cycles per thread.

The above scenario also holds for subsetB. In each such scenario the subset “passes” two barriers and
therefore the overall CPU time consumed byJ is:

|J | · (tcontext switch in + tcmput + tcmput + tspin + tcontext switch out) ·
b

2
=

|J | · (2tcmput + tspin + tcontext switch) · b
2
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whereb is the total number of barriers performed byJ . Since in most systems:tspin ≥ tcontext switch we
get that the overall CPU time consumed byJ isn’t less than:

|J | · b · (tcmput + tcontext switch)

This means each ofJ’s threads wastestcontext switch cycles on context switching (or spinning) forevery
tcmput cycles of computation it performs or in other words, for every barrier it performs.

4.5 The Role of Shuffling the Ready Queue on Startup

So far we haven’t discussed why the ready queue was shuffled bythe startup procedure of most simulations.
This seemed reasonable at the beginning of the discussion because we assumed threads aren’t arranged in
any particular order in the ready queue. This assumption hasproven to be wrong when we’ve witnessed
alternating synchronization. Shuffling however has an important effect on the simulations: it causes the
jobs to alt-synchronize right from the beginning of the simulations. This is true because in most cases
(from a certain load) a job’s threads aren’t allocated processors all at once. Therefore, some threads of the
job end up in blocked state (failing to synchronize at the first barrier) which is all that is needed for a job
to begin alternating synchronization.

In section 3.2.1.3 (page 23) we’ve seen that the SSR achievedby a job is very high when its threads are
allocated processors all at once. When the ready queue isn’tshuffled, this is indeed the case during the first
few quanta (which we’ve named the “grace period”). After a while however, the grace period ends, the job
starts to alt-synchronize and the SSR drops dramatically (as demonstrated in figure: 3.3 page: 25).

The shuffling of the ready queue therefore allows us to perform shorter simulations and concentrate
on the effects of alternating synchronization while masking the “white noise” of high SSR achieved in the
initial grace period.

Figure 4.3 shows the results of the original simulation withthe difference that the ready queue is not
shuffled on startup. We can see that graphs associated with jobs that have sizes different than a power of
2 behave like the original graphs but achieve a higher SSR (due to the “grace period”). As expected these
SSRs are dramatically reduced when we increase the number ofbarrier from 50 to 500 (and thus reducing
the weight of the grace period). This is demonstrated in figure: 4.4.

For obvious reasons, this isn’t the case for jobs with sizes that are a power of two: For 1% computation
interval, the SSR is 100% because the jobs’ threads always manage to execute together (one might say that
the jobs are gang scheduled [10]). For 10% computation interval, the SSRs get smaller as the size of the
jobs get bigger. This happens because theσ-interval is big enough to allow the scenario described in 4.3.4
(in which a thread doesn’t contribute even a single successful spin) to occur and the bigger the job is, the
chances this scenario will happen increase.

4.6 Intermediate Load: the 50%-SSR Threshold

When we examined figure 4.1 (page 34) the most obvious phenomenon was indeed the asymptote caused
due to alt-synchronizing. However, there is another interesting phenomenon presented in this figure:

There exists an interval between the point where the system is full (32 threads) and a point where there
are more threads than processors, for which the SSR is fairlyhigh i.e. bigger than 50%. This 50% threshold
seems a natural limit for examining whether spinning was justified: we can conclude for certain that for
SSR ≤ 50% the parallel jobs would have consumed less CPU time had they used the “alway-block” policy
(the opposite however is not certain because we can’t be surethat a high SSR ensures better throughput;
this issue will be addressed later).

Figure 4.5 displays the data that were presented in figure 4.1but with a smaller x-range (the first 100
threads) which allows us to focus on this phenomenon.

Figure 4.6 summarizes these results specifying - N - the maximal number of surplus threads for which
the SSR is bigger than 50%, and the average SSR from the point where there are more threads than proces-
sor until N. We can see that fine grain jobs achieve bigger surplus than medium grain jobs. We can also see
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Figure 4.3: This figure presents the result of a simulation identical to the original (see figure: 4.1) with
the difference that the ready queue is not shuffled on startup. For sizes which are not powers of two, the
behavior is similar but SSRs are higher because of the “graceperiod”. For power-of-two sizes: jobs with
1% computation intervals are gang scheduled and therefore achieve 100% SSR. The SSR achieved by jobs
with 10% computation intervals gets smaller as jobs’ sizes get bigger.
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Figure 4.4: This figure is similar to figure: 4.3 but the simulation uses 500 barriers instead of 50. SSRs are
reduced because the weight of the grace period is lessened.
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Figure 4.5: The X-axis presents the number of threads participating in the simulation. The Y-axis is the
SSR as usual. This figure presents the data that was displayedin figure 4.1 but uses a smaller maximal-x-
range of 100 threads. It is clear that jobs with sizes less then 25, still manage to achieve a decent SSR when
there are more than 32 active threads.
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that smaller fine grain jobs do better than larger ones. The maximal surplus appears bounded from above
by the number of CPUs (aside from jobs with size 2, surplus is smaller than 32).
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Figure 4.6: This figure summarizes the results displayed in figure 4.5. The height of the bar - N - is the
maximal number of surplus threads for which the simulation achieved SSR> 50%. The ’avg’ and ’min’ on
each bar specifies (respectively) the average and the minimum SSR achieved by the simulations composed
from [33. . . 32+N] threads. The data specified in the parentheses is the number of jobs (not threads) that
participated in the simulation when the ’min’ SSR was achieved.



Chapter 5

Heterogeneous Collection Of
Synchronizing Jobs Under the
Round-Robin Scheduler

5.1 Introduction

5.1.1 Motivation

In the previous two chapters we have examined two fairly simple scenarios: (1) a synchronizing job in a
non-synchronizing environment and (2) a homogeneous collection of jobs all having an identical profile.
The analysis of these scenarios suggested that when using a round-robin scheduler, fine/medium grain jobs
behave as follows:

1. When the load is smaller or equal to the number of CPUs, spinning is almost always successful and
worth while (trivial). Of course for such a load it’s always preferable to spin (regardless of grain) as
there aren’t any other threads waiting for execution.

2. For intermediate load (more threads than #CPU but less than 2#CPU), the SSR gradually drops from
the neighborhood of 100% to some value below 50% as it falls into an alt-synchronization pattern.

3. For bigger (than 2#CPU) loads, the computation is always done in an alt-sync computation pattern.

It is far more likely that an executing job collection will bemore complicated and diverse than the two
scenarios described above. We would like to show that our conclusions are independent of the job collection
i.e. that regardless of its specifics, there exists an intermediate load interval in which fine/medium grain
jobs will achieve SSR> 50%, gradually entering an alt sync computation pattern.

5.1.2 Method

Numerous simulations were conducted with all sorts of job collections — usually generated using some sort
of randomization mechanism — and all of them (aside for some exceptions) verified the above conclusions.
This chapter will present the results of some of these simulations and will point out the “exceptions to the
rule”.

The parameters that determine the grain of a job are mainlyµ andσ. Therefore, our main focus in this
chapter will be on those two parameters. Section 5.2 will present the result of a simulation that preserves
the connection we used so far betweenµ andσ namely: σ=90/15% (i.e. theσ-interval will always be
15% out ofµ). However, jobs participating in this simulation will havevarious sizes andµ-s. Section 5.3
will “break” this connection betweenµ andσ for the first time: We will use a constantσ-interval across
different (relatively big)µ-s. This simulation will present the only exceptions we found to the conclusions
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stated above. Finally, section 5.4 will present the result of a simulation that for each job chooses randomly
and independently bothµ andσ.

5.1.3 Distribution Representation

In this chapter the following notation is used to represent distributions ofµ, σ and size of jobs. A distribu-
tion is specified as a comma separated list of pairs in the form:

value0 : weight0 , value1 : weight1 , ... , valuen : weightn

such that:
weightk

∑n

j=0
weightj

is the probability thatvaluek will be chosen. Each value may be expressed as an interval of the form:

begin− end

which means that some number -α - that satisfies:begin ≤ α ≤ end should be uniformly chosen. For
example ,µ may be defined to be:

1− 20 : 3 , 21− 30 : 2 , 31− 40 : 1

This means that there’s a 50% chance thatµ will be some (uniformly chosen) number from the interval
1-20 , 33.33% chance thatµ will be from 21-30 , and 16.66% chance thatµ will be from 31-40.
σ may be expressed like this:

80/1− 15 : 3 , 90/16− 30 : 1

which basically means the same thing as explained above but now theσ-interval is chosen uniformly e.g.
there’s a 75% chance thatσ = 80/α whereα is a number chosen uniformly form the interval 1-15.

5.1.4 End Point of Simulations

All the simulations presented in this chapter was configuredto end along with the first thread that finishes
its computation. This way the results of the simulations will not be distorted by the load that gradually
decreases towards the end of the simulation (when only part of the threads have finished and the rest
operate in a less loaded system).

5.1.5 Simulator’s Random Permutation Mode

Contrary to previous chapters in which each curve in each graph was associated with an independent
simulation sequence, curves in this chapter describe portions of the job collection executing in parallel
within the same simulation. Each curve describes the average SSR of a differentjob class. Each job class
is associated with one pair from either theµ or theσ distributions (as defined above in section 5.1.3). In
each simulation we must choose the distribution according to which the simulator will classify the jobs. A
sequence of simulations is constructed as follow:

1. As usual, the simulator receives a configuration file specifying all the parameters describing the
simulation. These include the various distributions as defined in section 5.1.3.

2. The simulator also receives two additional parameters:

(a) A number - N - that specifies the maximal number of threads to participate in the simulation
sequence, and

(b) The parameter according to which jobs will be classified to job-classes (µ or σ).
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3. Then, by using the given distributions, the simulator iteratively chooses jobs and add them to the
job sequence up till the point where the total number of threads composing the jobs in the sequence
exceeds N.

4. Let j1 , j2 , ... , jk denote the randomly chosen job sequence. The simulator willconductk simu-
lations such that thei-th simulation will be composed from jobs:j1 , j2 , ... , ji . The number of
threads in thei-th simulation is thei-th x-value displayed in the graphs. Each y-value associated
with this x, denotes the SSR of some job class (achieved upon load = x).

When the simulator is instructed to behave as described above we say that the simulator runs inrandom
permutation mode.

5.2 Theσ-Interval as a Percentage ofµ

5.2.1 Description

In this section we chose to preserve the connection used so far betweenµ andσ and therefore defineσ
to be 90/15%. However, theµ and the size of the jobs in this simulation are given as distributions. The
parameters used in the simulations are:

p q in out sync nosync barrier spin µ σ randord seed
64 100 3% 3% 4-7 : 9 0 50 6% 1-20% : 1 90/15% 1 0

8-12: 1 200 21-30% : 1 1
1000 31-40% : 1 2

41-50% : 1 3
51-60% : 1

• Note that the simulation described in this section was executed on a 64-processors SMP (as opposed
to 32 in previous chapters).

• The simulation involves 5 gradually increasing classes ofµ (all with equal weight) from which
the first one -µ=1. . . 20% - represents the fine and medium grain jobs. The 20% was chosen as the
biggest value of the fine & medium grain job-class because theeffective dispersal of the computation
intervals of a job withµ=20% andσ=90/15% is 6% of quantum, which is exactly the chosen spin
(and context-switch) length. Recall that (as explained in the previous chapter) jobs with biggerµ are
expected to achieve very low SSR even when the number of threads is smaller than #CPU.

• We’ve chosen theµ classes to demonstrate the intermediate-load principal discussed above: We
expect that only the curve associated withµ=1. . . 20 will achieve SSR>50 in the intermediate-load.
As for the otherµ interval: based on the results from the previous chapter, weexpect that bigger
values ofµ will result in smaller SSR.

• The chosen sizes of the jobs participating in this simulation is relatively small in comparison to the
number of CPUs (about 5-20%). This sizes distribution was chosen so that the load will increase
gradually thus avoiding big (X-axis) leaps.

• As the randomization elements quantity gets bigger, it becomes more important to examine the re-
sults across various different seeds so as to make sure theseresults are indeed the common case.
This is the reason why we’ve chosen to display graphs associated with more than one seed: Each
simulation results will be displayed using 4 graphs, each graph is associated with a different seed
(many more seeds that are not displayed here were used and produced relatively similar results).
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• Note that this simulation uses an increasing number of barriers. The justification for this is empiri-
cal: we’ve noticed that for some seeds, a small number of barriers (50) is not enough to produce a
consistent picture of the SSR. As we prolong the length of thecomputation (i.e. increase the number
of barriers) the picture tends to stabilize, all the SSR peaks perceived in simulations using a small
number of barriers disappear, and the SSR-curves become smooth.

5.2.2 Results

The results of the simulation are presented in figure 5.1. Figure 5.2 zooms in on the intermediate load of
figure 5.1’s last row’s graphs. These results confirm our expectations:

When examining the 1000 barrier graphs we can see that the curves associated with the fine/medium
grain jobs manage to sustain a SSR bigger than 50% in the intermediate load, until some point between
load=80. . . 88 (i.e. surplus of 25-40% of CPU#). These findings coincide with the findings of the previous
chapter presented in figure 4.6 (page 44). Some of the surplusdisplayed in figure 4.6 is bigger than the
surplus displayed here in figure 5.1 but this can be explainedwhen considering that the SSR displayed
here is an average between fine and medium grain jobs and “medium-grain” is defined to beµ ≤ 20%,
whereas in figure 5.1 the SSR achieved by fine and medium grain is displayed separately and medium grain
is defined to beµ=10%.

Also note that the other curves behave as we anticipated earlier: Biggerµ values result in smaller SSR.
The only other curve that sometimes (barely) manages to display SSR> 50 (though very close to 50)
for load slightly bigger than CPU# (surplus of 2-6 threads) is the one associated withµ=21. . . 30 . This
is understandable because we use a normal distribution for computation interval which have the nature
of being condensed around the expectation. Thus making it possible for jobs withµ slightly bigger than
20% to still (sometimes) have an effective dispersal of computation intervals that is not bigger than 6% of
quantum (= spin interval = context switch length).

5.2.3 Other Values For the Parameters

Many simulations similar to the one defined above - but with different values for some of the parameters -
were conducted. All of these simulations’ results coincided with the results presented here. The following
is a description of some of these simulations:

• Simulations usingµ-intervals containing bigger values (than 60%) achieved results consistent with
our findings here: e.g.µ=71. . . 80 produced lower SSR thanµ=61. . . 70 , which produced lower SSR
thanµ=51. . . 60 etc.

• In the above simulation we used equal (uniform) weight for each µ-interval. Altering the various
weights of these intervals to several configuration didn’t produce a fundamental change in the result.
Again we received results supporting our understandings asstated in section 5.1.1.

• Bigger job sizes (up till the number of CPUs) were used. Whenever the random choosing of the job
collection managed to grow steadily in the intermediate load (instead of skipping it), these simula-
tions also produced similar results to the ones displayed here.

• Bigger numbers of barriers were used (2000, 5000, 10000) andproduced curves that are almost
identical to those displayed here when 1000 barriers are used.

5.3 A Constantσ-Interval

5.3.1 Description

Up till now, all the simulations we’ve conducted usedσ=90/15% i.e. theσ-interval was always expressed
as a percentage of theµ. The immediate result of this was that any job with a relatively big µ (i.e. big
enough so that2×0.15×µ is bigger than the spin interval) wasn’t at all interesting in terms of the behavior
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Figure 5.1: This figure displays the results of the simulation defined in section 5.2.1 and analyzed in section
5.2.2. The Y axis is associated as usual with the SSR. The X axis displays the total number of threads
participating in the simulation. Each graph title - sNbK - specifies the seed (=N) and the barrier number
(=K) that were used in the simulation. We can see that curves get “smoother” and peaks are eliminated
as the number of barrier is increased. It is also apparent that the only curve displaying SSR> 50 in the
intermediate load is the one associated with the fine/mediumgrain jobs (µ=1. . . 20). A “zoom in” on the
intermediate load in the graphs of the last row is displayed in figure 5.2.
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Figure 5.2: This figure “zooms in” on the intermediate load ofthe graphs displayed in the last row of
figure 5.1. We can see that fine/medium grain jobs (red line) manage to achieve SSR> 50 until the
load is somewhere between 80. . . 88 (25-40% thread surplus).We can also see that sometimes jobs with
µ=21. . . 30 manage to achieve a 2-6 surplus with SSR just above 50%, a fact that is explained in section
5.2.2.
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of its SSR (which was always close to zero). This led us to conduct a number of simulations in which the
connection between theσ-interval and theµ was arbitrary.

The first unsurprising result was that any job with aσ-interval that was bigger thanspin
2 , resulted (by

definition) with computation intervals with a dispersal bigger than the spin interval, which in turn resulted
in a SSR close to zero (even for very smallµ values).

The second unsurprising result was that jobs with smallσ-intervals and smallµ values produced similar
results to those already demonstrated for fine and medium grain jobs (i.e. SSR> 50% for some intermedi-
ate load after which SSR drops to some fairly constant value below 50% due to alt-synchronization).

The only new question was how do jobs with relatively bigµ and relatively smallσ-interval behave.

The configuration of the simulation presented here is similar to the configuration used in the previous
section:

p q in out sync no barr spin µ σ rand seed
sync ier ord

64 100 3% 3% 4-7 : 9 0 1000 6% 51-60%:1 90/0.15-15:1 1 0
8-12: 1 61-70%:1 1

71-80%:1 2
81-90%:1 3
94-100%:1

The difference is in µ andσ:

• Theµ values were chosen to be bigger: all job classes haveµ ≥ 51% and cover most of 50-100% of
a quantum.

• Theσ is set to be:
90 / 0.15− 1.5 : 1

Note that theσ-interval is not expressed as a percentage ofµ but rather given directly as a constant
interval. Thisσ-interval was chosen to match the interval derived from when:

– µ=1%,10% , and

– σ=90/15%

i.e. the lower bound of the interval - 0.15 - was theσ-interval ofµ=1% (fine grain) and the upper
bound of the interval - 1.5 - was theσ-interval ofµ=10% (medium grain) whenσ=90/15% was used.

Recall that previous simulations proved that forµ=1%,10% andσ=90/15%, there exists an intermediate
load with SSR> 50 . . . , now the question is how will jobs with biggerµ value but equally smallσ-interval
will perform.

5.3.2 Results

The results of the simulation are presented in figure 5.3 . Same as in the previous section, figure 5.4 zooms
in on the intermediate load. From a quick look at these figures, we can see that:

1. The job class associated withµ=94. . . 100% achieves surprisingly high SSR.

2. The order of the other curves is reversed with respect to the order we got used to: Up till now bigger
µ implied lesser SSR. Now it’s the other way around.

3. The SSR achieved by all the job classes (other the one associated withµ=94. . . 100%) suggest that
spinning will not be profitable (virtually no intermediate load with SSR> 50).

The following subsections will explain the above.



5.3. A CONSTANTσ-INTERVAL 51

Mu: 51-60, 61-70, 71-80, 81-90, 94-100. Sigma: 90/0.15-1.5
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Figure 5.3: This figure displays the result defined in section5.3.1 . As usual, X-axis displays load (number
of threads), Y-axis displays SSR, and the title of each graphdenotes the seed and the number of barriers
used. The job class associated withµ=94. . . 100% achieves high SSR for every load. The other curves are
ordered such that curve associated with biggerµ is closer to the 50%-SSR-threshold.

Mu: 51-60, 61-70, 71-80, 81-90, 94-100. Sigma: 90/0.15-1.5
Intermediate Load

s0b1000

64 72 80 88 96

0

50

100

mu: 51 - 60 %

mu: 61 - 70 %

mu: 71 - 80 %

mu: 81 - 90 %

mu: 94 - 100%

s1b1000

64 72 80 88 96

s2b1000

64 72 80 88 96

s3b1000

64 72 80 88 96

Figure 5.4: This figure displays a “zoom in” on the intermediate load of the simulation’s results presented
in figure 5.3 . All job classes (aside from the one associated with µ=94. . . 100%) achieve SSR that negates
spinning in the intermediate load.
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5.3.2.1 The High SSR of the Job Class Associated withµ=94. . . 100%

The fact that jobs withµ ∈ {q − spin , ... , q} and a smallσ-interval achieve very high SSR is easily
explained. LetJ be such a job. LetT be a thread ofJ . WhenT finishes a computation phase and starts to
spin, chances are that it will be preempted while it is spinning and moved to the tail of the ready queue. Let
X ⊂ J denoteJ ’s threads that are waiting for a processor at the time instanceT was preempted (obviously
T is waiting for these threads to complete the current barrier). By the timeT is rescheduled to execute, it
will usually continue to spin (because in its previous quantum it was stopped by the scheduler in the middle
of this process) and immediately succeed sinceX threads were already allocated a processor (they were
ahead ofT in the ready queue).

5.3.2.2 The Reversed Order of the Other Job Classes

Since its behavior was explained earlier, our current discussion excludes the job class associated with
µ=94. . . 100%. Within the other job classes we notice a strangephenomenon: for load bigger than CPU#,
the curves’ order is reversed with respect to what we’ve got used to see. Usually (when theσ-interval was
expressed as a percentage ofµ), biggerµ implied lesser SSR, and here we see exactly the opposite. Let
us representµ as: µ = q − d (whereq is the length of the quantum,d < q

2 andµ > q
2 ). As mentioned,

jobs with smallerd values achieve slightly better SSR. The job class withd=10. . . 19% (µ=81. . . 90%)
sometimes even achieves SSR> 50! However, in most cases these jobs achieve SSR which is smaller than
50 and even when the SSR is more than 50 it’s not high enough to be worth spinning. Having said that,
and after concluding that the jobs discussed in this sectionshould not spin (for load> CPU#) it is still
interesting to understand what is the cause for this “reversed order”. After carefully examining the events
of these simulations we’ve concluded that the reason is the following:

• Let’s examine some job- J - when the system is very loaded.

• Unavoidably,J ’s threads divide to two subsetsX andY as described in the alt-synchronizing sce-
nario.

• AssumeX has now began its quantum:X computes forµ cycles and reachesbk (thek-th barrier)
causingY to move from blocked to ready state.X then continues to compute ford cycles, finishes
its quantum and gets preempted back to the tail of the ready queue (recall thatd < q

2 andµ > q
2and

thereforeX will not reachbk+1 within the current quantum). Note that whenX is preempted it has
µ− d more cycles to compute until reachingbk+1 .

• Now, in order forJ to “beat the system” and break the alt-sync pattern,X andY should be dispatched
d-cycles apart (asY hasµ cycles andX hasµ− d cycles until reachingbk+1).

• At this point there are exactly 2 possibilities:

1. The difference between the dispatching ofY andX is smaller/bigger thand, enough to make
Y fail on bk+1.

2. The difference between the dispatching ofY andX is in the proximity ofd which will result
in the reunion ofX andY until such time whenJ splits up again to two subsets (this time is
actually very soon, namely the end of the current quantum, sinceX will be preemptedd cycles
afterY ). In this caseJ has (temporarily) managed to break the alt-sync pattern andall of its
threads successfully completesbk+1 .

• The second possibility is exactly the reason why the curves in this simulation get really close (from
below) to the 50% SSR threshold and sometimes even exceed it.In the first possibility however, lies
the explanation for the fact that jobs with biggerµ values are closer to that threshold.

• When the first possibility occurs (which is what happens moreoften than not), the scenario described
above will repeat itself with the difference that now in order for X andY to reunite, they should be
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dispatched2d-cycles apart: This is true because afterY fails onbk+1 , andX successfully completes
it, X will have

q − (µ− d) = (µ + d)− (µ− d) = 2d

more cycles to complete its quantum. This means that at the beginning ofX ’s next quantum, it will
haveµ− 2d cycles until reachingbk+2 . . .

• This argument can be applied again and again i.e. if the2d interval didn’t work the scenario will
repeat itself with a3d interval etc. The argument may no longer be applied when the interval -n · d -
is bigger thanq

2 in which caseX will reach a second barrier in the same quantum, fail and block. As
a result,Y andX will simply flip the roles they play and everything will startfrom the beginning.

• Smaller values ofd result in a more refined interval series, i.e. the smallerd is, the bigger chance the
job has to “get the dispatch interval right” and thus to unitethe two subsets for a successful barrier.
The refined interval series is the reason why jobs with smaller d values are closer to the 50% SSR
threshold.

5.3.2.3 The Intermediate Load

Contrary to jobs with smallµ andσ-interval values (i.e. fine and medium grain jobs), the jobs in the
simulation currently discussed do not achieve SSR> 50 in the intermediate load. The reason for this
is related to the explanation given in the previous subsection: A high SSR in the intermediate load is a
function of the job’s threads’ success to execute simultaneously from time to time . When this happens,X
andY (using the terminology of the previous subsection) have a chance to complete a number of barriers
until the scheduler splits them up again. The smallerµ is, the more barriersJ ’s threads may complete on
that period. However, in the current simulationµ > q

2 and therefore the maximal number of barriers that
J ’s thread may complete on that period is bounded by 2, after which it will be a while beforeX andY will
manage to execute simultaneously again.

5.4 A Randomσ-Interval

By now, it seems that most SMP (round-robin) executions involving most job collections are well under-
stood. However, we haven’t yet conducted a simulation that randomly chooses bothµ andσ. Even though
we can probably predict what will be the result of such a simulation, for completeness, we conduct such a
simulation and present its results. The parameters used in this simulations are:

p q in out sync no barr spin µ σ rand seed
sync ier ord

64 100 3% 3% 4-7 : 9 0 1000 6% 1-20%:1 90/0.15-0.75:1 1 0
8-12: 1 21-30%:1 90/0.9-1.5:1 1

31-90%:1 90/1.65-3:1 2
90/3.15-15:3 3

The classification of the jobs will be done according to theσ-interval. Letα denote the effective range
of the computation-intervals’ dispersal, then we get:

σ-interval associatedα bigger
than spin

0.15 . . . 0.75 0.3 . . . 1.5 no
0.9 . . . 1.5 1.8 . . . 3 no
1.65 . . . 3 3.3 . . . 6 no
3.15 . . . 15 6.3 . . . 30 yes
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Half of the jobs, those associated with the 4thσ, don’t have a chance to achieve SSR> 50 regardless of
theirµ. This is the only concrete thing we may predict. As for the otherσ-s: it depends on the chosenµ. A
job with smallerµ will achieve better SSR in the intermediate mode. On the other hand, a job with a very
big µ may achieve SSR slightly bigger than 50 even after the intermediate load. Contrary to simulations
conducted so far, these parameters were chosen with the intent not to have a clear “winning” job class or a
clear job classes hierarchy. We therefore expect that different seeds will produce different winners that may
change as the load increases. The result of the simulation are displayed in figure 5.5 (only the intermediate
load is displayed) and exactly coincide with our predictions.

Sigma Interval: 0.15-0.75%, 0.9-1.5%, 1.65-3%, 3.15-15% Of Quantum
Intermediate Load
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Figure 5.5: This figure displays the intermediate load of theresults of a simulation composed from a job
mix that was created by randomly choosing bothµ andσ. The axes and title were defined in previous
figures in this chapter.



Chapter 6

A more Realistic Algorithm: the Linux
Scheduler

6.1 Introduction

So far, we have simulated and analyzed the Round Robin algorithm, which, though useful, common (es-
pecially in realtime applications/systems [12, chapter 5]), and formalized by POSIX.1b, isn’t remotely as
popular and widely used as priority based algorithms. The analysis of Round Robin has a value of its own.
However, an important outcome of this analysis is that it allows us to gain intuition and insights as a first
step towards understanding barrier-synchronization within the context of priority-based scheduling algo-
rithms. The next step is to conduct and analyze simulations similar to those performed in previous chapters
while using a priority based scheduler. The immediate question that follows is which scheduling algorithm
to use. In order for the result of this work to have an additional practical value, we wanted a real world
system scheduler. So the question became which common operating system scheduler to use. The most
convenient choice was Linux (a) because it’s an open source project, a fact that helps a lot (to say the least)
when one needs to re-implement the scheduler of the OS, and (b) because of the vast amount and wealth of
books, articles, websites and other resources documentingall its aspects. Aside from Linux accessibility,
our decision was also influenced by the fact that nowadays it is the most popular flavor of UNIX.

There are many books and other resources that describe the Linux scheduling algorithm. Some of these
which we relied upon are [4], [22], [3] and most importantly,the Linux kernel source code itself [26].
However, many readers will find it hard to extract all detailsrelevant to this work from these references.
Though lots of resources review the Linux scheduler, many ofthem tend to drown the reader with a lot
of low level details that obstruct the actual algorithm, while others are doing it in a too high level manner
(at least in th parts that are important in this work’s context). Some give very good description but only
on partial aspects. We found no single resource that presents all the pieces of the puzzle needed for the
following chapters. The goal of this chapter is therefore toreview the Linux-scheduler aspects relevant to
this work and describe their implication on it. Sections 6.2and 6.3 specify the version of the Linux kernel
used and the scheduling details that are not covered by this chapter. Section 6.4 deals with definitions that
are needed in order to present the scheduling algorithm. Section 6.5 presents the algorithm. Finally, section
6.6 points out the misfeatures that we have identified in the scheduling algorithm and their implication on
the following chapters.

We remark that in the Linux-kernel, thread/process entities are indistinguishable. The conventional
term used to represent them both is atask. Consequently, this is the term used throughout this chapter.

6.2 Linux Kernel Version

The Linux kernel code is constantly updated and revised. Newminor version releases are a very common
event (sometimes more than one in one month). However, though minor details have changed form time to
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time, the core scheduling algorithm has essentially remained the same since Linux-2.2 (released in 1999).
While the simulator code that implements the Linux scheduler was written, the latest kernel version was
2.4.5 (May, 2001) and this was the latest version we’ve consulted with. Currently, as these lines are written
(Aug, 2001), the latest version is 2.4.9 .

6.3 Ignored Details

As mentioned before, POSIX1.b mandates three scheduling policies. Since our focus now is on Linux’s
SCHED OTHER, details regarding the other two scheduling policieswill be omitted from the scheduler de-
scription. Note that though in general each task may separately be assigned with one of the three scheduling
policies, we assume all tasks’ policies are SCHEDOTHER throughout this work. Policies may be assigned
via thesched setscheduler system call, tough one must have superuser privileges in order to set a
policy to SCHEDFIFO or SCHEDRR. Another omitted issue is the nice value of tasks (which may be
set through thenice system call) . Again, throughout this work, we assume that all tasks have a zero tra-
ditional nice value. The algorithm sections that determinethe behavior of the scheduler on a uniprocessor
were also omitted, only SMP related code is described.

6.4 Definitions

Before describing the algorithm, we first need some background definitions . . .

6.4.1 Epoch

The Linux scheduling algorithm works by dividing the CPU(s)time intoepochs. In a single epoch, every
task has a specified time quantum whose duration is computed when the epoch begins (each task’s quantum
is refreshed exactly once in a single epoch). In general, different tasks may have different time quantum
durations though this is possible only if tasks have different nice values or different scheduling policies
which we assume isn’t the case. The time quantum value is the maximum CPU time portion assigned to
the task in that epoch. When a task has exhausted its time quantum, it is preempted and replaced by another
runnable task. Of course a task can be selected several timesby the scheduler in the same epoch, as long
as its quantum has not been exhausted (for instance, if a taskhas blocked while waiting for a barrier, it
preserves some of its time quantum and can be later selected again during the same epoch). The epoch
ends when all the ready-to-run tasks have exhausted their quantum; in this case the scheduler recomputes
quantum durations of all tasks and a new epoch begins.

6.4.2 Priorities

SCHED OTHER tasks have two different kinds of priority, astatic priority and adynamic priority. Pri-
orities are simply integers expressing the relative weightthat should be assigned to a task when deciding
which process should be allowed to spend some time on the CPU;the higher its priority, the better its
chances:

static priority Called static because it doesn’t change with time, only whenexplicitly modified by the
user via a system call likenice() . The scheduling algorithm derives from this value the maximum
duration of the quantum a task should be allowed, before forcing it to yield and allowing other tasks
to compete for the CPU.

dynamic priority Declines with time as long as the task is assigned a CPU; when it reaches 0, the task is
marked for rescheduling. This field indicates the task’s amount of time remaining in this quantum.
It is reinitialized at the beginning of each new epoch according to the static priority value.
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6.4.3 Dynamic Priority Resolution

The Linux-kernel sets things up such that it will getHZ clock interrupts per second.HZ is a macro with
platform dependent value, though on most platforms (Intel’s 80x86, Sun’s SPARC and more) this value is
set to be 100. Atick is defined to be the time that passes between each invocation of the kernel’s interrupt
handler (= 1

HZ
second). The kernel’s clock interrupt handler performs allsorts of administrative work,

among which the updating of the dynamic priority. It followsthat the dynamic priority resolution is in
ticks.

6.4.4 Data Structures

Each task descriptor (a C structure) contains five fields usedby the SCHEDOTHER scheduling algorithm:

nice This is the field that holds the static priority of the task. It’s initialization value is 20 (the macro
DEF PRIORITY). The only way this field can be changed is through system calls like nice and
sched setscheduler. As mentioned before, this work assumes that thenice field never
changes. Although related, this field is not to be confused with the traditionalnice system call
argument: the former is always positive and actually may hold 1. . . 40 (when SCHEDOTHER is
used); the latter has the possible values: -20. . . 19.

counter This field holds the dynamic priority of the task. When a task is created this field is initial-
ized with half the value of its parent’scounter (and the parent’scounter is reduced by half).
Whenever a new epoch is started, this field is reinitialized as follows:

task.counter ← NICE TO TICKS(task.nice) + task.counter
2

The definition of the macroNICE TO TICKS is dependent on the value ofHZ. In Linux-2.4 it’s
defined to scaleDEF PRIORITY (=20) to the number of ticks composing 50ms. Since on most
platformsHZ is defined to be 100 (and therefore a tick is 10ms), the definition ofNICE TO TICKS
is usuallynice

4 (i.e. 5 ticks). As explained earlier,counter is decremented upon each invocation of
the kernel’s interrupt handler, and a task is marked as “needs rescheduling” whenever thecounter
becomes 0. It follows thatcounter holds the remaining number of ticks a task has till its quantum
is exhausted and that in Linux-2.4 the default quantum duration is 50ms.

processor The logical id of the last CPU upon which the task has executed. If the task is currently
executing,processor is the logical id of the CPU upon it’s executing now.

need resched This is a boolean flag checked by the kernel just before it switches back from system
to user mode (e.g. after termination of kernel’s interrupt handler). Ift.need resched is set,
the kernel checks fort.processor whether a more desirable task thant exists, in which case a
context switch is performed. Since this flag is checked only for currently-running tasks, it’s usually
more convenient to think of it as associated with a processor(rather than a task). This is true because
if a context switch will take place due to a setneed resched, it will be on the processor that
previously ran the task that was marked asneed resched.

mm A pointer to the memory page table of the task. If two different tasks have equalmm it means they have
the same address space i.e. they are both threads belonging to the same parallel job.

6.5 The Algorithm

Most of the Linux scheduler is implemented in a single file in [26, kernel/sched.c]. There are four functions
we must cover in order to understand the Linux scheduler. These are:

goodnessGiven a task, return how desirable it is: this is the value according to which tasks are compared
in order to decide which will run next.
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schedule Actual implementation of the scheduling algorithm. This function usesgoodness to decide
which task will run next on a given CPU.

wake up common Wakeup a task when the event it has been waiting for happened.This event may be
the arrival of all tasks of a parallel job to a synchronization point (barrier).

rescheduleidle Given a task, check whether it can be scheduled on some CPU (preferably on an idle
one, but if there aren’t any, by preempting a less desirable task). This function is used both by
wake up common and byschedule.

The following subsections describe each function in detail.

6.5.1 Thegoodness Function

Every timeschedule is invoked it tracks the task with the best “goodness” in the ready-queue. A task
with the best “goodness” is the one with the best claim to the CPU. Higher goodness values are better. A
goodness value of 0 indicates that the task has exhausted itsquantum. Thegoodness function is quite a
simple function, yet it’s a crucial part of the Linux scheduler. It is called for every task in the ready-queue
every timeschedule executes, so it has to be quick. But if it makes a bad decision,the whole system
suffers. The pseudo code ofgoodness is presented in algorithm 1.

Algorithm 1 Thegoodness function pseudo code.

1 goodness(task t, cpu this cpu) {
2 weight ← t.counter
3 if( weight == 0 )
4 return 0
5 if( t.processor == this cpu )
6 weight ← weight + PROC CHANGE PENALTY
7 if( t.mm == this cpu.current task.mm )
8 weight ← weight + SAME ADDRESS SPACE BONUS
9 return weight
10 }

Line 1 Indicates that goodness is a function of both the task and theCPU it’s a candidate to run upon ! As
will shortly be demonstrated, the same task may have different goodness values on different CPUs.

Line 2 Initializing the local variableweight with the number of the remaining tickst has in the current
epoch.

Lines 3-4 If weight is 0 thent has exhausted its quantum in the current epoch.goodness returns 0 to
indicate this.

Lines 5-6 t gets a huge bonus if the last CPU that executed it is the CPU upon which it is a candidate to
execute now. Givingt this bonus is equivalent to penalizing tasks migration. Migration is penalized
because a migrating task will unavoidably have TLB and cachemisses when it starts to execute on
a different CPU. However, the value ofPROC CHANGE PENALTY is 15 (at least since Linux-2.2).
This means it is 3 times bigger than the maximal value ofcounter ! a fact that seems very strange
and is discussed later in section 6.6.2.

Lines 7-8 t gets a small bonus if its address space is the same as of the task that is currently executing
onthis cpu. This bonus may encourage less memory-pages swaps in the very near future. In this
work context it may also help a fine grain parallel job’s tasksto synchronize (this will be further
elaborated in the following chapters). The constantSAME ADDRESS SPACE BONUS doesn’t really
appear in the original code and was named by us for future references as one of the scheduler’s
parameters. Instead, its value — which is 1 — is hard coded in the algorithm.
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Line 9 Finally, the goodness value is returned.

6.5.2 Thereschedule idle Function

Thereschedule idle function is invoked both byschedule and by wake up common as will
be described later. It gets a task as its argument and checks whether it can be scheduled on some CPU;
preferably on an idle one, but if there aren’t any, by preempting a less desirable task. The pseudo code
of reschedule idle is presented in algorithm 2. The reader shouldn’t be overly impressed by the
apparent simplicity of the pseudo code, as the real implementation has little resemblance to it. However,
the pseudo code does faithfully describe the essence of the algorithm. This is the appropriate place to
mention that in Linux, each CPU has a a special task which is called theidle task. These tasks are special
in the sense that they are different (each CPU has a differenttask), but share the same id which is 0 (no,
it is not “the swapper”, it’s the idle task). Whenever a CPU isidle, the “current” executing task is the idle
task.

Algorithm 2 Thereschedule idle function pseudo code.

1 reschedule idle(task t) {
2
3 next cpu ← NIL
4 if( t.processor is idle )
5 next cpu ← t.processor
6 else if( there exists an idle cpu )
7 next cpu ← least recently active idle cpu
8 else
9 max prio ← PREEMPTION THRESHOLD
10 foreach cpu c in [all cpus]
11 diff ← goodness(t,c) - goodness(c.current task,c)
12 if( diff > max prio )
13 max prio ← diff
14 next cpu ← c
15
16 if( next cpu 6= NIL )
17 prev ← next cpu.current task.need resched
18 next cpu.current task.need resched ← true
19 if( (prev = false) and (next cpu 6= this cpu) )
20 interrupt next cpu
21 }

Line 3 The purpose of thenext cpu variable is to hold the CPU on whicht will possibly be scheduled
in a short while. next cpu is initialized to a non valid value. Towards the end of the function
(line 16) this value will be tested, if it’s stillNIL this means that no suitable CPU was found fort.
Otherwise,schedule will be invoked fornext cpu in a short while.

Lines 4-5 t.processor is the best CPU fort to run on because this CPU’s cache may still hold relevant
values fort’s context. These lines ensures that ift.processor is idle, it will indeed be chosen as
the next CPU.

Lines 6-7 If the t’s previous CPU isn’t idle, try to find another idle CPU. The algorithm prefers the least
recently active idle CPU because “it will have the least active cache context” (quote from the actual
code).

Lines 8-14 If reached here, there are currently no idle CPUs.diff is defined to be the difference between
the goodness of taskst andc.current task (on CPUc). The algorithm searches forc with
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the maximaldiff. There is an initial constraint on such ac: it’s not enough thatdiff will be
positive (which means thatt is more desirable thanc.current task on c), it is also required
that the goodness difference will be above some threshold, namely: PREEMPTION THRESHOLD.
Similarly to SAME ADDRESS SPACE BONUS, The constantPREEMPTION THRESHOLD doesn’t
really appear in the original code and was named by us for future references as one of the scheduler’s
parameters. Instead, its value — which is also 1 — is hard coded in the algorithm.

Lines 16-18 As stated above, if anext cpu was found, then either it’s idle or its currently running task
is less desirable thant. In any case thenext cpu.current task.need resched flag is set
(not before saving its old value) which meansschedule will be invoked onnext cpu in a very
short while. Note that there’s no guarantyt will be the next task chosen byschedule, only that
it will be invoked. This is true because it’s possible there are even more desirable tasks thant on
next cpu in the ready queue.

Lines 19-20 These lines take care of the case in which theneed resched flag ofnext cpuwas indeed
changed (and it’s a different processor then the one which iscurrently executing thereschedule idle
code). In this casenext cpumust be somehow notified that its current task’sneed resched flag
was updated. For this purpose thethis cpu interruptsnext cpu using some interprocessor in-
terrupt instruction.

6.5.3 The wake up common Function

When a task is waiting for some event to occur (e.g. input arrival, semaphore increment etc.), it is removed
from the ready-to-run task list and placed in some queue -q - associated with this event (in the context of
this work,q is what we refer to as “blocked mode”). The pseudo code ofwake up common is presented
in algorithm 3 and is self explanatory. Although the code is very simple and straight forward, it seems we
have detected a bug (or a serious misfeature) in it. This willbe further elaborated in section 6.6.1

Algorithm 3 The wake up common function pseudo code.

wake up common(wait queue q) {
foreach task t in [q]

remove t from q
add t to ready-to-run-list
reschedule idle(t)

}

6.5.4 Theschedule Function

The schedule function implements the scheduler proper. Its objective isto find a task in the ready
queue and then assign the CPU (that actually executes the code) to it. This function is invoked directly or
indirectly by several kernel routines:

Direct invocation The scheduler is invoked directly when the current task mustbe blocked right away
because the resource it needs is not available. In this case the kernel routine should insert itself to
the proper wait queue, change its state from runnable to interruptible and invokeschedule. As
described in the wake up common section, the routine will be resumed exactly from where it left
of when the resource will become available. The scheduler isalso directly invoked by many device
drivers that execute long iterative tasks. At each iteration cycle, the driver checks the value of the
need resched flag and if necessary, invokes schedule to voluntarily relinquish the CPU.

Lazy invocation As explained earlier, the scheduler can also be invoked in a lazy way by setting the
need resched field of the current executing task to 1. Since a check on the value of this field
is always made before resuming the execution of a user mode task, schedule will definitely be
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invoked at some close future time. For example, this flag is set by the kernel’s interrupt handler
whenever thecounter of the current executing task reaches 0.

The pseudo code ofschedule is presented in algorithm 4. It is stripped from all synchronization, ac-
counting and other administrative details.

Algorithm 4 Theschedule function pseudo code.

1 schedule(cpu this cpu) {
2
3 prev ← this cpu.current task
4
5 if( prev’s state is runnable )
6 next ← prev
7 next g ← goodness(prev, this cpu)
8 else
9 next g ← -1
10
11 foreach task t in [runnable and not executing]
12 cur g ← goodness(t, this cpu)
13 if( cur g > next g )
14 next ← t
15 next g ← cur g
16
17 if( next g = -1 ) /* no ready tasks */
18 end function
19 else if( next g = 0 ) /* start new epoch */
20 foreach task t
21 t.counter ← t.counter

2 + NICE TO TICKS(t.nice)
22 goto 5
23 else if( next 6= prev )
24 next.processor ← this cpu
25 next.need resched ← false /* ’next’ will run next */
26 switch contexts: from prev to next
27 if prev is still runnable: reschedule idle(prev)
28
29 /*
30 * ’next’ (which may be equal to ’prev’) will run next ...
31 */
32 }

Line 3 Throughout this function,prev is the task that up till now was executing onthis cpu.

Lines 5-9 These lines ensure that in case of a (goodness) tie, the scheduler will always preferprev over
another runnable task with equal goodness. There’s noting to gain by context switching between
tasks with equal priorities. It is best to avoid the context switch.

Lines 11-15 This is the loop the tracks the best task to run onthis cpu by iterating through all the
runnable tasks that are not currently executing and choosing the one with the highest goodness. Note
that if even one runnable not executing task exists,next g will be nonnegative at the end of the
loop.

Lines 17-18 If next g is negative then there are no ready tasks and there’s nothingelse schedule can do
(in this case the real algorithm sets the idle-task as the “current” task).
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Lines 19-22 If next g is zero it means there are runnable ready tasks but they have all exhausted their
quantum. This means a new epoch should be started and all the quantum durations are refreshed
as explained in section 6.4.4. Note the the loop in line 20 iterates though all the tasks (not just the
runnable ones). This is the only means in which the Linux scheduler favors I/O bound over CPU
bound tasks. Also note that the formula in line 21 preventst.counter from ever exceeding twice
the value ofNICE TO TICKS(t.nice). After starting the new epoch, the function is restarted.

Lines 23-27 If the condition in line 23 evaluates to be true, then a context switch will soon take place. The
scheduler (a) updatesnext with its new CPU and turns off itsneed resched bit, (b) performs
the context switch1, and (c) tries to assign another CPU toprev — the task that had just been
preempted.

6.6 Linux-2.4 Scheduler Misfeatures

No scheduler is prefect. There is always the need to balance between different aspects of the system
leading to unavoidable tradeoffs. It is probably correct toassume that for almost every proposed scheduler
algorithm, it is possible to derive a mix of events that will lead to poor system results. The Linux scheduler
is no exception. Many of the Linux scheduler faults have already been discussed (e.g. in [4, chapter 10,
pages 291-293]) and it seems pointless to mention them here.

However, while implementing the Linux scheduler in the simulator, we came across (what we consider)
misfeatures that were never documented (to our knowledge) and seem strongly related to our work. These
misfeatures are described in sections 6.6.1 and 6.6.2. Section 6.6.1 describes the most serious misfeature
(or rather, a bug) we’ve encountered, which is a race condition in wake up common. In this section,
two algorithm improvements will be suggested to overcome the problem. These improvements will be
referenced from later chapters. Section 6.6.2 will discussthe problem with the Linux scheduler parameters’
values as mentioned earlier in section 6.5.1 and 6.5.2.

Theschedule drawback of iterating through the runnable task list in a linear fashion is obvious. As
the number of runnable task grow, the cost of context switching becomes grater, a consequence that effects
a “spin or block” decision greatly. Section 6.6.3 discussesand demonstrates this effect.

6.6.1 Race Condition in wake up common

The algorithm in wake up common iterates though the awakening tasks (see algorithm 3), for each such
task it invokesreschedule idle (see algorithm 2).reschedule idle(t) is essentially divided to
four steps:

1. If t.processor is idle then it is chosen as the next CPU.

2. Otherwise, the least recently active idle CPU is chosen, if one exists.

3. Otherwise, the CPU of the task which is least desirable in comparison tot is chosen, if one exists.

4. If a next cpu was found, interrupt it if necessary.

The most obvious effect of the race condition is associated of course with step 2. The following is an
example of a trivial scenario:

• 4 tasks -{t0, t1, t2, t3} - are awakening on a SMP with 8 processors{ci : i = 0...7} andc0 is the
CPU which executes the code ofwake up common.

• Assume that for eachi = 0...3 there exists:ti.processor = ci .

1When line 26 returns, we have changed contexts, and are currently in the context ofnext. A little magic is involved here: It’s
the ’much more previous’prev that is onnext’s stack, butprev is set to (the just run) ’last’ process by the procedure that actually
performs the context switch. This might sound slightly confusing but really makes tons of sense: for one thing, it makes line 27
operate on the correct “previous” task.
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• Further assume that{ci : i = 0...3} are currently busy, while{ci : i = 4...7} are idle because there
aren’t any other runnable non executing tasks.

• Finally, assume thatc7 is the least recently active idle CPU.

Worst case scenario goes like this:

• The first invocation ofreschedule idle is ont0 which is of course mapped toc7.

• c7 is interrupted and begins to execute theschedule code.

• However, way beforec7 reaches line 25 (algorithm 4),wake up common has already finished its
work.

• Since theneed resched the status ofc7 was “idle” all through the execution time ofwake up common
, t1, t2 andt3 were also mapped toc7 .

• The result: there are three idle CPUs -{ci : i = 4...6} - and 3 ready non executing tasks. In other
words, three CPUs “got lost”.

6.6.1.1 Possible Implications of the Race Condition

The above scenario isn’t the only drawback ofwake up common. The fundamental problem is that
an awakening tasks’ set might be assigned a processors’ set which is smaller than possible. Thepossible
implications of this problem are:

1. CPUs get lost (as shown above).

2. Only part of the awakening tasks that may get a hold of a CPU,indeed get one. This doesn’t neces-
sarily involves lost CPUs. For example:t0 andt1 are awakened while onlyc0 is idle. Howevert0 has
enough priority to preemptt2 which is the task that is currently executing onc1. wake up common
invokesreschedule idle(t0) which is assigned toc0 (because its idle) even thought0 can pre-
emptt2. Afterwardsreschedule idle(t1) is invoked and fails to find an assignment fort1. Had
the order of the iteration through the awakening tasks been reversed (i.e. firstt1 and thent0), both
tasks would have been assigned a CPU.

3. Context switch overhead might be doubled. This problem isalso related to the order of the iteration.
For example:t0 andt1 are awakening and the only possible assignment for both of them isc (by
preemptingt2 which is currently executing on it). Assume that:

goodness(t0, c) > goodness(t1, c) + PT > goodness(t2, c) + 2PT

wherePT stands forPREEMPTION THRESHOLD. At first,reschedule idle(t1) is invoked and
as a resultt2 is preempted in favor oft1. Afterwards,reschedule idle(t0) is invoked and as
resultt1 is preempted in favor oft0. Again, this extra context switch would have been avoided ifthe
order of the iteration through the awakening tasks had been reversed.

6.6.1.2 Wakeup Schemes Used in the Simulator

Simulating this race is extremely hard. However, we may simulate the worst and best case scenarios, in
recognition that the truth is somewhere in between. Anotherpossibility is to introduce the obvious fix
to reschedule idle (which is described shortly). In light of that, we defined in the simulator the
following three wakeup schemes:

SILLY Implements the worst case scenario:wake up common first assigns idle CPUs toall of the
awakening tasks and only thenschedule is invoked on the chosen CPUs. In this scheme, if an
idle CPU exists, all tasks will be assigned top, the least recently active idle CPU (with the exception
of tasks that will be assigned their previous CPU, if idle). Therefore only theneed resched flag
associated withp will be set and thusschedule will be invoked only forp.
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SMART Implements an approximation of the best case scenario: All of the per task local considerations
done by reschedule idle are made global across all the awakening tasks. The complexity of
this algorithm seems to make it unfit to use in a real system. Nevertheless, it provides us a perspective
that will help us evaluate how crucial the wakeup scheme is inthe context of this work. Note that an
implementation of such an algorithm is a non trivial task (ittook us≈ 400 lines of C++ code to do it
efficiently). As an example, think of the last phase of the algorithm where it decides which awakened
task will be assigned to which busy CPU. The algorithm shouldsomehow generate the following set:

TRI =
{

(d, t, c) : d = goodness(t, c)− goodness(c.current−task, c)
∧

d > PT
}

sort it according to thed value of the triplets (largerd-s come first), and then execute the code
specified in algorithm 5. Note that this scheme eliminates the race condition by (a) first deciding
which CPUs’need resched flag should be set (without actually setting them), (b) adding all the
awakened tasks to the ready queue, and (c) only after that setting theneed resched flags decided
upon in phase (a).

AIP Implements the obvious fix. AIP stands for: Avoid Idle Pitfall. This greedy algorithm simply modifies
reschedule idle such that instead of searching for “just” an idle CPU, the function searches for
an idle CPU with an associated offneed resched flag. This wakeup scheme is practical and is
guaranteed to eliminate the problem of CPUs getting lost (which is an immediate fix to the bug). It
may also help with the other problems mentioned earlier.

Algorithm 5 A piece of (pseudo) code from the SMART wakeup scheme.

foreach (d, t, c) ∈ TRI
if( (task t wasn’t already assigned a CPU) and

(CPU c wasn’t already assigned to some other task) )
assign t → c

Note that SMART is not the “optimal” wakeup scheme: The problem presented in section 6.6.1.1 is
actually equivalent to a maximum-bipartite-matching problem [5] namely finding a maximum bipartite
match between the two disjoint setsT andC, where:

• T contains the awakening tasks,

• C contains (all) the processors, and

• E is the set of edges betweenT andC and is defined to be:
E = { (t, c) ∈ T × C : ( c is idle ) or (t may preemptc.currenttask) }

However, such an algorithm was not used because it ignores the actual priorities of the awakening tasks.
This leads to the following two unwanted results:

1. When given two tasks -t1, t2 - which may both run on processorc ; in order to achieve a bigger
match, such an algorithm may prefer assigningt1 to c and leavet2 without a processor even though:

goodness(t2, c) > goodness(t1, c)

2. schedule of course is not aware of such an algorithm’s considerations(recall that it is lazy in-
voked) and will chooset2 anyway (there’s a race condition here too).

Implications on next chapters’ simulations: For each simulation that we will conduct in the following
chapters, we will specify the wakeup scheme used.
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6.6.2 Tunable Scheduler Parameters

While describing the algorithm in former sections, we came across three tunable scheduler parameters:

1. PROC CHANGE PENALTY (=15, used ingoodness)

2. SAME ADDRESS BONUS (=1, used ingoodness)

3. PREEMPTION THRESHOLD (=1, used inreschedule idle)

The first one actually appears in the code whereas the other two are hardcoded (and therefore named by
us). At this point, it is important the reader would be aware of the fact that the default quantum length
was changed from 20 ticks (=200ms) in Linux-2.2 to 5 ticks (=50 ms) in Linux 2.4. However, the above
parameters didn’t change accordingly. It follow that:

Parameter value % of quantum % of quantum
in Linux-2.2 in Linux-2.4

PROC CHANGE PENALTY 15 75% 300%
SAME ADDRESS BONUS 1 5% 20%

PREEMPTION THRESHOLD 1 5% 20%

which means a considerable change in the scheduler behavior. The most obvious change is that in
Linux-2.2 an awakening taskt1 had the ability to preempt an executing taskt2 on a CPUc , even if
t1.processor 6= c: In terms of goodness values it’s possible when:t1.counter − t2.counter > 16
(=SAME ADDRESS SPACE BONUS+PROC CHANGE PENALTY). Recall that an I/O bound task may (and
usually does) accumulate acounter value of up to twice the default quantum duration (see line 21in
algorithm 4) which translates in Linux-2.2 to an upper boundof 40 ticks oncounter. As a result, a task
with counter=18. . . 40 had a chance to preempt another task, even when migration was involved. It’s
therefore safe to speculate that a preemption of a CPU-bound-task in favor of an I/O-bound-task involving
the I/O-bound-task’s migration, wasn’t a rare event in Linux-2.2. However in Linux-2.4 such an event is
impossible. After consulting with some Linux developers, we believe somebody simply forgot to update
these values along with the change of the quantum default duration.

Another important point to make is that the resolution of thescheduler (as explained in section 6.4.3)
seems to be too coarse. For example, even if we changePREEMPTION THRESHOLD to 0 in Linux-2.4,
the threshold will still be bigger than it was in Linux-2.2 (because the difference must be at least one tick,
which is 20% of quantum in Linux-2.4). Recent research [7] coincides with this conclusion.

Implications on next chapters’ simulations: Unless stated otherwise, the scheduling algorithm used in
the simulations in the following chapters use the parametervalues of Linux-2.2 (rather then Linux-2.4)
as specified above. In addition, thecounter field of each task participating in a simulation has cycle
accuracy.

6.6.3 Linearity of schedule

After reviewing the Linux scheduler, we got tempted to measure the cost of the linear iteration through the
ready to run task list inschedule (algorithm 4, line 11). Though not having a direct implication on this
work, it was interesting to see “how bad is it” since the duration of a context switch has direct implications
on a “spin vs. block” decision. This is the sole practical adventure we’ve embarked upon within this work.
In order to measure the duration of quantum as a function of load, we did the following:

• Modifiedschedule code as follows:

– A cycle measurement is taken at the beginning ofschedule and just before line 26 (the lines
that actually switched contexts). Note that the procedure that actually performs the context
switch is quite short. The main complexity factor ofschedule is its linear iteration through
the ready queue.
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– The difference between the two cycle measurements and the current number of runnable tasks
are copied to the kernel cyclic log buffer.

– A boolean flagdo log was added toschedule to “guard” the additional code we’ve added
to it. The flag was needed because we wanted to achieve a certain load before starting the
logging process and to stop logging before this load decrements. This flag was initialized to
false.

• Added a module to the kernel which allows controlling the value ofdo log from user space (using
the /proc mechanism).

• The klogd daemon is a user level process the “listens” to the log messages printed by the kernel (to
its cyclic log buffer) and forwards them (via the syslog system call) to the syslogd (it actually a kind
of proxy). The syslogd in turn usually writes the messages itgets in an unbuffered fashion to some
log file. This logging mechanism was unsatisfying because our modifiedschedule version prints
very fasta lot of messages and many of them got lost along the way due to all the various overheads
(the extra copy from klogd to syslogd via a system call and theunbuffered write of syslogd). We
therefore modified the code of klogd to intercept our log messages and (buffered) write them to some
log file.

• Next we’ve written a script that generates a certain load andafter this load is achieved, turns on
do log, waits for a few seconds, and turns it off (starting the logging only after the designated load
is reached turned out to be a non trivial assignment).

• Finally, the log was analyzed and the graph presented in figure 6.1 was produced.

The measurements were taken on a quad Pentium III 550MHz IBM NetFinity server with 1GB RAM
running Linux-2.2.18 (which was the latest release when these measurements were taken). Approximately
1.5 × 106 measurements were taken. The cost of schedule with a load of up to 800 runnable tasks is
unacceptable. The Y-axis ends at 120,000 cycles but the worst results measured was 566,584 cycles !
(which is∼ 1 millisecond on this machine).

When reviewing the results, the question that comes to mind is “why create a load of 800 runnable
tasks on a 4 CPU machine” ? The answer is divided to two parts. The first one is that the results were
just as bad even if the measurements were performed on a 64 CPUmachine, because the runnable list was
of the same size. In fact the results would probably be worse due to contention for the synchronization
mechanism. The second part of the answer will shortly follow. A very interesting and relevant discussion
revolved around this issue in the Linux kernel mailing list with the participation of Linus Torvalds, Alen
Cox and others [27]. The discussion thread’s title was quiteappropriately: “a quest for a better scheduler”.
The main questions discussed were:

• whether applications that use several hundreds runnable task should be supported by Linux (which
is optimized for a small box),

• if it makes sense to write a parallel application that use a number of runnable threads which is much
bigger than the number of CPUs of the machine,

• and do such applications exist

The majority’s opinion seemed to be: yes (to all questions).Some think its the application responsibility
not to create a number of runnable tasks which is considerably bigger than the number of processors.
The counter opinion is that this means every application that must manage a (possibly virtual) context of
many tasks, must implement a scheduler by itself. This coincides with our opinion: if people write such
applications, the scheduler should support them.
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Figure 6.1: The X axis specifies the number of runnable processes in the system i.e. the load (5-800 tasks).
The Y axis specifies the number of cycles consumed while context switching (only samples below 120,000
cycles are displayed). It’s clear there’s a linear dependency between the load and the lower/upper bounds
of the context switch duration.
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A concrete example was given for such an application: Running DB2 on an SMP system. In DB2
there is a processes/thread pool that is sized based on memory and the number of CPUs. The size of this
pool is in the order of 100s for an 8-way system with reasonable sized database. A<maxagents> parameter
determines the number of agents that can simultaneously execute an SQL statement. Requests are flying
in for transactions. The agents are grabbed from the pool andconcurrently fire the SQL transactions.
Assuming that there is enough concurrency in the database, there is no reason to believe that the majority
of those active agents is not effectively running. Of courselimiting the number of agents would reduce
concurrently running tasks, but would limit the responsiveness of the system.

Related work: There has been significant progress in achieving a working Linux scheduler which is (a)
scalable, and (b) handles the case in which the number of runnable tasks is much bigger than the number
of processors. However it hadn’t found its way yet to the official Linux release. The effort is led by the
IBM Linux Technology Center and a summary of this work (including the actual code of such working
algorithms) may be found in [11].

Implications on next chapters’ simulations: The maximal load generated by most simulations (in pre-
vious and following chapters) is usually a few hundreds (on a32/64 CPU machine) which according to the
above discussion is realistic. The linearity fault of the Linux scheduler is ignored because:

1. It is solvable [19] (while maintaining the existing scheduler behavior and semantics).

2. Even for large number of tasks, the maximal context switchduration we found, is still a very small
fraction of quantum (according to our measurements worst case is:

max context switch measured

speed of machine × quantum duration
=

566, 584 cycles

550MHz × 0.05sec
≈ 2%

of quantum) which we just use as an upper bound on the context switch overhead anyway.

3. Our main focus is on loads for which:task−num ≤ 2 × cpu−num± (since on bigger loads
spinning almost always fails).



Chapter 7

Synchronization Job in a
Non-Synchronizing Environment
Under the Linux Scheduler

7.1 Introduction

After introducing the Linux scheduler in the previous chapter, we will now follow the “round-robin path”
and conduct a series of simulations with increasing complexity, the first one of which is of a single syn-
chronizing job in a non-synchronizing environment. Beforeperforming any simulations, section 7.2 will
describe the minor changes made in the simulator in order to support the Linux SCHEDOTHER schedul-
ing algorithm. Afterwards, section 7.3 and 7.4 will describe the first simulation and present its results. The
remaining sections will be dedicated to analyzing and understanding these results and their implications.

7.2 Simulator Changes

Obviously, all the data structures and algorithm presentedin chapter 6 had to be embedded into the sim-
ulator. Aside from that, the change in the simulator was minor: the decision of “which is the next thread
to run” changed from “the first thread in the ready queue” to “the one determined byschedule”. The
structure of the simulator (see figure 2.1 page 16) has therefore remained almost the same. Recall that
while executing, a thread may have one of the three SMP states:

ready The thread may run and is waiting in the ready queue to be allocated a CPU.

running The thread is currently running on some CPU. Recall that while it is being preempted (by the
simulator-event with the duration associated with the parameter context-switch-out) or being sched-
uled (by the simulator-event with the duration associated with the parameter context-switch-in), a
thread is considered to be in “running” state.

blocked The thread was preempted and is currently waiting for the other threads of its job to reach the
next synchronization point.

In addition to the above states, while implementing the SCHED OTHER we’ve added a fourth simulator
state:wait4cs(stands forwaiting for context switch). The reason it was needed is as follows:

• Let t1 be an executing thread that has just “informed” the SMP it’s yielding its processorc (either
because its quantum is exhausted or because it finished its fixed spin period, failed, and is about to
enter blocked mode).

69
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• Now, in order to simulateschedule, the actions taken by the SMP are (a) to determine which will
be the next thread —t2 — that will run onc (assumet1 6= t2), and (b) to push to the event-queue a
context-switch-out-event —e1 — on behalf oft1. Recall that untile1 expires,t1 is considered to be
the thread that is currently running onc.

• In the meantime (untile1 will expire),t2 is removed from the ready-queue so that it will not be chosen
by otherschedule invocations to be the next thread to run on some other processor different than
c. It is then inserted to the container associated with the “wait4cs” mode.

• Whene1 finally expires, only then the SMP pushes a context-switch-in event —e2 — on behalf oft2
which is removed from “wait4cs” mode and is assigned toc (thus changing its state to “running”). We
remark that the time consumed in order to executee1 ande2 represents the duration ofschedule
(and the other operations performed by the kernel before switching back tot2’s user context).

The “wait4cs” state therefore fits in figure 2.1 as a circle between “ready” and “running”, and the arrow
that passes through it is the one associated with a thread being allocated a processor.

7.3 Simulation Description

As the first step, we conducted a simulation which is almost identical to the one conducted throughout
chapter 3. Namely, a synchronizing job composed from 11 threads executing on a machine with 32 CPUs
within an increasingly growing load of non-synchronizing threads. The difference of course is in the
scheduling algorithm which was previously SCHEDRR and currently is SCHEDOTHER. We will skip
the first few steps of gradually adding randomization and directly jump into the deep water of a fully
randomized simulation (computation intervals are normally distributed and the ready queue is shuffled on
startup). For starters, we will use the SMART wakeup scheme (the various schemes will be compared later
in this chapter). The simulator parameters we use are therefore:

p q in out sync nosync barrier spin µ σ rand wakeup
ord scheme

32 100 3% 3% 11 0. . . 200 50 6% 1% 90/15% 1 SMART
10%
100%

7.4 Results

The results of the first simulation are displayed in figure 7.1. After briefly investigating the simulation
events in order to explain the many peaks and valleys displayed by the fine/medium grain curves, we’ve
quickly reached the conclusion that similarly to the the round-robin-heterogeneous simulations, if we pro-
long the duration of the computation (i.e. increase the number of barriers), the resulting SSR curves
stabilize and a clearer picture is received. This is demonstrated in figure 7.2 in which we present the re-
sults of the original simulation after the number of barriers was increased to 2000, 5000 and 10000. When
analyzing the resulting graph we see that:

1. When we increase the barrier number, the curves associated with the variousµ values become almost
indistinguishable, which means that when we prolong the duration of the computation, the SSR of
each simulation is converging to some value.

2. There is a peak in the SSR curves whenever the number of non-synchronizing threads is:21 + 16n
i.e. whenever the total load is32 + 16n (when adding the 11 threads of the synchronizing job) .
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Figure 7.1: The SSR of an 11-sized synchronizing job within anon-synchronizing environment. Each
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grain (100%). The curves associated with the fine and medium grain job present many peaks and valleys.
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Figure 7.2: The SSR achieved by the original simulation whenprolonging the duration of the computation
by increasing the barrier number from 50 to 2000/5000/10000. The SSR curves are almost indistinguish-
able. There’s always a peak when the total number of threads is a multiple of 16. Both medium and fine
grain display an intermediate load with SSR> 50. Fine grain curves continue to do so on and off for very
high loads.
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3. Both medium and fine grain jobs display an SSR> 50% in the intermediate load (for the fine-grain
job, this intermediate load spans up to a thread surplus of CPU#; for the medium grain job, the
surplus is only 5-6 threads). As usual, the fine grain job achieves better results than the medium
grain job while the coarse grain job fails in almost every spin, even when the machine is not fully
utilized.

4. Aside from the peaks (when total load is a multiple of 16), fine grain simulations sometimes manage
to achieve SSR> 50% on very high loads. The reader might think the fact that the SSR associated
with the fine grain job gets a little higher as the number of non-synchronizing threads reaches 200
has significance. It doesn’t. Different seeds produced different results while the large picture (as
currently described) has remained the same.

5. The nature of the curves is quite similar to those displayed in the associated round robin simulation
(that was conducted without randomization, figure 3.4, page26).

7.5 Analysis

When trying to understand the results of the simulation, a good place to start seems to be in figuring out the
reason for the fine grain peaks that reach up to almost 100% SSRwhen the number of participating threads
(the synchronizing job included) equals32+16n. The conjecture that the simulation has a cycle (based on
analysis of the similar round robin simulation) will be soonproved wrong.

7.5.1 The Transition Point

Let J be the synchronizing job. The first step in trying to understand the nature of the peaks was to use
the tool developed in chapter 4 to monitor the distribution of J’s threads as it changes in time among the
various SMP states. Figure 7.3 presents the results of this monitoring on fine grain jobs. Three rectangles
are displayed: the first one is associated withJ’s threads distribution within the simulation that included a
total number of80 (= 16×5) threads (includingJ), the middle with the simulation of the size96 (= 16×6),
and the last with the simulation of the size112 (= 16× 7). The X axis displays the time (in cycles). The Y
axis displays the number of threads, and each different color represent one of the four SMP states (wait4cs
as defined above included). The arrows at the top of each rectangle denote the time instance in which a
new epoch was started (see section 6.4.1 and algorithm 4 lines 19. . . 22 in page 61). When we examined
J’s threads distribution among the various SMP states over time, we noticed that in all of them there exists
a transition-pointwhich is defined be a time instance such that:

1. prior to it,J’s threads computed separately (as indicated by all the “staircases” that came before it),
and

2. after it,J’s threads manage to group and compute together (as indicated by the green=running and
red=ready continuities) until the simulation ends.

For each simulation, the X-axis time range displayed was chosen such that the transition point will be
displayed. The transition point of the 80 sized simulation is somewhere between time=600. . . 700, for
the 96 sized simulation it’s between time=21,500. . . 22,000, and for the 112 it’s in the neighborhood of
time=52,000.

7.5.2 J’s Point of View

Let’s focus on the first rectangle associated with the 80 threads load and describe what’s going on there
form J’s point of view:

• On startup, only 3 ofJ’s threads “got lucky” and were allocated CPUs. These threads compute for a
very short while (recall that this is a fine grain job i.e. it’sµ=1% of quantum which is composed of
100 cycles), reach the first barrier, spin for a while, fail, and block.
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Figure 7.3: This figure displays the distribution ofJ’s threads among the four SMP states as a function
of time (cycles). The jobs were taken from simulations withload = CPU# + 16n. The maximal spin
duration performed by jobs that are displayed here equals the duration of a context switch (CS). The arrows
at the top of each rectangle indicate when a new epoch was started. The X-range was chosen such that the
transition point of each job will be displayed. After the transition point, threads are grouped and perform
their computation together and thus all barriers are successful. Before the transition point, the jobs either
perform a “tail chasing” alt synchronization or are confinedto a small number of CPUs.
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• As a result of this blocking, their CPUs are “up for grabs” andthey are immediately assigned to 3
other ready threads. Evidently, these new three threads also belong toJ (as indicated by the sec-
ond green “step” in the first “staircase”). This wasn’t just alow probability event that happened:
the 3 original threads were substituted by threads from the same job even though currently there
are 40 non-synchronizing and only 8 synchronizing threads in the ready queue, because of the
SAME ADDRESS SPACE BONUS. Since all the 40 non-synchronizing threads in the ready-queue
don’t share address space with the original three, while theother 8 do, then the goodness of the latter
is higher than of the former which results in the choosing of another 3 ofJ’s threads.

• The second thread threesome also spin, fail and blocks only to be replaced by the third threesome
of J’s threads which soon enough also block. Now, as indicated by the size of the last green step in
the first staircase, there are only 2 ofJ’s threads in the ready-queue (the other 9 are blocked) and
thereforeJ “looses” one CPU in favor of some non-synchronizing thread.

• The last pair completes the first barrier (causing the other 9threads ofJ to change state from blocked
to ready), reach the second barrier, spin, fail, and block. For the same reason as stated before
(SAME ADDRESS SPACE BONUS) this pair is replaced by another pair ofJ’s threads . . .

• This scenario repeats itself (in various forms) in the first 6“staircases”. The first epoch that ended
somewhere between time=200. . . 300 didn’t change anything.However, towards the end of the sec-
ond epoch just after time=400, the computation pattern changes andJ’s threads effectively get hold
of 11 CPUs at the same time (as indicated by the 11-threads-wide green=running lines). For some
reason,J seems to “chase its tail”, in what can only be described as (you’ve guessed it) alternating
synchronization (this will be further elaborated later). The difference between the alt synchronization
displayed here and in previous chapters, is the time spent byJ’s threads in the ready queue between
each two consecutive barriers. In previous chapters, when SCHED RR was used, this period was
long: After moving from blocked state to the end of the ready queue, in order to execute again, a
thread had to wait until such time when it was the first thread in the ready-queue. This is not neces-
sarily the case for SCHEDOTHER as indicated by the very thin (or simply non existent) red=ready
lines between time=400. . . 500. When a thread returns form blocked to ready,reschedule idle
is invoked, allowing threads with high enough goodness to preempt other threads and begin to run
immediately.

• Towards the end of the third epoch, somewhere between time=600. . . 700, something happens which
allows all ofJ’s threads to get a hold of a CPU simultaneously and begin to compute together (this is
the transition point). From that point onwards, this type ofcomputation is maintained until the end
of the simulation.

7.5.3 The Effective CPU Set

A clue as to whyJ behaves like this is given to us when we notice that this type of tail-chasing alt-
synchronization happensalwaysjust before the starting of a new epoch (see also the other tworectangles).
The reason becomes clear when we make the following two observations:

1. Towards the end of an epoch, thecounter of most non-synchronizing threads is zero or close to it
(otherwise we wouldn’t have been close to the start of a new epoch). All of the non-synchronizing
threads in the ready queue have zerocounter (a necessary condition for a new epoch to start) and
some of those that are currently running have acounter that is close to zero (since they have been
running for a while).

2. This is not the case for synchronizing threads that spend most of their time in blocked mode. In fact,
until the transition point, theircounter is usually bigger than the default quantum duration i.e. up
to 200 cycles (recall that “I/O bound” threads are favored bySCHED OTHER due to the formula
used inschedule to refreshcounter fields at the beginning of a new epoch, which allows a
thread to accumulate up to twice its default quantum).
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Let ECSJ (theEffectiveCPU Set ofJ) be defined as follows:

ECSJ = {c : ∃t ∈ J , t.processor = c}
It follows that towards the end of an epoch, the priority ofJ’s threads is very high (in comparison to the pri-
ority of non-synchronizing threads), so high, it allows allof J’s threads to overcome thePROC CHANGE PENALTY
penalty and get hold of more and more CPUs until|ECSJ | = |J |. However, whileJ alt synchronizes (“en-
joying” the fact that|ECSJ | = |J | and that all its threads have much higher goodness values than the
non-synchronizing threads that share with them the CPUs inECSJ ), a point is reached whenschedule
needs to find the next thread to run on some CPU and there are no threads in the ready queue with a pos-
itive goodness value. This is when a new epoch is started. Allthecounters of the non-synchronizing
threads are refreshed, causing these threads (like Popeye after eating a spinach can [24]) to instantly be-
come “stronger”. Indeed,J’s threads’counters are also refreshed, but this is done with a decaying factor.
Meanwhile,J’s threads are continuously alt synchronizing (asJ “chases its tail”) and therefore rapidly be-
come “weaker” due to the unsuccessful spins. Soon enough, those non synchronizing threads that also
periodically run onECSJ become “strong” enough not to allow each ofJ’s thread to preempt them when-
ever it returns from blocked to ready state. Unavoidably,ECSJ begins to shrink and the staircase-scenario
described above reoccur.

This scenario has the nature of repeating itself over and over again. This fact is illustrated in figure 7.4
that displays the evolving ofECSJ in the 96 sized simulation over the first 10000 cycles.
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Figure 7.4: This figure displays the evolving ofECSJ of the 96-sized simulation as a function of time.
The size of this job has the nature of expending (towards the anew epoch) and shrinking (shortly after).

7.5.4 Reason for Tail-Chasing Alt Synchronization

We therefore conclude that there’s a time interval, spanning from shortly before the beginning of a new
epoch till shortly after it, in which:

1. |ECSJ | = |J | , and

2. the goodness ofJ’s thread is much higher than the goodness of each non-synchronizing thread —t
— for which t.processor ∈ ECSJ
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The first fundamental question that follows is why doesJ alt synchronize under this circumstances i.e. if

1. all of J’s threads have the opportunity to execute together (as if the machine was dedicated to them),
and

2. those threads that first arrive to a barrier, wait while spinning for the duration it takes to perform a
context switch, thus enabling the other threads to join in,

then what’s stoppingJ’s threads from computing together without having to block after each barrier. The
second question is what eventually breaks this pattern and allows J’s threads to compute simultaneously
without alt synchronization (i.e. what is the cause of the transition point). The answer to these questions is
a combination of two factors:

1. The serial nature of the simulator: Two simulator events with the same execution time are not ex-
ecuted simultaneously by the simulator because it’s a serial program. Instead, they are serialized
according to the id of the CPU on which the events are “executed”. For example: if evente1 is asso-
ciated with a thread that executes on CPUc1, and evente2 is associated with a thread that executes
on CPUc2, thene1 will occur beforee2 if and only if c1 < c2 (c1 6= c2 because two thread can’t
execute on the same CPU).

2. The spin interval is too small: LetCS (= ContextSwitch) denote the time it takes to conduct a
full context switch (i.e the sum of the time consumed by context-switch-in and context-switch-out
events). Since the fixed spin interval used byJ is exactly CS, a waiting thread —t1 — spins just
enough for an awakened thread —t2 — to join it. However, whent2 finally begins to compute and
is about to synchronize,t1 “gives up” and blocks. In order for this spin to have succeeded, t1 should
have spun just a little bit more.

For example, We will now describe the exact chain of events that led to the “tail chasing” alt synchro-
nization in the 80 sized simulation between time≈400. . . 500. We usetcr to denote the thread ofJ with rank
r for which theprocessor field value is currentlyc. We usebi to denote thei-th barrier. Our description
starts at time=414. At this timeA = {t2, t4, t9} are executing andB = {t0, t1, t3, t5, t6, t7, t8, t10}
are in blocked mode after failing to synchronize onb5.

Time=414 A’s threads reachb5 and finish it successfully. As a result,B’s threads are awakened. All of
them are able to preempt currently executing (low priority)non-synchronizing threads.

Time=415 A’s threads finish the computation phase.

Time=416 A’s threads reachb6 and start to spin: they will do so until no later than time=422since the
maximal spin duration is set to be CS=6.

Time=417 The context-switch-out events of the low priority non synchronizing threads, that were trig-
gered by the awakeningB at time=414, have expired. Consequently, the context-switch-in events for
B’s threads are pushed.

Time=420 The context-switch-in events associated withB’s threads (triggered at time=417) have expired.
B’s threads start to compute.

Time=421 B’s threads finish the computation phase.

Time=422 Two things happen “simultaneously”: (1)B’s threads reachb6 for the first time, and (2)A’s
threads reached the maximal spin duration (since spinning began at time=416). As stated before,
events are serialized according to the CPUs they are executed upon. Currently:A =

{

t139 , t144 , t302
}

andB =
{

t10, t91, t103 , t207 , t215 , t2210, t236 , t248
}

. Therefore, whent139 ’s last synchronization attempt is
made, it fails, causingt139 to block (because the first synchronization events ofB’s threads with CPU
ids bigger than 13 weren’t executed yet).

Afterwards, the same scenario will repeat itself with the difference that nowB’s threads will wait forA’s
threads.
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7.5.5 Necessary and Sufficient Condition for Transition Point

The previous subsection explained the reason for the “tail-chasing” alt synchronization. This one will
explain the circumstances in which this computation pattern is broken and the transition point occurs:

• Let Amin be the minimal CPU of a thread inA (Amin = 13 in the above example).

• Let Amax be the maximal CPU of a thread inA (Amax = 30 in the above example).

• Let Bmin andBmax be defined respectively.

By following the example given above we get that the necessary condition for the transition point to occur
is:

or

{

Amin > Bmax

Bmin > Amax

because this will ensure the events will be serialized in thecorrect order. As the simulation evolves,A
andB are constantly changing (the reason for this was explained in previous round-robin chapters). The
transition point will occur only when the above condition issatisfied.

So far, we’ve established the reason whyJ’s threads manage to group together, but this is only half of
the work. We now need to understand what’s keeping them together i.e. what makes the scheduler continue
to scheduleJ’s threads as a group until the computation ends. There are two reasons:

1. One of the characteristics of a fine grain job, is that the computation time done by its various threads
is more or less the same at any given time instance. This is a direct product of doing a lot of
(barrier) synchronization. InJ’s case for example, it is very unlikely fort1 to have computed for
1000 cycles ift2 has only computed for 950 cycles. In general, the spin maximal duration serves as
an approximation of the upper bound on the difference between thecounter fields of each pair of
J’s threads. This usually ensures us that after grouping,J’s threads will exhaust their quantum and
be preempted together, i.e. will not split up again to two groupsA andB in account of a quantum
which is exhausted only for some, while the others continue to compute.

2. Finally, this is where the assumption that the total number of threads is a multiplication of 16 comes
in. It has no mystic meaning, it is simply the smallest divisor of CPU# (=32) which is not smaller
than|J | (=11) and thus able to contain it: AfterJ’s threads grouped and exhausted their quantum
together, blocking and preemption events ceased to occur. This, along with the fact that threads have
a tendency to run on their previous processor (because ofPROC CHANGE PENALTY), allows the
CPUs to simply be partitioned between unchanging groups of 16 threads: whenever a 16 sized group
of threads (possibly containingJ) has exhausted its quantum, it is simply replaced by anothergroup
of 16 threads.

We now have complete understanding of the behavior of the simulations displayed in figure 7.2:

• The peaks are caused due to the existence of a transition point.

• For loads that aren’t a multiplication of 16, SSR is higher than similar round-robin simulations,
revolving around 50%. The reason it’s higher, is thatJ’s thread indeed manage from time to time
to group and compute together beating the alt synchronization pattern for a while (at least until the
quantum is exhausted). The reason the SSR is not as high as of simulations with load which is a
multiplication of 16, is that the SMP cannot maintain constant groups of threads to be scheduled
together, and soon enoughJ splits again to two alt synchronizing groups.

7.6 Bigger Maximal Spin Duration

The most important conclusion from the previous section is that a spin interval with a CS duration is not
enough (or more accurately, it is the biggest spin interval which is not sufficient). We may safely assume
that if the duration of the spin interval was “a little” longer, the transition point would have happened much
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sooner (or more frequently for loads that aren’t a multiple of a CPU#-divisor which is bigger than or equal
to |J |), thus greatly improving the SSR achieved. LetCS+denote this spin interval duration. In real world
systems, “a little” means enough time such that all the awakening threads would succeed to synchronize
(i.e. overcome contention problems etc). However, within our simulator it is enough to define CS+ as
simply: CS+1.

Figure 7.5 displays the transition point of a simulation similar to the one conducted in the previous
section with the sole difference of using CS+ instead of CS asthe maximal spin duration.

The following is a comparison between figure 7.3 (CS) and figure 7.5 (CS+):

Load Transition Point Completion
Happened Before Time

CS CS+ CS CS+

80 = 16× 5 700 9000 14,217 20,877
96 = 16× 6 22,000 3000 33,903 19,707
112 = 16× 7 52,000 11,000 56,446 26,656

There are two “disturbing” aspects in these results:

1. It is clear that as expected the transition points happened much sooner for loads 96 and 112 when
CS+ was used as a maximal spin duration. This resulted in a speedup of approximately factor of
2. However, for load 80, the transition point happened much later and as a result there has been a
considerable slowdown (with factor of approximately 1.5).We will address this problem shortly.

2. Even though the results of the CS+ simulations with load 96/112 showed improvement with respect
to the their CS counterparts, it still takes these simulations a considerable amount of time to reach
the transition point. The question that follows is why.

The explanation for the second point raised above is simply that the maximal spin duration still
doesn’t suffice. Indeed, threads fromA (as defined above) are spinning enough time to allow any blocked
thread —t — with high enough priority to join them. But what ift is only about to block, i.e. it has
just yielded its CPU after an unsuccessful spin and thereforeschedule was invoked (and is just in the
beginning of the process of choosing the next CPU to run). Sinceschedule cannot be “stopped” while
it’s executing, a new thread will be chosen by it to run ont.processor and t will have to wait until
reschedule idle “reassigns” it its processor. Note thatt is considered to be running until line 26 in
algorithm 4 (page 61) is executed.

The following is an illustration of a scenario in which CS+ maximal spinning time is not enough. It is
taken from the CS+ simulation associated with load=80:

Time=858 t228 fails onb20 and a context-switch-out event is pushed on its behalf. The simulator-function
which is the equivalent ofschedule, decides which will be the next thread to run onCPU22. Let
this thread be denoted asu. In order to faithfully simulate the originalschedule, this decision will
take effect only after CS cycles will pass.

Time=860 t14 is the last ofJ’s threads to reachb20 and thereforeb20 is complete.

Time=861 The context-switch-out event oft228 has expired. Even though it is now known thatt228 may
(and will) continue to compute because the event it has been waiting for has occurred, nothing may
be done at this stage because the originalschedule cannot be interrupted while it is executing.
A context-switch-in event on behalf ofu is therefore pushed. In addition,t14 finishes its current
computation phase.

Time=862 t14 reachesb21 and starts to spin. It will continue to do so for not longer than CS+ cycles i.e.
not later than time=869.
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Transition Point for 16-Multiplication-Load
Spin = CS+

Load: 80 [=16X5, simulation ended  at: 20877]
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Figure 7.5: This figure is similar to figure 7.3 with the difference that the jobs displayed here used CS+
maximal spin duration. We can see that for loads 96 and 112 thetransition point occurred earlier than for
the CS simulations. However, for the 80 sized simulations the result is reversed.
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Time=864 The context-switch-in event ofu has expired. This is equivalent to the point whereschedule
is after switching tou’s context (the completion of line 26 in algorithm 4).

Time=865 However, sincet228 didn’t block after all, and is a runnable task,reschedule idle(t228 )
is now invoked (line 27 in algorithm 4).t228 has the highest goodness value onCPU22 and it is
high enough in order to preemptu. Consequently,u.need resched flag is set. As the “kernel” is
about to return to (u’s) user mode, it checks theu.need resched flag (which is set) and therefore
invokesschedule, which in turn choosest228 to be the next thread to run. As explained before, this
schedule decision will take effect only after CS cycles will pass. Consequently, a context-switch-
out event is pushed on behalf ofu.

Time=868 The context-switch-out event ofu has expired. A context-switch-in event has been pushed on
behalf oft228 .

Time=869 t14 has unsuccessfully finished spinning onb21 and yields its CPU.

Time=871 The context-switch-in event oft228 has expired. It begins to compute.

Time=872 t228 finishes the computation phase.

Time=873 t228 reachesb21, but by now it is too late fort14 which has already yielded its CPU at time=869.

We therefore conclude that in order for a fine grain job to have a maximal chance to reach the transition
point as fast as possible, its maximal spin duration should actually be in the order of2CS+. This will
supply other threads from the job, that yielded their CPUs inclose proximity to the barrier completion,
with enough time to join their waiting counterparts.

The explanation for the first point that was raised above, regarding the fact that the CS simulation
(with load=80) achieved better results than of the CS+ simulation, is also simple: sheer luck. The division
of J to two alt synchronizing groupsA and B (as defined in the previous section) was such that the
condition stated in subsection 7.5.5 was satisfied immediately when the simulation began. In order to
prove this was just a lucky event, we’ve conducted the same simulation (load=80,µ=1%) using maximal
spin durations of CS/CS+/2CS+ with 100 different randomly chosen seeds. The result is displayed in figure
7.6.

The figure shows that generally, simulations that used 2CS+ as the maximal spin duration, reached the
transition point more quickly than CS+ simulations, which in turn reached the transition point much more
quickly than the CS simulations. The average time it took thevarious simulations to reach the transition
point, as well as their average SSR and completion time is as follows:

maximal spin transition SSR completion
duration point time

CS 17,016 81.1 26,194
CS+ 4,986 96.6 17,644
2CS+ 2,282 99.2 17,013

These results coincide with our findings so far. Note that forthese kinds of loads which are a mul-
tiplication of a CPU#-divisor bigger than|J |, when making the computation duration go to infinity, the
difference between the averages achieved by simulations with various maximal spin durations, is expected
to go to zero. This is true because once the transition point is reached, all the barriers are successful all the
time and the maximal spin duration is never used to its full. In this case, the difference between the various
simulations is found only in their early stages, which have lesser relative weight the longer we make the
computation. However, different maximal spin duration will play a much more important role for loads
different than the above.
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Figure 7.6: Comparison between the fine-grain 80-sized simulations that use CS/CS+/2CS+ as their max-
imal spin duration. Each such simulation was executed 100 times using 100 different random seeds. The
X-axis displays the serial of the random seeds. Figure (a) displays the transition point comparison. The
seed with serial 100 is the one used in the simulations we haveanalyzed in figures 7.3 and 7.5. For this
seed, we can see that the transition point of the CS simulation indeed occurred much before than of the
CS+ simulation. Evidently, this is an exception. Figure (b) displays the SSR comparison. The sooner the
transition point occurs, the higher the SSR is. This is the reason why the highest SSR is achieved by the
2CS+ simulations and the lowest SSR is achieved by the CS simulations. Figure (c) displays the comple-
tion time comparison. It turns out that the higher the SSR is the faster the simulations end, even at the cost
of longer spin durations.
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7.7 Comparison Between Wakeup Schemes and Spin Durations

In the previous sections, we have analyzed the behavior and implications of a single synchronizing job exe-
cuting within a non-synchronizing environment on a system that uses the Linux SCHEDOTHER schedul-
ing algorithm. Our focus was on loads that generated SSR peaks (namely a multiple of a CPU#-divisor
which is bigger than or equal to|J |), but we were able to generalize our understandings and apply them to
other loads. We have concluded that in order for a barrier algorithm to be successful, a CS maximal spin
duration is not sufficient and that better SSR will probably be achieved when prolonging it to CS+ or better
yet to 2CS+. This conclusion was demonstrated for peak-loads. However, it was not demonstrated for the
other loads. In addition, we would now like to affirm the implied connection between better SSR and faster
executions within all possible loads. We would also like to compare between the various wakeup schemes
and examine what are their effects. This section will present a comparison between simulations that are
similar to the one we discussed up till now with:

• three maximal spin duration of: CS/CS+/2CS+, and

• three wakeup schemes: SMART/AIP/SILLY

7.7.1 SSR Comparison

The SSR comparison of fine and medium grain jobs is displayed in figures 7.7 and 7.8 respectively. Here
is the average SSR and its absolute deviation (defined to be:1

n

∑n

i=1 |measurmenti − µ|) across all the
different loads that are bigger than CPU#:

wakeup fine grain medium grain
scheme CS CS+ 2CS+ CS CS+ 2CS+

SMART 54±10.6 83.1±7 94.2±2.6 28.1±7.8 41.6±13.5 76.7±8.8

AIP 48.9±10.3 79±8.1 93.9±3 24.7±6.8 37.5±12.5 75.2±9.2

SILLY 38.5±8.9 69.9±10.4 91.9±4.5 23±5.8 34.7±11.5 73.8±9.5

Here is the analysis of the above results:

• Regardless of the wakeup scheme used, we can see a dramatic improvement in the SSR as the maxi-
mal spin duration is enlarged: The difference between the SSR achieved by CS and 2CS+ simulations
is 40-50% in favor of 2CS+. The difference between CS+ and 2CS+ simulations is 10-20% for fine
grain jobs and 30-40% for medium grain jobs in favor of 2CS+.

• Notice how SSR achieved by fine grain jobs in the 2CS+ simulations is almost always above 90% !
The meaning of this is that by fine tuning the maximal spin duration, we have managed to transform
all loads to “peak loads” i.e. if previously, only jobs that executed within a specific load enjoyed a
SSR close to 100% (load which is a multiplication of a CPU#-divisor not smaller than|J |), nowJ
enjoys similar SSR regardless of the load.

• Also notice that while fine grain CS+ simulations manage to achieve a decent SSR when AIP and
SMART are used (≈ 80%), for medium grain jobs, the only practical spin duration is 2CS+ (oth-
erwise the SSR is below 50%). The reason for this is implied from our analysis above: A spinning
thread must wait for an awakened thread enough time for it to (a) preempt another thread (usually a
CS duration but occasionally up to 2CS duration) and (b) to finish the next computation phase before
reaching the next barrier (an expectedµ duration). For fine grain jobs (b) is much smaller than (a)
thus allowing CS+ to achieve reasonable SSR. However, for medium grain jobs, the relative weight
of the duration of (b) increases. This fact is partially embodied in 2CS+ but not at all in CS+. As a
result, a CS+ maximal spin duration is usually not enough causing most spins to fail while 2CS+ is
big enough to allow a considerable amount of spins to succeed.
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• When comparing the various wakeup schemes, we can see that the difference in the average SSR
(achieved by simulations using the same maximal spin duration) is quite small: For medium grain
jobs, the differences are in the order of 2-7% (7% being the difference between SMART and SILLY
when CS+ is used). For fine grain jobs the differences are 2-15%. In any case, when 2CS+ is used,
the difference between the various schemes is only 2-3%.
Although the SILLY scheme introduces a bug (CPUs might “get lost”) and the idle pitfall (a group
of threads might be assigned to the same “oldest” idle CPU), it seems that wakeup schemes do not
play a crucial role in the context of this work. The main reasons for this are:

1. The probability of idle CPUs is nonnegligible only in the intermediate load, when the number
of non-synchronizing threads is smaller than CPU# while thetotal threads number is bigger.
For this load, the combination of the following two factors “saves” SILLY from assigning all
the awakened threads to the same (oldest) idle CPU:

(a) each thread has a strong association with its previous CPU (because ofPROC CHANGE PENALTY
and algorithm 2 lines 4-5), and

(b) |ECSJ | → |J | towards the starting of a new epoch (when the threads actually have a
chance to group together) i.e. the previous CPUs ofJ ’s threads are pairwise disjoint.

2. For bigger loads, idle CPUs simply do not exist and the problem is avoided altogether.

7.7.2 Maximal Spin Duration Speedup Comparison

A comparison between the conducted simulations according to their maximal spin duration, is displayed in
figures 7.9 and 7.10 for fine and medium grain jobs respectively. In order to compare a pair of simulation
〈X, Y 〉 according to their maximal spin duration (whereX is considered to be the simulation that uses a
“better” maximal spin duration in the sense that 2CS+ is “better” than CS) we’ve used the formula:

speedup =
completionT ime(Y )− completionT ime(X)

completionT ime(Y )
× 100

i.e. we display the speedup ofX with respect toY in percentage. The title “2CS+ vs CS” implies that
the left term (2CS+) is associated withX and the right term (CS) withY . Note that a positive speedup
means thatX is faster thanY and a negative speedup means the opposite. Also note that we use the term
“speedup” in a non conventional way: in this work this term means “relative improvement”. For example,
60% means: a reduction of 60% in the time, which is equivalentto a “conventional speedup” of 2.5 (i.e.
2.5 times faster).

Here is the average speedup and its absolute deviation across all the different loads that are bigger than
CPU#:

maximal spin fine grain medium grain
duration SMART AIP SILLY SMART AIP SILLY

2CS+ vs CS 45.9±7.5 50.5±7.7 53.6±9.6 20.3±7.5 22.2±8.4 21.7±10.3

CS+ vs CS 36.8±7.8 35.1±10.9 32.9±10.3 5.4±5.4 5±5.1 4.3±5.1

2CS+ vs CS+ 13.4±11.1 21.2±13.4 28.8±15.8 15.6±6.7 17.9±7.6 18±9.2

The results displayed above coincide with our findings regarding the SSR:

• 2CS+ simulations are considerably faster than CS simulations:∼50% faster for fine grain jobs and
∼20% for medium grain jobs.

• Fine grain jobs within CS+ simulations are∼35% faster than within CS simulations (but for medium
grain jobs the speedup is only∼5%).
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Figure 7.7: This figure compares the SSR achieved by fine grainjobs when different wakeup schemes and
maximal spin durations are used. Generally, bigger spin duration resulted in better SSR. For 2CS+ most
measurements are in 80-100% (avg ≈ 96%), for CS+ in 50-100% (avg ≈ 77%) and for CS in 25-75%
(avg ≈ 47%). This means that when choosing a correct spin duration, a fine grain synchronizing job within
a non-synchronizing environment may successfully computeregardless of the load. When examining the
difference between the various wakeup schemes, we see that the difference is fairly small, and shrinks as
we enlarge the spin duration (in 2CS+ the the curves are almost indistinguishable).
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Figure 7.8: This figure compares the SSR achieved by medium grain jobs when different wakeup schemes
and maximal spin durations are used. The results are similarto those obtained for fine grain jobs (figure
7.7) but here the SSR is much lower. The only practical spin duration for these kinds of jobs is 2CS+ (the
others are below 50%).
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Recall that the connection between better SSR and higher performance isn’t a given since SSR in not a
prefect metric: Indeed, when the SSR is low, we may safely saythat it was preferable not to spin at all.
However, the immediate drawback of achieving higher SSR by prolonging the spin duration is that syn-
chronizing threads spend more time while spinning which theoretically might prolong the total computation
time. The results above show that higher SSR indeed led to shorter execution time.

7.7.3 Wakeup Schemes Speedup Comparison

The wakeup schemes speedup comparison of fine and medium grain jobs is displayed in figures 7.11 and
7.12 respectively. The comparison is done in the same mannerit was done in the previous subsection (i.e.
each pair of schemes is compared and the speedup percentage is displayed). Here is the average speedup
and its absolute deviation across all the different loads that are bigger than CPU#:

wakeup fine grain medium grain
scheme CS CS+ 2CS+ CS CS+ 2CS+

SMART vs SILLY 22.6±10.6 25.3±15.3 8.4±11 7.1±4.4 7.9±5.8 4.1±5.3

AIP vs SILLY 13.7±10.1 15.3±17.1 6.1±9.8 2.3±2.8 3±3.4 1.7±4.2

SMART vs AIP 9.8±10 10.1±12.7 1.3±9.2 4.8±3.6 5±4.7 2.3±4.3

The results here, also coincide with our analysis from section 7.7.1 that suggested only a minor im-
provement when 2CS+ maximal spin duration is used (SMART is∼ 8% faster than SILLY for fine grain
jobs and less for medium grain jobs; the difference between AIP and SILLY is even smaller). However for
smaller spin duration done by fine grain jobs, the improvement is more meaningful (∼ 25%).
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Figure 7.9: This figure displays the speedup achieved by a finegrain job using different maximal spin
duration (each pair of spin duration was compared). The above results coincide with the SSR findings
presented earlier, i.e. there’s a strong association between the SSR and the overall performance: 2CS+
simulations are 25-75% faster than CS simulations (avg ≈ 50%); CS+ simulations are 25-50% faster than
CS simulations (avg ≈ 35%).
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Figure 7.10: This figure displays the speedup achieved by a medium grain job using different maximal spin
duration. The comparison is done similarly to the way it was done in figure 7.9. It is evident that a 2CS+
maximal spin duration is more suitable for medium grain jobsas there almost no difference between CS+
and CS simulation. 2CS+ simulation are∼20% faster than the other simulations.
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Figure 7.11: Comparison between the various wakeup spins for fine grain jobs. AIP and SMART are about
20-25% faster than SILLY on average when using CS/CS+ maximal spin duration. This speedup is reduced
to an average of not more than 8% when 2CS+ is used.
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Figure 7.12: Comparison between the various wakeup spins for medium grain jobs. Curves are almost
indistinguishable and are in the neighborhood of 0. The biggest average speedup is∼ 8% (CS+, SMART
vs. SILLY).



Chapter 8

Homogeneous Collection of
Synchronizing Jobs Under the Linux
Scheduler

8.1 Introduction

In this chapter we will conduct a series of simulations identical to those conducted throughout chapter
4 (the associated round-robin chapter) with the sole difference of changing the scheduling algorithm to
Linux SCHED OTHER. In chapter 7 the Linux scheduler managed to allow all the threads of a single
fine grain job to execute simultaneously even with extremelyhigh loads, thus considerably shortening
the elapsed execution time of this job. We believe that the job collections presented in this chapter, in
which an increasing number of synchronizing jobs will compete on the system resources, will prevent this
extraordinary success from re-occurring and establish theload as being a crucial parameter.

8.2 Description and Results

The simulations series is composed of an increasingly growing collection of jobs with an identical profile.
The parameters shared by all the simulations we will conductin this section are:

p q in out nosync barrier σ randord
32 100 3% 3% 0 2000 90/15% 1

The simulation will differ in:

Size which may be one ofSIZ = {2, 3, 4, 5, 10, 11, 15, 16, 22, 25, 32}

Maximal spin duration which may be one ofSPN = {CS, CS+, 2CS+}, and

Wakeup schemewhich may be one ofWSCM = {SMART, AIP, SILLY }

Grain which may be one ofGRN = {fine(1%), medium(10%), coarse(100%)}

The total number of simulation sequences is therefore:

|SIZ| × |SPN | × |WSCM | × |GRN | = 11× 3× 3× 3 = 297

Each simulation-sequence begins with a simulation that contains a single job, the next simulation in the
sequence adds another job and thus composed from two jobs with an identical profile, and so on until

91
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the total number of threads in the job collection exceeds 320(= CPU# × 10). Figure 8.1 displays the
results of the all the simulation sequences that used 2CS+ asa maximal spin duration and AIP as a wakeup
scheme.

We have chosen to display only the results of AIP 2CS+ simulations because:

1. this seems to be the most practical choice: SILLY would probably be fixed (at least a minor fix like
the one presented by AIP); SMART is probably too expensive; 2CS+ seems to be superior to CS and
CS+,

2. we would need eight more pages to present the other scheme+spin pairs (because|SPN |×|WSCM | =
9), and

3. most importantly, after comparing these pages, we can report here that they are quite similar and the
differences between them are best presented here in the formof averages and deviations.

When examining the resulting graph, we notice:

• The difference between the results of the simulations conducted here and of those that were con-
ducted in the previous chapter within a non-synchronizing environment: Our prediction that a col-
lection of competing jobs will not allow a high SSR regardless of the load, proved to be true i.e. from
a certain point, spinning doesn’t pay off and is better avoided.

• For all the simulation sequences displayed, there exists anintermediate load range in which the SSR
is bigger than 50%. Job collections composed from smaller jobs manage to achieve a bigger thread
surplus (this will be further elaborated in the next section).

• The difference between the results of the fine grain simulations conducted here and of those that were
conducted in the round-robin homogeneous chapter: High loads cause the SSR curves to go to zero
rather than converging to some value in the south side of 50%.The reason for this is obvious: when
using the Linux SCHEDOTHER scheduler, the order in the ready queue plays an insignificant role
in choosing the next thread to run (simply a tie breaker i.e. the next thread to run form within a pair of
threads with equal goodness is the one that is closest to the head of the ready queue). This is contrary
to the round robin algorithm in which the fact that all the awakened threads are moved together to
the ready queue and are contiguously ordered there, also ensures that they will be scheduled in close
proximity to one another, which ensures in turn that the SSR will be in the neighborhood of 50% (as
each group of threads fails and succeeds to synchronize alternately) .

8.3 Threads Surplus

This section will discuss the threads surplus for whichSSR > 50% was achieved within the various sim-
ulations and its dependency on jobs size, maximal spin duration and wakeup scheme. Note that the surplus
analysis is an important perspective which may be viewed as orthogonal to the speedup considerations
(speedup considerations say: “when running simulationX , it ends faster when we use 2CS+ rather than
CS+”; surplus consideration say: “spinning is worth while for loadX when using 2CS+ but isn’t worth
while for the same load when using CS+”). Figures 8.2 and 8.3 display the threads surplus achieved by fine
and medium grain simulations respectively. These figures differentiate between jobs sizes. The following
however is the average number of threads surplus across all sizes:

wakeup fine grain medium grain
scheme CS CS+ 2CS+ CS CS+ 2CS+

SILLY 10.4 23.8 41.6 6.9 10.4 24.7
AIP 16.7 31.1 45.5 12 14.2 29.9

SMART 16.5 31.1 48.9 10.6 13.8 29.9
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SCHED_OTHER - Homogeneous Job Collection
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Figure 8.1: This figure displays the results of all the AIP 2CS+ simulations. The Y-axis is associated with
the SSR. The X-axis is associated with the number of threads (not jobs) that participated in the simulation,
and it ranges up toCPU# × 10. Curves associated with fine and medium grain jobs manage to sustain
SSR > 50% in the intermediate load but eventually (contrary to the results displayed in the previous
chapter) drop under the 50% threshold and converge to 0 as theload increases. Collections composed from
bigger jobs achieve smaller thread surplus in whichSSR > 50%.
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Maximum Threads Surplus of Simulations Achieving SSR > 50
[SCHED_OTHER, Homogeneous, Fine Grain]
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Figure 8.2: This figure displays the maximal threads surplusof fine grain simulations for whichSSR >
50%, as a function of the job sizes, the maximal spin duration, and the wakeup scheme used. Longer spin
durations achieve bigger surplus. SILLY bars tend to disappear for bigger job sizes. With the exception of
CS, collections composed from smaller jobs tend to produce bigger surplus.
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Maximum Threads Surplus of Simulations Achieving SSR > 50
[SCHED_OTHER, Homogeneous, Medium Grain]
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Figure 8.3: This figure is similar to figure 8.2 with the difference that the threads surplus displayed here is
associated with medium grain jobs. The same observations that were made for the fine grain figure, also
hold for this figure.
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Our conclusions from the surplus figures and the average table are as follows:

• Difference between sizes: As mentioned earlier, the difference between the results of simulations
with different job sizes was that smaller sizes seemed to result in a longer intermediate range with
SSR > 50%. This is evident in both figures associated with fine and medium grain jobs. However,
this observation seems slightly incorrect when examining the surplus of jobs withsize ≥ CPU#

2 .
The reason is that for these sizes, a job collection is “able”to contain only a single surplus job while
sustaining the SSR above the 50% threshold. For example, in the 22 sized job collection the surplus
is 12 threads because22 × 2 − 32 = 12 (22 × 2 is the minimal collection of 22-sized-jobs that is
bigger than theCPU#). The reason that collections composed from smaller jobs manage to sustain
SSR > 50% on bigger loads is prosaic: when the last thread —t1 — of some job completes a
barrier, than all the threads that were awakened as a result,must preempt currently executing threads
in order to joint1. In a competing environment, the probability that this willhappen (i.e. that all the
awakened threads will be able to preempt currently executing threads) gets smaller as the number of
the awakened threads gets bigger (for 2-sized jobs, it’s enough that 1 awakening thread will be able
to preempt; for 3-sized jobs, 2 threads must be able to do thatand so on).

• Maximal spin comparison: In general, when we examine the average surplus, we see thatour
conclusions regarding the maximal spin durations are also applicable to the threads surplus: For fine
grain SMART/AIP simulations, 2CS+ achieve a surplus of∼ 2.5 × CPU#, while CS+ achieve a
surplus of∼ CPU#, and CS achieve only a∼ CPU#

2 surplus. We conclude that for fine/medium
grain jobs, in addition to the fact that bigger spin durations result in a better SSR (and therefore better
speedup) they also greatly effect the maximal load in which spinning is worth while.

• Wakeup scheme comparison: When comparing the averages of the various wakeup schemes,we
see the difference between them is not as dramatic as when comparing spin durations. However, the
fine grain jobs average specifies that SMART was able to sustain SSR > 50% for ∼7 (≈ 20% of
CPU#) more surplus threads than SILLY. This difference in nonnegligible. AIP performs almost as
well as SMART (and sometimes even better) while the surplus achieved by SILLY is always equal
to or less than the surplus achieved by the other schemes.

• Jobs of size 2: Note that for jobs with:2 < size < CPU#
2 , about50% of the associated bar clusters

display a difference between the surplus achieved by the various wakeup schemes. Moreover, for
each size in this range, there exists a〈grain, spin〉 pair for which the associated wakeup-scheme
bars present an unequal surplus. This is not the case for size=2, for which the surplus achieved is
always equal among the different schemes. The reason is thatwhen only one thread is awakened
(which is always the case for jobs of the size 2), there is no difference between the various wakeup
schemes. They differ only when a number of threads wakeup simultaneously i.e. for a single awak-
ened threadt, the actions taken by all three schemes are:

1. if t.processor is idle, assign t tot.processor, otherwise

2. if there exists an idle CPU assignt to the one that is the least recently active, otherwise

3. try to preempt some currently executing task in favor oft.

had there been another awakening thread, SMART would have avoided assigning it to the same CPU
while SILLY might have not done the same.

• SILLY operating on jobs with size ≥ CPU#
2 : Notice that the bars associated with SILLY are

usually non existent for these job sizes. The reason is that job collections that are composed from
relatively big jobs constitute an environment in which SILLY’s vulnerability expresses itself the
most: Consider the case in which a fine grain job collection iscomposed from two jobs —J1 and
J2 — of the size 25. In this case we would expect from the scheduling algorithm to gang schedule
the jobs in an alternating fashion while virtually packing them into two intersecting CPU sets ([9]),
such that:
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– At the “first” time slice (quantum duration) the scheduler would allowJ1’s threads to continu-
ously execute on 25 out of the 32 CPUs whileJ2’s threads are round-robin-like alt synchroniz-
ing on the 7 remaining CPUs.

– At the following time slice,J2’s threads (with gradually increasing priority due to spending
long periods in blocked mode) would become “powerful” enough to take over (via migration)
18 out ofJ1’s CPUs and thus replaceJ1 as the currently executing job, leaving it to alt syn-
chronizing on its 7 remaining CPUs.

The above gives a fairly good description of the execution when AIP or SMART are used. How-
ever, when SILLY is used, wake up common is constantly placed in the position where it must
assign a big number of awakening threads to an equally big number of CPUs, and most of these as-
signments involve migration. In this situation,wake up common simply doesn’t turn on enough
need resched flags (even though all the awakened threads are powerful enough to migrate) and
therefore (a) prevents the powerful job from managing to group and compute together, and (b) de-
prives the “weaker” group at least one CPU thus splitting it to two alt synchronizing groups. Here is
the SSR achieved by the 2CS+ simulation that involved two 25-sized jobs:

Grain SMART AIP SILLY

fine 93.4 94.1 35.2
medium 72 63.3 33.6

These rates coincide with the above explanation.

8.4 Wakeup-Scheme Speedup Comparison

This section will describe the difference between the various wakeup schemes in terms of speedup. Figures
8.4 and 8.5 compare between each pair of wakeup schemes for fine and medium grain respectively.

Note that the displayed speedup is an average across all the job sizes that were discussed in the previous
section. When examining this figures it is clear that the difference between the various schemes is found
only in the intermediate load somewhere between CPU#. . . 2CPU#. The difference between SMART and
AIP for all spin durations is negligible. SMART/AIP are up to50%(fine grain) / 20%(medium grain) faster
than SILLY. However the average speedup is much more moderate. The following is the average speedup
for loads betweenCPU# + 1 ... 2CPU#. Speedup is expressed in percentage by using the same formula
that was used in the previous chapter:

Grain SMART vs SILLY AIP vs SILLY SMART vs AIP
CS CS+ 2CS+ CS CS+ 2CS+ CS CS+ 2CS+

fine 4 10 6 5 9 6 -1 1 -1
medium 2 2 3 2 2 3 0 0 0

The same table for loads2CPU# + 1 ... 10CPU# contains only zeros (i.e. since almost all the spins
fail anyway in such loads, wakeup schemes have no effect).

When comparing the average completion time of SMART/AIP to SILLY simulations (all sizes in-
cluded), we get only a minor speedup of 5-10%. However this average is somewhat misleading: When
we computed the average, we gave each load an equal weight e.g. 3-sized job simulations have a much
larger relative weight in this average than of 25-sized simulations, because the former are associated with
loads=33,36,39,. . . ,63 whereas the latter are only associated with load=50. Following the example given
in the previous section, the table below contains the speedups associated with the job collection composed
from 2 jobs of the size 25:
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Figure 8.4: This figure displays a completion time comparison between each pair of wakeup schemes for
fine grain jobs. The displayed data is an average across all job sizes (e.g. load=33 is an average between
the results associated with a collection of 11 jobs of the size 3, and a collection of 3 jobs of the size 11).
AIP and SMART are quite equivalent and are faster than SILLY,though only when the load is smaller than
2CPU#. For bigger loads, all the spins fail anyway and thus there’sno difference between the various
wakeup schemes.
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Figure 8.5: This figure is similar to figure 8.4 with the difference that the data displayed here is associated
with medium grain jobs (rather than fine grain). The results in this figure are similar to those displayed in
figure 8.4, but the difference between the various schemes ismore moderate.
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Grain SMART vs SILLY AIP vs SILLY SMART vs AIP
CS CS+ 2CS+ CS CS+ 2CS+ CS CS+ 2CS+

fine 56 57 73 49 59 73 14 -4 -2
medium 7 10 31 5 8 24 1 2 9

Again, this shows that the speedup for these kinds of loads issubstantially bigger than the average
speedup that was computed across all sizes (up to factor of 1.7 for 2CS+ fine grain simulations and 1.2-1.3
for medium grain).

8.5 Maximal Spin Duration Speedup Comparison

The previous section compared between the various wakeup schemes for any given maximal spin duration
(i.e. keep spin constant, change scheme). This section willcompare (in terms of speedup) between the
simulations completion time when using the various maximalspin durations, for any given wakeup scheme
(i.e. keep scheme constant, change spin). Figures 8.6 and 8.7 compare between each pair of maximal spin
durations for fine and medium grain respectively. The methodof comparing is the same one used in the
previous section.

When examining these figures, we can roughly divide the displayed load-range into three intervals:

1. [α] = CPU# + 1 ... 2CPU#, where bigger maximal spin durations tend to be faster than smaller
ones.

2. [β] = 2CPU# + 1 ... 3CPU#, an intermediate range in which there is no obvious “winner”i.e.
sometimes bigger spin duration are faster but sometimes they are slower.

3. [γ] = 3CPU#+1 ... 10CPU#, where the bigger the maximal spin duration is, the longer ittakes
a simulation to complete.

Recall that the displayed speedup is an average of all collections of jobs (which vary in size) and therefore
graphs associated with different wakeup scheme look quite similar. However, when examining the speedup
of jobs for whichsize ≥ CPU#

2 we were able to see a more meaningful difference. By again following
the example given in previous sections, when comparing 2CS+to CS, the speedup associated with the
collection composed from 2 fine-grain jobs of the size 25 was of 23% when AIP was used, but of -47% (i.e.
a considerable slowdown) when SILLY was used (because all spins failed, a smaller spin duration resulted
in a faster completion). Having said that, we can now concentrate on the difference between the various
maximal spin durations regardless of the wakeup scheme used. Therefore, we will now present the average
speedup over the intervals defined above, only for AIP simulations (other wakeup schemes have similar
average):

maximal spin fine grain medium grain
duration [α] [β] [γ] [α] [β] [γ]

2CS+ vs CS 25 0 -34 4 -16 -24
CS+ vs CS 17 2 -4 0 -3 -3

2CS+ vs CS+ 11 -4 -28 4 -13 -20

Fine grain jobs spinning for 2CS+ when load is in[α] are 25% faster than when spinning for CS.
This coincides with all our findings so far: Since spinning may succeed within this intermediate range
(as indicated by figure 8.1 page 93), then by choosing a suitable spin duration and thus actually allowing
(more) spins to succeed, the system indeed reduces the overall time of execution even at the cost of longer
spins. Although not effective as in the last chapter, there is no doubt spinning for 2CS+ is better than
its counterparts for homogeneous job collections also (within the boundaries of[α]). Even within the
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Figure 8.6: This figure displays a completion time comparison between each pair of maximal spin durations
for fine grain jobs. Since the data displayed constitutes an average of all the job collections (which vary
in size), the results associated with different wakeup schemes look very similar. We can roughly divide
load into three intervals: (1) until2CPU# in which a bigger spin duration seems to result in a faster
completion, (2) between2CPU# + 1 until 3CPU# in which it is not clear whether longer spinning is
preferable than shorter spinning, and (3) from3CPU#+1 and onwards, in which shorter spinning results
in a faster completion: The curves associated with CS+ vs CS are a bit below zero, because CS+ is bigger
than CS in only one cycle; 2CS+ is much slower than its counterparts because it doubles the spinning
duration.
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Figure 8.7: This figure is similar to figure 8.6 with the difference that the data displayed here is associated
with medium grain jobs (rather than fine grain). Its analysisis quite similar, but here the load-range should
be divided into two intervals (until2CPU#, and from it) such that in the former spinning is probably
preferable and in the latter it’s not.
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[β] interval, spinning for longer durations sometimes manage to outperform the other options. However,
this is balanced by simulations in which the situation was reversed, leading to a speedup/slowdown in the
neighborhood of zero. Finally, in[γ], almost all spins are unsuccessful and therefore the less a job spins,
the better: The difference between CS+ and CS is very small (as indicated by the green curve that is just
below 0 and by the above averages) because CS+ in these simulations is simply one cycle more than CS.
Since it spins double the time, 2CS+ looses (≈ 30% on average) to both CS and CS+.

For medium grain jobs, the analysis is quite similar. The difference is that in[α] 2CS+ is only slightly
faster than its counterparts, and[β] is incorporated into[γ].

8.6 Spin vs. Always-Block

In the previous section we have compared three maximal spin duration — 2CS+/CS+/CS — against each
other and showed that for fine and medium grain jobs, within a load that does not exceed2CPU#, spinning
for 2CS+ achieves better results than the other options. However, this does not prove that spinning is a better
option than not spinning at all. Theoretically, it is possible that the “always-block” policy would achieve
even better results, because then no CPU time would be wastedon spinning at all. Figures 8.8 (associated
with fine grain jobs) and 8.9 (associated with medium grain jobs) prove this to be wrong.

These figures compare each of the above maximal spin durations to the results achieved by a similar
simulation in which the always-block policy was used. Similarly to the previous section, the load range
seems to be naturally partitioned into three intervals:

1. [α] = 1 ... CPU#, where there are more CPUs than running threads, so there is no gain from
blocking.

2. [β] = CPU#+1 ... 2CPU#, the intermediate range in which it seems that spinning is still worth
while. For medium grain jobs, this interval should be further divided by splitting it two sub intervals:
[β1] and[β2] at1.5CPU#, before and after, respectively.

3. [γ] = 3CPU# + 1 ... 10CPU#, where most spins are unsuccessful.

As in previous sections, the difference between the variouswakeup schemes is quite small so we will allow
ourselves to display the average speedup of AIP only (we remark that SILLY’s averages are smaller within
[β] in 5-10%):

load fine grain medium grain
[α] [β] [γ] [α] [β1] [β2] [γ]

2CS+ vs always block 60 41 -107 22 10 -9 -54
CS+ vs always block 60 34 -64 22 7 -13 -29
CS vs always block 60 18 -59 21 6 -13 -25

There is nothing to gain from blocking when the number of threads isn’t bigger than number of CPUs
and therefore it comes as no surprise that within[α], spinning is preferable leading to an average speedup
of 1.6 for fine grain jobs and 1.2 for medium grain jobs (acrossall spin duration since only a small portion
of them is used).

The interesting interval is of course[β] ([β1] for medium grain jobs). In this interval all the maximal
spin duration achieved a positive speedup which means that for this type of jobs, spinning is always prefer-
able than blocking, even when the number of running threads is considerably bigger than the number of
CPUs (up to2CPU# for fine grain and1.5CPU# for medium grain jobs). After we’ve established that
spinning is preferable than always blocking within this interval (regardless of the spin duration) and based
on the previous section (affirmed by the above averages), we conclude that 2CS+ is indeed the preferable
choice for a maximal spin duration within this interval.
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Figure 8.8: This figure compares between the maximal spin durations CS/CS+/2CS+ and the always-block
policy (fine grain jobs). Obviously, when there are more CPUsthan threads there is nothing to gain from
blocking. In the intermediate load-rangeCPU# + 1 ... 2CPU# it seems that 2CS+ usually maintains
a speedup in the neighborhood of 50%. Afterwards, most spinsare unsuccessful and it is better to avoid
spinning all together.
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Figure 8.9: This figure is similar to figure 8.8 but is associated with medium grain jobs (rather than fine
grain). The findings are the same but the speedup/slowdown ismore moderate since spinning takes a
smaller portion of the overall computation time.
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Within [γ], most of the spins are unsuccessful thus spinning for longerdurations results in longer
completion times: up to 100% slowdown for 2CS+ fine grain simulations and approximately half for CS
and CS+ (slowdown is more moderate for medium grain jobs because the relative weight of spinning in
respect to the total amount of computation is smaller).

8.7 Longer Spin Durations

The last issue (briefly) discussed in this chapter concerns bigger spin durations. Our experiments show that
a maximal spin durations longer than 2CS+ usually lead to worse performance. Furthermore, for durations
d1 andd2 for which 2CS+ < d1 < d2, we found that on averaged1 yields shorter execution times than
d2. This result is demonstrated in figure 8.10. It seems that if an awaited (fine grain) thread didn’t “show
up” after a period of 2CS+ has passed, chances are slim it willshow up in the “near” future.
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Figure 8.10: This figure displays how much faster are fine grain AIP 2CS+ simulations in comparison
to similar simulations that use longer maximal spin durations of 4,8 and 12 CS. Evidently, longer spin
duration leads to longer execution time.



Chapter 9

Heterogeneous Collection of
Synchronizing Jons Under the Linux
Scheduler

9.1 Introduction

In chapter 7 our discussion revolved around a job collectionthat contained a single fine grain job within
a non-synchronizing environment. All the system resourcesand mechanisms that were designed to favor
“I/O bound” processes (and were described in chapter 6) served this job and only this job, thus allowing
its threads to execute simultaneously most of the time. Whenchoosing the correct spin duration, this
resulted in a close to 100% SSR regardless of the load. In other words, it is always preferable to spin rather
than block within such a configuration (for a fine grain job). In chapter 8, we have presented the “opposite”
scenario, namely a job collection in which all participating threads are competing on the system’s resources
and doing it in a similar manner (same job size, same grain). This has generated a growing burden on the
system’s resources until a point was reached when every act of spinning was doomed to fail. The domain
found between these two extremes — non-synchronizing environment on one side and a homogeneous
job collection on the other — contains all conceivable job collections. Obviously, we can’t even begin to
analyze every possible heterogeneous job collection. However, we can safely speculate that the results of
such an analysis would be located somewhere between these two extremes.

Though we have conducted numerous simulations of various heterogeneous job collections in order
to verify this speculation, it seems pointless to present their results here and analyze their every aspect
(as we did in the previous chapter) because we would simply berepeating on arguments we have already
stated almost word by word. Instead, we chose to give a fairlysimple example of a heterogeneous job
collection (constructed randomly using a large number of seeds), and through this example to demonstrate
the above. We believe that such a job collection that contains a variety of jobs with different profiles, will
have a positive effect on the scheduler and will allow it to bemore successful in handling fine grain jobs
within bigger loads. Constructing such a job collection is analogous to taking one step away from the
homogeneous job collection and towards the non-synchronizing environment scenario.

9.2 Description

In order to simulate a heterogeneous job collection we used the simulator random permutation mode (as
described in section 5.1.5 page 46). We will classify the threads according to theirµ values. The only
constraint on the chosen random job-permutations was that arepresentative of each job-class must appear
in their “beginning” (i.e. if there are 3 job-classes, then we will find a job from each such class within
the first 3 “places” of the permutation). The parameters shared by all the simulations which we will now
analyze are the same as those that were used in the previous chapter (section 8.2 page 91).

107
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The size of the jobs that will participate is expressed by thefollowing distribution:

2− 8 : 2, 9− 16 : 1

(this distribution syntax was defined in section 5.1.3 page 46). The reasons for choosing this distribution
are:

1. We wanted to allow the total number of threads that participate in the simulations sequence, to
gradually increase (instead of jumping for example from load 30 to load 60) so that we will be able to
continuously monitor the change in the SSR. We therefore decided that only jobs withsize ≤ CPU#

2
would participate in the example presented here.

2. The weights of the two intervals in the distribution were chosen such that approximately half of the
threads in each simulation will belong to jobs for which2 ≤ size ≤ CPU#

4 , and the other half will
belong to jobs for which:CPU#

4 < size ≤ CPU#
2 . This is the reason the weight of the′2 − 8′

interval equals double the weight of the′9 − 16′ interval (i.e. for each one “big” job there are two
“small” jobs). Note however that on average, there are a bit more threads belonging to “big” jobs
because the expected size of such a job is 12.5 while the expectation of the size of a “small” job is 5
(which means the actual small:big thread ratio is 4/5).

Theµ (computation interval expectation) of the jobs is given also in a distribution form:

1%− 2% : 1, 3%− 20% : 1, 21%− 90% : 1

such that the first, second and third intervals are associated with fine, medium and coarse grain jobs re-
spectively. Recall that in this simulationσ = 90/15% andCS = 6% and therefore 20%-of-quantum is the
largestµ value for which 90% of the computation-intervals will be found within its “CS-neighborhood”
(i.e. 90% of the computation intervals will be in[µ− 3%, µ + 3%]). Biggerµ values will result in a wider
dispersal of computation intervals. Note that we chose to use our “traditional” value ofσ (expressed as
a percentage ofµ) rather then to define it as a distribution. The implicationsof randomly choosing theσ
(regardless ofµ) were discussed in the analysis of the heterogeneous round robin simulations (sections 5.3
and 5.4). Our findings here regarding this issue are similar to those described in the associated round robin
chapter, namely that a job’s granularity is determined bothby µ and byσ, if both of them are not small
enough then the job should avoid spinning. Other then that, the effects of such jobs — with smallµ and
big σ or vice versa — on other job classes within the job collectionwere minor.

Much like in the previous chapter, we have compared between the various wakeup schemes and maxi-
mal spin durations. Each simulation was conducted 20 times using 20 different seeds.

9.3 Results

Within the context of this work, the SSR metric proved to be a good method for assessing whether spinning
is worth while and a strong correlation between SSR and speedup was established. Therefore, we chose to
present the SSR achieved by the various job classes in our example job collection. Figure 9.1 displays the
SSR evolution of AIP 2CS+ simulations (only four out of the twenty seeds used are displayed).

Let’s examine the graph associated with seed=0:

• The load in the last simulation that achievedSSR > 50% was 91 (surplus of 59 threads).

• The (randomly created) job collection was composed at that point from ten jobs:

job size 2 5 7 10 11 13 16

number of jobs 1 2 1 1 3 1 1
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Heterogenous SCHED_OTHER: SSR of AIP, 2CS+
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Figure 9.1: This figure displays the SSR evolving of AIP 2CS+ simulations (associated with 4 out of the
20 seeds we used).

• These jobs divided into job classes as follows:

grain size µ

fine 5,7,11 1
medium 5,11,13,16 7,14,17,20
coarse 2,10,11 68,74,88

It is therefore interesting to compare the fine grain curve ofthis graph to the homogeneous collection SSR
graphs associated with sizes 5. . . 11 (figure 8.1, page 93). Unsurprisingly, the former achieves better rates
than those displayed by the latter.

Figure 9.2 presents the average SSR (across all seeds) achieved by fine and medium grain job classes.
When comparing this surplus to the average surplus of the homogeneous simulations that was presented in
the first table in section 8.3 (average over all sizes), we cansee that the heterogeneous surplus is usually
similar to or higher than of the homogeneous simulations (upto 14 threads difference). For example,
homogeneous AIP 2CS+ fine grain simulations achieved an average surplus of 45.5 threads while the
associated heterogeneous surplus is 52.2 threads. The exception to this rule is medium grain AIP/SMART
2CS+ simulations for which homogeneous simulations achieved better average than their heterogeneous
counterparts. However this make sense when considering howthe average surplus of the homogeneous
simulations was computed: as explained earlier, smaller jobs had much higher relative weight than larger
ones (recall that smaller jobs achieve better SSR). Within the heterogeneous average however, all jobs have
equal weight. Actually, when considering this explanation, the difference between the heterogeneous and
homogeneous fine grain surplus, seems more impressive.

Another interesting issue is the comparison between the completion time achieved by simulations using
the various spin durations and the completion time achievedwhen always-block was used. It was hard to
predict what would be the results of such a comparison because contrary to job collections in the previous
chapter that only included jobs of a certain type (fine grain jobs for example), the heterogeneous collections
include a variety of jobs. This means (for example) that for load≤ 2CPU#, a 2CS+ maximal spin duration
works in favor of the fine grain jobs within the collection. But, the collection also contains coarse grain jobs
for which any spin period is a total waste of time that only delays the end of the computation. The same
argument could be applied for example on the CS maximal spin duration (bad for fine grain, but better than
2CS+ for coarse grain jobs). Figure 9.3 displays this comparison. The result is quite nice: it shows that
the above pros and cons were balanced in this particular heterogeneous job collection. When examining
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Maximum Threads Surplus of Simulations Achieving SSR > 50
(SCHED_OTHER, Heterogenous, Avg Over 20 Seeds)
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Figure 9.2: This figure displays the average surplus achieved by the heterogeneous simulations. The num-
ber within the brackets specify the absolute deviation of the surplus achieved. Usually, the surplus presented
here is similar to or higher than the average surplus achieved by the homogeneous simulations. This is true
even though smaller jobs had a much higher relative weight than larger ones within the homogeneous
average surplus computation.

the associated homogeneous graph (the AIP section in figure 8.8) we can see that the 2CS+ curve usually
presents a∼ 1.5 speedup all through theCPU# + 1 ... 2CPU# intermediate range, while the CS curve
presents a sharper decline and intersects with the zero axisshortly afterload = 1.5CPU#. In figure 9.3
this is not the case: The CS curve is much closer to the 2CS+ andboth of these curves present a positive
speedup untilload = 2CPU#. The reason for the first observation was already explained (the 2CS+ fine
grain gain is balanced with its coarse grain loss). The reason for the second observation seems to be simply
because of the positive effect a heterogeneous job collection has on the scheduler performance.
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Figure 9.3: This figure displays the average speedup of the various fixed spin durations in comparison to
the always-block policy. The average was computed over all seeds for AIP heterogeneous simulations.
For load ≤ 2CPU#, it seems that CS simulations present a speedup which is muchcloser to the 2CS+
speedup in comparison to the results displayed in figure 8.8 for heterogeneous job collections. In addition,
heterogeneous CS simulations manage to achieve a speedup for higher loads than those presented in figure
8.8.

The final point we will discuss is what happens when we increase the machine’s CPU number. In order
to examine this, we have conducted an additional number of simulations sequences which are similar to
those described in section 9.2 with the following parameters change:
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number of CPUs size distribution

64 2− 16 : 2, 17− 32 : 1
128 2− 32 : 2, 33− 64 : 1
256 2− 64 : 2, 65− 128 : 1

For these simulation sequences, figure 9.4 displays the comparison between the completion time achieved
by 2CS+ and always-block AIP simulations (similarly to figure 9.3 but only for 2CS+ and with various
machine sizes). As before, all the simulations were executed 20 times using 20 different seeds and the
displayed results constitute the averages of all these executions. Evidently, as we enlarge the machine,
the intermediate range in which it is preferable to spin, shrinks. Nevertheless, for larger machines in the
magnitude of 128 and 256 CPUs, it is clear that while the load is smaller than1.8CPU# spinning will still
achieve better performance than blocking.
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Figure 9.4: This figure displays the comparison between the 2CS+ and always block AIP simulations.
Different curves are associated with machines with different number of CPUs. We can see that the effect of
enlarging the machine is the shrinking of the intermediate range in which spinning is a better option than
blocking.
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Chapter 10

Discussion and Conclusions

Our goals in this research were to gain a better understanding of parallel-barrier based applications oper-
ating in a multitasking environment, and check the implications of high loads on such applications. We
hope these understandings will serve designers and implementors of barrier algorithms. The following is a
discussion and a summary of the central issues presented in this work.

Load Based Barrier Algorithm

A main contribution of this work is identifying that within the barrier synchronization context, load should
be a dominant factor in the decision of whether to spin or block. Most of our empirical results have shown
that when the total number of threads in the system exceeds2CPU#, most spins will fail and therefore
are better avoided. We have shown that any fixed spin algorithm is inferior to the always block algorithm
for loads higher than2CPU#. When comparing the performance of the fixed-spin (2CS+) andalways-
block algorithms under such loads, we have witnessed a slowdown of up to a factor of 4. We conclude that
whenever there’s a threads-surplus (i.e. the number of threads is bigger than the number of processors), a
barrier algorithm should consider spinning only within theintermediate load, namely when this surplus is
smaller thanCPU#.

We have pointed out one exception to this rule: a single synchronizing job executing within a non-
synchronizing environment. For such a job collection, we have shown that by choosing the appropriate spin
duration, the job’s threads succeed to execute simultaneously most of the time regardless of the load (the
transition point effect). We conjure this will also be the case when a small number of synchronizing jobs
(with a total number of threads smaller thanCPU#) will execute within a non-synchronizingenvironment.
We remark that such job collections are probably less commonthan the more diverse collections. The
reason is that the only form of “I/O” that was done by threads in this work was barrier synchronization
and therefore non-synchronizing threads played the role ofCPU bound threads. This means that a “non-
synchronizing environment” actually means “non-synchronizing environment of CPU bound threads”. It
is reasonable to assume that in real world heavily loaded systems, we will also find sequential I/O bound
threads and threads that perform other types of synchronization. Nevertheless, this type of job collections
present a real dilemma to the barrier algorithm described above: Although chances are that when the
threads-surplus is bigger thanCPU# it is better to block immediately rather than to spin, there’s a positive
probability that spinning is actually worth while. This dilemma will be further addressed towards the end
of this chapter.

Alternating Synchronization

Another important contribution of this work is the identification of the alternating synchronization pattern:
When jobs do not manage to synchronize, they tend to fall intothis computation pattern, in which the
job’s threads form two contiguous groups in the ready queue.The first group reaches the barrier, spins,
and blocks. When the second group runs, the barrier is completed, and all the processes in the first group
are released again into the ready queue. Alt synchronization was found to be the dominant computation
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pattern of barrier based applications executing within loaded systems. Almost all our findings are related
and can be explained based on this phenomenon (e.g. the SSR asymptotes, the scenario before a transition
point etc). A popular assumption among researchers is that the occurrence of synchronization events obeys
some time invariant canonical probability distribution (Lim & Agarwal [21] assumed Poisson arrivals of
synchronizing threads, and based on this assumptions have shown that uniform distribution is reasonable
model of wait times for barrier synchronization). Alt synchronization refutes this assumption for barrier
based applications (indeed, Lim & Agarwal’s experimental results didn’t support their theoretical model).

The SSR Metric

Within this work we have frequently used the Successful-Spin-Rate as a metric. This metric was defined to
be the percentage of cases in which a thread succeeds to synchronize while spinning, excluding the last one
to arrive. We have established a strong correlation betweenoverall speedup and SSR, namely when the SSR
was high (higher than 50%) it meant that spinning was worth while in terms of shortening the execution
time. Generally, when evaluating a synchronization spinning strategy, the best way to do it is by measuring
a suite of programs to see whether the performance is better than (for example) the traditional always-
block approach. However this method’s main drawback (as mentioned in [16]) is that many programs
(such as operating systems components or window systems) cannot be measured by elapsed time because
machine clocks’ resolution might be too coarse and because the behaviors of the programs depend on many
unpredictable, non-repeatable factors. In such cases the SSR metric is a reasonable option. We remark that
the SSR metric must be used carefully because it can be easilyabused, e.g. an always-spin algorithm will
always achieve 100% SSR.

Barrier vs. Lock Synchronization

Within the context of (mutex) lock synchronization, Karlinet al. [16] have considered spinning as worth
while only when the lock which a thread is attempting to acquire is held by another concurrently-running
thread. We have shown that the barrier synchronization mechanism is fundamentally different than the lock
mechanism in the sense that when a thread reaches a synchronization point, its very own arrival probably
means that the awaited threads (in the consecutive synchronization point) are now being scheduled to run.
The alt synchronization computation pattern implies that the practical meaning of following the policy
suggested by Karlin et al. (in barrier context) would be to always block. This is contrary to our findings
that within the intermediate load, always block is inferiorto the fixed spinning policy.

Optimal Spin Duration

For our example priority based scheduling algorithm, we have shown that the very popular CS duration
of fixed spinning is not enough for a fine grain parallel job attempting to complete a barrier. Indeed,
a CS duration gives an awakened thread enough time to resume its execution. But, it denies from this
thread the possibility to actually complete its short computation phase and therefore from reaching (in
time) to the synchronization point in which its peer threadsare waiting (while spinning). We have further
shown that before all the threads of a job succeed to group together and execute simultaneously, the job
usually performs what we referred to as “tail chasing” alt synchronization. This type of computation pattern
mandates an even longer spinning period of 2CS+.

Some might be tempted to think that a 2CS+ period of busy waiting is too long. The obvious rational
behind such an option is that this period is longer than the duration it takes to suspend and resume the
waiting thread. However, we have shown that a spin duration of 2CS+ maximize the probability of the
event in which all the threads of a job execute simultaneously. When such an event occurs then (a) frequent
context switching (due to each barrier !) is avoided and (b) only a small portion of the maximal spin
duration is actually used. The combination of these two factors leads to shorter overall execution time.
2CS+ has been proven to be superior to any shorter maximal spin duration (including always-block as
mentioned before). Our experiments have also shown that longer maximal spin duration led to performance
degradation.
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We remark that within the context of communicating processes in a cluster of workstations, Arpaci-
Dusseau et al. [2] have chosen 5CS to be the optimal maximal spin duration.

Job Granularity Classification

In general, we would like coarse grain jobs not to spin. The decision whether to spin or immediately block
is trivial when the granularity of a job is known. This is a luxury we had in the context of this work, but
a real world barrier algorithm will most likely be forced to somehow conclude or guess this information.
In case this algorithm will produce a bad decision, a loaded system might suffer due to coarse grain jobs
performing “hopeless” spinning. When 2CS+ is a very short period, then this issue should probably be
ignored by a barrier algorithm [21]. However, this work suggests that for the Linux scheduler, such a
duration might be in the order of thousands of cycles (when the system is loaded). It is therefore reasonable
to consider some sort of a granularity classification mechanism. For the priority based algorithm, the
usually unavoidable alt synchronization computation pattern before a job’s threads succeed to execute
simultaneously, suggests that guessing the granularity based on the near past spin successes/failures (such
as the variable-competitive-algorithms presented in [16]) is not a good option. This is true because when a
fine grain job is alt synchronizing, then most recent synchronization attempts have probably failed which
will lead such an adaptive algorithm to decide to block rather than spin (even though the job has potential
to soon reach a transition point). A possible alternative tothese methods is for the barrier mechanism to
maintain (for each thread) an average of the elapsed time between its few recent synchronization trials
(within the same quantum !). The largest average constitutes a good approximation on the job’s granularity
for barrier synchronization purposes. On modern processors, measuring this elapsed time can be done very
efficiently [8] (order of tens of cycles i.e. few nanoseconds).

Wakeup Schemes

When the last thread of a parallel job completes a barrier (i.e. it’s the last to arrive to a synchronization
point), the priority based scheduler checks whether consequently awakened threads (if they exist) can be
immediately scheduled to execute. It is therefore faced with the problem of determining which awak-
ened thread would be assigned to which processor. The question that follows is how much computational
resources should a scheduler invest in this decision. This work has presented and evaluated three such
wakeup schemes (with an increasing complexity):

1. SILLY, the is simplest wakeup scheme. It iterates throughthe awakened threads and tries to find the
“best” processor for each such thread. The current iteration has no recollection of previous iterations’
decisions.

2. AIP, which is a mildly improved version of the SILLY scheme. It performs exactly the same oper-
ations, but “remembers” its previous decisions and therefore (whenever possible) avoids assigning
two awakened threads to the same processor.

3. SMART, the most sophisticated (and probably impractical) scheme. All the local considerations
done by SILLY/AIP for each individual thread, are made global by SMART.

When not considering the actual cost of SMART, our findings have shown that usually SMART leads to
faster results than AIP, which in turn leads to faster results than SILLY. However, they have also shown that
(a) when choosing the proper maximal spin durations, and (b)when the job collection is diverse, then the
difference between the various wakeup schemes is not more than 10% speedup. For job collections that
were composed from fairly large jobs (size > CPU#

2 ), SILLY was found to have a serious flaw and the
other two schemes were found to be approximately 70% faster than it (within the intermediate load). The
answer to the question of how much effort should the scheduler put in to the decision of which awakened
thread to assign to which processor is therefore: not much, i.e. AIP suffices. Requiring that the wakeup
scheme will not assign more than one thread to a given processor seems reasonable and easy to (efficiently)
implement. In addition, AIP is much simpler than SMART, yet leads to almost identical performance.
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Possible Barrier Algorithm and a Retrospect on Round-Robin

The analysis of the Round-Robin scheduler as the first phase of this work, helped in providing insights
and intuition regarding the manner in which barrier based applications behave within high loads. This
intuition proved to be valuable when we proceeded to the analysis of the more complex priority based
Linux-2.4 scheduler. However, after completing the analysis of the latter, it too seems to shed some light
on the former. The Round-Robin algorithm may be viewed as a simplified version of the more complex
priority based scheduler in which all threads have equal priority all the time. When a thread reaches
a synchronization point and triggers the awakening of currently blocked threads,both algorithms try to
immediately schedule the awakened threads. The differenceis found in the means at the disposal of each
algorithm: a priority based algorithm may schedule an awakened thread (a) by preferably assigning the
awakened thread to an idle processor or (b) by preempting another low priority thread in favor of the
awakened thread. Round-Robin however, may only perform theformer, i.e. if no processors are idle at the
time in which a thread is awakened, then there is probably little chance for its peers to complete the next
barrier successfully. This notion suggests the following barrier algorithm (in the context of Round-Robin):
when a spinning thread has successfully completed a barrierb and the following two conditions hold:

1. as a result of the completion ofb, other threads from its job have changed state from blocked to
ready, and

2. currently there are no idle processors

the spinning thread should immediately release its processor rather than continuing for another iteration,
in an effort to join the other threads in a single sequence in the ready queue, thus enhancing the chance of
future synchrony. The virtues of jobs being contiguously ordered in the ready queue were demonstrated in
this work when we identified and discussed the “grace period”in which the SSR is high, and spinning is
generally worth while.

The above algorithm also seems to settle the conflict regarding what is the optimal maximal-spin-
duration within a system that uses a Round-Robin scheduler.A threadt will spin if at least one of the
above two condition doesn’t hold: If (2) doesn’t hold then there exists an idle processor and thereforet
need not surrender its processor. On the other hand if (1) doesn’t hold, then there’s a strong possibility all
the threads oft’s job are currently executing and therefore the widely accepted maximal spin duration of
CS seems like a reasonable choice.

We remark that a similar algorithm may also work for prioritybased algorithms when changing the
second condition from “currently there are no idle processors” to something like “currently the number
of ready tasks is bigger than the processors number”. Another idea of a fairly simple barrier algorithm
(which is perhaps a generalization of the suggested algorithms, both for Round-Robin and for priority
based schedulers) is for a spinning thread to release its processor if condition (1) holds, and if one of the
awakened threads was not assigned a CPU by the wakeup scheme (this will often happen when the system
is heavily loaded with competing jobs). Such an algorithm will solve the dilemma presented earlier in this
chapter when the load based barrier algorithm was introduced.

These algorithms may overcome the CPU# surplus boundary we have presented in this work, and
possibly allow successful synchronization even for diverse job collections executing within higher loads.
The design and evaluation of such algorithms are left for future research.

Misfeatures of the Linux-2.4 Scheduler

Finally, a specific remark regarding the Linux scheduler. While analyzing the Linux-2.4.5 SCHEDOTHER
scheduler as an example priority based scheduling algorithm, we came across three misfeatures:

1. Aside from its drawbacks which where mentioned above, theSILLY wakeup scheme introduces a
race condition that might cause processors to “get lost” i.e. it’s possible to have ready threads waiting
for a processor, while some processors are idle. We have suggested a very simple and efficient
solution to eliminate this race (AIP).
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2. Changing the default quantum duration form 200ms (Linux-2.2) to 50ms (Linux-2.4) caused the
value of thePROC CHANGE PENALTY parameter to be arbitrarily large. Its value in the current
configuration precludes I/O-bound threads from preemptingCPU-bound (low priority) threads when
this preemption involves migration. The quantum duration change had a similar effect on both
SAME ADDRESS SPACE BONUS andPREEMPTION THRESHOLD.

3. A 5 ticks quantum duration (as a result of onlyHZ=100 clock interrupts per second on all archi-
tectures aside from Alpha) seems to be too coarse. The current resolution of the Linux scheduler
makes it impossible (for example) to define aPREEMPTION THRESHOLD smaller than 20% of the
maximal (default) priority. Recent studies [7] have shown thatHZ=1000 (and therefore 50 ticks per
quantum) seems to be feasible.
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