
Minimizing Dependencies within Generic Classes
for Faster and Smaller Programs

Dan Tsafrir† Robert W. Wisniewski† David F. Bacon† Bjarne Stroustrup⋄

†IBM T.J. Watson Research Center

{dants,bobww,bacon}@us.ibm.com

⋄Texas A&M University

bs@cs.tamu.edu

Abstract
Generic classes can be used to improve performance by al-
lowing compile-time polymorphism. But the applicability of
compile-time polymorphism is narrower than that of run-
time polymorphism, and it might bloat the object code. We
advocate a programming principle whereby a generic class
should be implemented in a way that minimizes the depen-
dencies between its members (nested types, methods) and its
generic type parameters. Conforming to this principle (1) re-
duces the bloat and (2) gives rise to a previously unconceived
manner of using the language that expands the applicabil-
ity of compile-time polymorphism to a wider range of prob-
lems. Our contribution is thus a programming technique that
generates faster and smaller programs. We apply our ideas
to GCC’s STL containers and iterators, and we demonstrate
notable speedups and reduction in object code size (real ap-
plication runs 1.2x to 2.1x faster and STL code is 1x to 25x
smaller). We conclude that standard generic APIs (like STL)
should be amended to reflect the proposed principle in the
interest of efficiency and compactness. Such modifications
will not break old code, simply increase flexibility. Our find-
ings apply to languages like C++, C#, and D, which realize
generic programming through multiple instantiations.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Polymorphism; D.3.3 [Programming Lan-
guages]: Data types and structures

General Terms Design, measurement, performance

Keywords Generics, templates, SCARY assignments and
initializations, generalized hoisting

1. Introduction
Generic programming is supported by most contempo-
rary programming languages [24] to achieve such goals as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’09 October 25–29, 2009, Orlando, Florida, USA
Copyright c© 2009 ACM 978-1-60558-734-9/09/10. . . $10.00

compile-time type safety. In languages like C++, C#, and D,
generic programming also allows for improved performance
through compile-time polymorphism as follows [48, 36].
Rather than generating only one version of the code (by us-
ing dynamic binding to hide the differences between type
parameters), the compiler emits a different code instantia-
tion for each new combination of the parameterized types. It
is therefore able to perform static binding, which enables a
host of otherwise inapplicable optimizations, notably, those
based on inlining. The price is a potential increase in object
code size, sometimes denoted as “bloat” [8, 29, 4].1

Generic classes often utilize nested types when defining
their interface [9, 25]. A notable example is the iterators of
STL, the ISO C++ Standard Template Library. STL is among
the most widely used generic frameworks. We will use it
throughout this paper to demonstrate our ideas (in Section 8
we will generalize to other libraries/languages). The iterator
concept is interwoven in almost every aspect of STL.

Nested classes implicitly depend on all the generic pa-
rameters of the outer class in which they nest. Consider for
example the STL sorted containerstd::set<T,C,A> (which
stores items of the typeT, compares items with a compara-
tor of the typeC, and (de)allocates memory with an allocator
of the typeA). If two sets agree onT but disagree onC or
A, then the corresponding nested iterators are of different
types. This means that the code snippet in Figure 1 does not
typically compile due to type-mismatch errors.

set<int,C1,A1>::iterator i1;

set<int,C2,A1>::iterator i2 = i1; // different comparator

set<int,C1,A2>::iterator i3 = i1; // different allocator

Figure 1. Can this code have a valid meaning? Can it be com-
piled by existing compilers? Can it be useful?

And indeed, our repeated experience is that, when pre-
sented with Figure 1, well-read and experienced program-
mers initially react negatively and feel that this code snip-
pet is in flagrant violation of the type system. When further
presented with a “hypothetical” possibility that the snippet

1 The resulting generated code can actually be smaller than what is obtained
when using dynamic binding; but this is unrelated to our definition of
“bloat”, which is theincreasein size caused byadditional instantiations.

might nevertheless compile on existing compilers, they do
not understand the semantics of the code, and they fail to see
why it could ever be useful.

This paper is dedicated to refuting the perception of pro-
grammers regarding Figure 1. Specifically, we show that it
is possible (and rather easy) to implement the nested type
(the iterator) and its encapsulating class (the container)in a
way that makes Figure 1 be ISO standard conforming and
accepted by existing unmodified C++ compilers. We further
show that doing so is highly beneficial, because it yields a
superior design that has two important advantages:

1. it emits less code when instantiating generic algorithms,
and so it yields smaller executables, and

2. it allows us to write faster programs and improve the
performance, by utilizing statements as in Figure 1.

Consequently, the answer to the questions raised in the cap-
tion of Figure 1 is “yes”.

1.1 Minimizing Dependencies

Let us denote assignments and initializations like those
shown in Figure 1 as “SCARY assignments”.2

We contend that a container design that explicitly allows
SCARY assignments to compile is more correct than a de-
sign that does not allow them. The well-known design prin-
ciple that underlies this claim is that independent concepts
should be independently represented and should be com-
bined only when needed [49]. The inability to compile Fig-
ure 1 serves as indication that this principle was violated,
because it proves that iterators depend on comparators and
allocators, whereas STL iterators need not depend on com-
parators or allocators, as there is nothing in the ISO C++
specification that indicates otherwise.

We note that the only meaningful implication of such un-
warranted dependencies is that SCARY assignments do not
compile and so the aforementioned benefits (reduced bloat,
better performance) are prevented. The fact that the specifi-
cation of ISO C++ is silent regarding this issue (namely, it
does not specify whether or not iterators should depend on
comparators and allocators) attests the lack of awareness to
our proposed approach and its benefits.

Technically, the unwarranted dependencies can be easily
eliminated by moving the definition of the nested iterator to
an external scope and replacing it with an alias to the now-
external iterator; by using onlyT as its generic parameter,
we eliminate the unwarranted dependencies. Doing so al-
lows Figure 1 to compile under unmodified compilers and
provides semantics to its SCARY assignments: the iterators
i1, i2, andi3 have the same type, which is a generic class that
only depends onT. The iterators thus becomeinterchange-

2 The acronym SCARY describes assignments and initializations that are
Seemingly erroneous (appearingConstrained by conflicting generic param-
eters), butActually work with theRight implementation (unconstrained bY
the conflict due to minimized dependencies).

able, regardless of the comparators and allocators utilized by
the associated containers. So while the SCARY assignments
appear “new” and possibly counterintuitive, there is no need
to invent new semantics and to modify the compiler and lan-
guage in order to make them work.

1.2 Improving Performance

When programmers need to handle objects with different
types in a uniform manner, they typically introduce an ab-
straction layer that masks the differences between the types.
For example, to uniformly handle a “Circle” and a “Trian-
gle”, we use runtime polymorphism and make them part of
a class hierarchy headed by an abstract “Shape” base class.

The same technique (introducing an abstract base class)
is used to handle iterators with different types in a uniform
manner. But when dependencies are minimized as advocated
above, the type differences may no longer exist, making iter-
ators interchangeable and obviating the need for abstraction
and runtime polymorphism. (This is analogous to discover-
ing that “Circle” and “Triangle” actually have the same type
and are in fact interchangeable.) As noted, runtime polymor-
phism incurs a performance penalty (e.g., hindering inlin-
ing), which is avoided if compile-time polymorphism and
static binding are employed instead. This is the source of
our performance improvement.

Notice, however, that the improvement isnot merely the
result of minimizing dependencies, which is necessary but
insufficient for this purpose. Rather, programmers must pro-
gram in a certain way: theymust utilize SCARY assign-
ments, as these constitute the only way by which the inter-
changeability can be exploited to improve the performance.

In Sections 2 and 3 we show how to solve the classical
multi-index database problem without and with SCARY as-
signments, and we highlight the advantages of the latter ap-
proach. In Section 4 we evaluate the competing designs us-
ing microbenchmarks and a real application, and we demon-
strate speedups between 1.2x to 2.1x for the application.

1.3 The Need for Standardization

Since the above benefits are nonnegligible and since obtain-
ing them is nearly effortless, we contend that classes should
be implemented to allow SCARY assignments. But this is
not enough. We further contend that ability to utilize SCARY
assignments should be specified as part of the API; other-
wise, their use would be nonportable and might break with
different or future versions of an implementation.

The general conclusion is that designers should be mind-
ful when utilizing nested types as part of the interface.
Specifically, they should aspire to minimize the dependen-
cies between the inner classes and the type parameters, and
they should specify interfaces to reflect that. This will not
break existing code. Rather, it would provide programmers
with the flexibility to leverage the interchangeability, and, as
discuss next, it would eliminate code bloat caused by over-
constrained inner classes.

vendor compiler operating system iterator

1 Intel C++ Compiler 11.0 Professional (ICC) Windows dependent
2 Microsoft Visual C++ 2008 (VC++) Windows dependent
3 IBM XL C/C++ V10.1 (xlC) AIX dependent
4 Sun Sun Studio 12 C++ 5.9 OpenSolaris, Linux dependent
5 Borland CodeGear C++ Builder 2009 Windows dependent

6 GNU GCC 4.3.3 *NIX not dependent
7 Intel C++ Compiler 11.0 Professional (ICC) Linux(using the STL of GCC) not dependent
8 IBM XL C/C++ V10.1 (xlC) Linux (using the STL of GCC) not dependent

Table 1. Iterators may be declared as inner or outer, and therefore they may or may not depend on the comparator and allocator; the
compiler’s vendor is free to make an arbitrary decision. Until now, this has been a non-issue. (Listing includes most recent compiler versions
as of Feb 2009. The “iterator” column is based on the default compilation mode. Borland has recently sold CodeGear to Embarcadero Tech.)

1.4 Reducing Code Bloat

Replacing inner classes with aliases that minimize depen-
dencies reduces code bloat for two reasons. First, it unifies
redundant multiple instantiations of the inner classes. With-
out this unification, member methods of a nested iterator
could be instantiated once for each comparator and alloca-
tor combination, even though all instantiations yield identi-
cal object code. The second, more important, reason is that
any generic algorithm for which the inner class serves as a
type parameter would, likewise, be uselessly duplicated. For
example, iterators are used to parameterize most STL algo-
rithms (e.g.,std::copy, std::find, std::sort, etc.). When such
an algorithm is used, any change in the iterator type will
prompt another algorithm instantiation, even if the changeis
meaningless.

Reducing bloat by replacing inner classes with aliases can
be further generalized to also apply to member methods of
generic classes, which, like nested types, might uselesslyde-
pend on certain type parameters simply because they reside
within a generic class’s scope. (Again, causing the compiler
to uselessly generate many identical or nearly-identical in-
stantiations of the same method.) To solve this problem we
propose a “generalized hoisting” design paradigm, which
decomposes a generic class into a hierarchy that eliminates
unneeded dependencies. We define this technique in Sec-
tion 5, apply it to standard GCC/STL containers in Section 6,
and show that the resulting code can be up to 25x smaller.

1.5 Generalizing

We note that generalized hoisting is not just useful to min-
imize dependencies between member methods and generic
parameters; it can also be similarly applied as an alterna-
tive way to minimize dependencies between member classes
(that is, inner classes) and generic parameters. Accord-
ing to this doctrine, instead of moving the iterator defini-
tion to an external scope, we could (1) define a base class
for std::set<T,C,A> that is parametrized by onlyT, and
(2) move the iterator definition, as is, to this base class. Con-
sequently, generalized hoisting can be viewed as a general-
ization of our idea from Section 1.1.

1.6 Contributions and Paper Roadmap

The novelty of our work isnot in coming up with a technical
way to reduce the dependencies between inner classes and
type parameters (see Table 1). Rather, it is (1) in identifying
that this issue matters, (2) in recognizing that minimizing
dependencies between the members and the type parameters
of a generic class is a valuable design principle that can be
utilized to improve performance and reduce bloat, (3) in
conceiving SCARY assignments and generalized hoisting
that make it possible to realize and exploit this principle,
and (4) in doing the experimental work that quantifies the
benefits and substantiates the case.

To summarize, our contribution is a technique that can
reduce the amount of emitted generic code and make it
run faster. This statement is supported by Sections 2–6 (as
described above) in the context of C++. We then discuss how
the compiler and language can provide support to our ideas
(Section 7), we generalize our results to other programming
languages (Section 8), we discuss related work (Section 9),
and we conclude (Section 10).

2. Motivation
In this section we describe the problem chosen to demon-
strate the benefits of the technique we propose (Section 2.1).
We then describe the two standard ways to solve the problem
(Sections 2.2 and 2.3). In Section 3 we will develop a third,
nonstandard, solution that utilizes SCARY assignments, and
we will compare it to the latter two.

The three solutions are short, which allows us to provide
their full (compiling) code, promoting clarity, and, more
importantly, allowing us to precisely identify the reasonsfor
the performance benefits of our approach.

2.1 The Problem

In a nutshell, what we want is a database of items that
(1) is sorted in different ways to allow for different traver-
sal orders, and that (2) supports efficient item insertion, re-
moval, and lookup. Numerous applications make use of such
databases. For brevity, we assume that the items are integers
(these may serve as “handles” to the associated objects). Let

operation return complexity description
add (int i) void O(K · logN) addi to the database
del (int i) void O(K · logN) deletei from the database
begin (int k) Iter t O(1) return iterator to beginning of database when sorted by thek-th sorting criterion
end (int k) Iter t O(1) return iterator to end of database when sorted by thek-th sorting criterion
find (int k, int i) Iter t O(logN) return iterator toi within sequence that starts withbegin(k), returnend(k) if not found

Table 2. The operations we require our database to support. The variable i denotes an item and may hold any value. The variablek denotes
a sorting criteria and is in the rangek = 0, 1, ... ,K-1. TheIter t type supports the standard pointer-like iterator operations.

K denote the number of different sorting criteria, and let
N denote the number of items that currently populate the
database. Table 2 specifies the database operations and their
required runtime complexity.

The operationadd and del respectively add and delete
one item to/from the database and do so inO(K · logN)
time. The operationsbegin andend respectively return the
beginning and end of the sequence of items that populate
the database, sorted by thek-th sorting criterion. Both oper-
ations return an object of the typeIter t, which is an iterator
that supports the usual iterator interface (of primitive point-
ers) similarly to all the STL containers; e.g., Figure 2 shows
how to print all the items ordered by thek-th sorting crite-
rion. All the operations in Figure 2 areO(1), includingbegin
andend and the iterator operations (initialization “=”, in-
equality “!=”, increment “++”, and dereference “∗”). Con-
sequently, the entire traversal is done inO(N) time.

Iter t b = db.begin(k);

Iter t e = db.end(k);

for(Iter t p=b; p != e; ++p) { printf(”%d ”, ∗p); }

Figure 2. Iterating through the multi-index database using the
k-th sorting criterion and printing all items.

The last supported operation isfind, which searches fori
within the sequence of database items sorted by thek-th
criterion. If i is found, the associated iterator is returned
(dereferencing this iterator would yieldi); otherwise,end(k)
is returned. Thus, if users just want to check whether or not
i is found in the database (and do not intend to use the re-
turned iterator), they can arbitrarily use, e.g.,k=0, as below:

if(db.find(0,i) != db.end(0)) { /∗found! ... ∗/ }

(An arbitraryk can be used, because findingi in some sorted
sequence meansi is found in all the other sequences.) Users
may alternatively be interested in the returned iterator of
some specifick, e.g., if they want to examine the neighbors
of i according to a specific order. The runtime complexity of
find is O(logN).

2.2 Using an Abstract Iterator

If the stated problem appears familiar, it is because it is sim-
ilar to the problem that motivates the classic iterator design
pattern as defined in the seminal work by Gamma et al. [23,
pp. 257–271] and as illustrated in Figure 3. The solution is

Aggregate

virtual Iterator begin() = 0

virtual Iterator end() = 0

Iterator

virtual operator++() = 0

virtual operator!=() = 0
virtual operator=() = 0

virtual operator*() = 0

Concrete Aggregate 2

Concrete Aggregate 1 Concrete Iterator 1

Concrete Iterator 2

Iterator begin() { return new ConcreteIterator2(this) }

Client

Figure 3. The classic iterator design pattern. While the notation
is adapted to match that of STL iterators, the latter do not model
the classic pattern, and they have a narrower applicability.

also similar. We are going to implement each sorting cri-
terion as a container (“concrete aggregate”) that is sorted
differently. Naturally, we are going to use STL containers
(these are readily available and provide performance similar
to that of hand-specialized code), such that each container
employs a different comparator. But different comparator
types imply different iterator types, whereas Table 2 dictates
just one iterator type for all sorting criteria. We therefore
have no choice but to utilize an abstract iterator base classin
order to hide the type differences as shown in Figure 3.

We stress that, contrary to common belief [17, 19, 53],
C++/STL iterators donot model the classic design pattern.
They do not involve runtime polymorphism and dynamic
binding, there is no iterator base class, and different con-
tainers have different iterators that do not share a common
ancestor. STL iterators are thus more performant (facilitate
inlining), but they are applicable to a narrower range of prob-
lems. In particular, they are not applicable to our problem,
which requires dynamic binding as illustrated in Figure 3.

Figures 4–8 include the complete database implementa-
tion, and Figure 9 exemplifies how to define one database
instance. We shall now address these figures one by one.

Figure 4 showsSorter t, which is the abstract “aggre-
gate” interface (for each sorting criterion there will be one
Sorter t). Figure 5 usesSorter t to implement the database
in a straightforward way. IfSorter t’s insertion, deletion, and
lookup areO(logN), and if itsbegin andend areO(1), then
the database meets our complexity requirements (Table 2).

struct Sorter_t {

virtual ~Sorter_t() {}

virtual void add (int i) = 0;

virtual void del (int i) = 0;

virtual Iter_t find (int i) = 0;

virtual Iter_t begin() = 0;

virtual Iter_t end () = 0;

};

Figure 4. The aggregate (pure virtual interface).

struct Database_t {

std::vector<Sorter_t*> v;

const int K;

Database_t(const std::vector<Sorter_t*>& u) : v(u), K(u.size()) { }

void add (int i) { for(int k=0; k<K; k++) v[k]->add(i); }

void del (int i) { for(int k=0; k<K; k++) v[k]->del(i); }

Iter_t find (int k, int i) { return v[k]->find(i); }

Iter_t begin(int k) { return v[k]->begin(); }

Iter_t end (int k) { return v[k]->end(); }

};

Figure 5. The database encapsulates a vector of aggregates.

// IB_t = Iterator Base Type

// IA_t = Iterator Adapter Type

struct IB_t {

virtual ~IB_t() {}

virtual bool operator!=(const IB_t& r)= 0;

virtual IB_t& operator= (const IB_t& r)= 0;

virtual IB_t& operator++() = 0;

virtual int operator* () = 0;

virtual IB_t* clone () const = 0;

};

template <typename IntSetIter_t> struct IA_t : public IB_t {

IntSetIter_t i;

const IA_t& dc(const IB_t& r) // dc = downcast (IB_t to IA_t)

{ return *dynamic_cast<const IA_t*>(&r); }

IA_t(IntSetIter_t iter) : i(iter) {}

virtual bool operator!=(const IB_t& r) { return i != dc(r).i; }

virtual IB_t& operator= (const IB_t& r) { i=dc(r).i; return *this;}

virtual IB_t& operator++() { ++i; return *this; }

virtual int operator* () { return *i; }

virtual IB_t* clone () const { return new IA_t(i); }

};

Figure 6. Left: the abstract (pure virtual) iterator interfaceIB t. Right: a concrete implementationIA t of the iterator interface. As the
latter is generic, it in fact constitutes a family of concrete implementations. Specifically, it adapts anystd::set<int,C>::iterator to theIB t

interface, regardless of the specific type of the comparatorC.

struct Iter_t {

IB_t *p;

Iter_t(const Iter_t& i) {p=i.p->clone(); }

Iter_t(const IB_t& i) {p=i.clone(); }

~Iter_t() {delete p; p=0; }

bool operator!=(const Iter_t& r) {return *p != *r.p; }

Iter_t& operator++() {++(*p); return *this;}

int operator* () {return **p; }

Iter_t& operator= (const Iter_t& r)

{delete p; p=r.p->clone(); return *this;}

};

Figure 7. The Iter t proxy rids users from the need to work with
pointers to iterators, and from having to explicitly deallocate them.
This is the class which is used in Figures 4–5.

template<typename IntSet_t>

struct Container_t : public Sorter_t {

IntSet_t s;

typedef typename IntSet_t::iterator INative_t;

Iter_t wrap(const INative_t& i)

{return Iter_t(IA_t<INative_t>(i));}

Container_t() {}

virtual void add (int i) {s.insert(i); }

virtual void del (int i) {s.erase(i); }

virtual Iter_t find (int i) {return wrap(s.find(i));}

virtual Iter_t begin() {return wrap(s.begin());}

virtual Iter_t end () {return wrap(s.end());}

};

Figure 8. The generic (template)Container t adapts any
std::set<int,C> type to theSorter t interface, regardless of the
type ofC.

Figure 6 (left) showsIB t, which stands for “iterator base
type”. This is the abstract iterator interface. It declaresall the
pointer-like iterator operations as pure virtual. For reasons
to be shortly addressed,IB t is not the iterator type used in
Figures 4–5. For the same reasons, in addition to the pointer-
like operations,IB t also declares theclone operation, which
returns a pointer to a copy of the iterator object; the copy
resides on the heap and is allocated withnew.

As noted, theconcreteiterators and containers we use
as examples are the highly optimized STL containers and
iterators. STLstd::sets are suitable for our purposes, as
they sort unique items by user-supplied criteria, and they
meet our complexity requirements. However, we cannot use

STL containers and iterators as is. We must adapt them to
our interfaces. Figure 6 (right) showsIA t, which stands
for “iterator adapter type”. This generic class adapts any
set<int,C>::iterator type to theIB t interface, regardless
of the actual type of the comparatorC. Having to handle
different iterator types necessitatesIA t’s genericity.

IB t andIA t are seemingly all that we need to complete
the implementation of our database. But technically runtime
polymorphism only works through pointers or references,
typically to heap objects. While in principle we could define
Iter t (from Table 2) to be a pointer, this would place the
burden of explicitlydelete-ing iterators on the users, which
is unacceptable. The solution is to defineIter t as a proxy to

struct lt {

bool operator() (int x, int y) const {return x < y;}

};

struct gt {

bool operator() (int x, int y) const {return x > y;}

};

Container_t< std::set<int,lt> > cont_lt;

Container_t< std::set<int,gt> > cont_gt;

std::vector<Sorter_t*> v;

v.push_back(&cont_lt);

v.push_back(&cont_gt);

Database_t db(v);

Figure 9. Creating a database that utilizes two sorting criteria,
under the design that abstracts the iterator, which is implemented
in Figures 4–8. (Variables withlt or gt types are function objects.)

bool cmp_lt(int x, int y) {return x < y;}

bool cmp_gt(int x, int y) {return x > y;}

typedef bool (*CmpFunc_t) (int x, int y);

typedef std::set<int,CmpFunc_t> Sorter_t;

typedef Sorter_t::iterator Iter_t;

Sorter_t set_lt(cmp_lt);

Sorter_t set_gt(cmp_gt);

std::vector<Sorter_t*> v;

v.push_back(&set_lt);

v.push_back(&set_gt);

Database_t db(v);

Figure 10. Creating the database with the design that abstracts
the comparator is simpler, requiring only Figure 5 and threeaddi-
tional type definitions. (Compare with Figure 9.)

an IB t pointer, as shown in Figure 7. We can see thatIter t
manages the pointer without any user intervention.

Figure 8 completes the picture by showingContainer t,
the generic class that adapts anystd::set<int,C> type to
the Sorter t interface, regardless of the type ofC. Once
again, having to handle differentstd::set types meansCon-
tainer t must be generic. Notice howContainer t uses its
wrap method to transform the STL iterator into anIter t.

Figure 9 demonstrates how the database may be defined.
This example uses two sorting criteria in the form of two
comparator classes:lt (less than) andgt (greater than), re-
sulting in ascending and descending sequences. Two corre-
spondingstd::sets are defined and adapted to theSorter t in-
terface by using the genericContainer t. Although the two
containers have different types, they have a common ances-
tor (Sorter t), which means that they can both reside in the
vectorv that is passed to the database constructor.

2.2.1 Drawbacks of Using an Abstract Iterator

OurDatabase t has some attractive properties. It efficiently
supports a simple, yet powerful set of operations (as listedin
Table 2), and it is flexible, allowing to easily configure arbi-
trary collections of sorting criteria. The price is the overhead
of abstraction and of runtime polymorphism.

Let us compare the overheads of using a database that has
only one sorting criterion (K=1) to using a nativestd::set
directly. Obviously, the two are functionally equivalent,but
there are several sources of added overhead.

Firstly, the five set operations listed in Table 2 require an
additional virtual function call, as they are invoked through
theSorter t base class. Conversely, when usingstd::sets to
invoke the same operations, no virtual calls are involved.

Secondly, those operations that return an iterator require
dynamic memory allocation throughnew; this memory is
laterdeleted when the iterators go out of scope. In contrast,
std::sets do not invokenew or delete in these operations.

Finally, every iterator operation (increment, dereference,
equality test, and assignment) incurs an additional virtual

call overhead when (indirectly) used through theIB t inter-
face. This price might be heavy when compared to native
std::set iterators, because the latter are not only non-virtual,
but are also inlined. The overhead is magnified by the fact
that iterator operations are typically sequentially invoked for
N times when traversing the items of the container.

2.3 Using an Abstract Comparator

There is a second standard way to implement our database,
which is far simpler. In Section 2.2, we used a collection
of std::set<int,C> containers with differentC comparators
in order to implement the different sorting criteria. This
mandated us to deal with the fact that the containers (and
associated iterators) have different types. We have done so
by abstracting the variance away through the use of the
aggregate and iterator interfaces (Sorter t andIB t), and by
adapting thestd::sets and their iterators to these interfaces.

Multiple sorting criteria may be alternatively imple-
mented by abstracting the comparatorC, such that all
std::sets use the same comparatortype, but each is associ-
ated with a different comparatorinstance. As the sets agree
on C, they have identical types, and so their iterators have
identical types too. Our implementation would therefore be
exempt from handling type variance.

Indeed, to implement this design, we only need the code
in Figure 5 along with the following three type definitions:

typedef bool (*CmpFunc t) (int x, int y);

typedef std::set<int,CmpFunc t> Sorter t;

typedef Sorter t::iterator Iter t;

(we no longer need the code in Figures 4, 6, 7, and 8).
A CmpFunc t variable can hold pointer-to-functions that

take two integers as input and return true iff the first is
“smaller” than the second. The variable is not bound to a spe-
cific value and thus abstracts the comparator away.3 Accord-

3 If we need to add state to the comparison functions and turn them into ob-
ject functions, we could do so by using a comparator that has aCmpFunc t

ingly, we define theSorter t type asset<int,CmpFunc t>,
which eliminates the need for Figures 4 and 8. We likewise
define the iteratorIter t to beset<int,CmpFunc t>::iterator,
which eliminates the need for Figures 6 and 7.

Figure 10 shows how the new implementation of the
database may be instantiated. Similarly to the example given
in Figure 9, we use two sorting criteria. But this time, instead
of function objects, we use ordinary functions:cmp lt and
cmp gt; both have a prototype that agrees with theCmp-
Func t type, and so both can be passed to constructors of
objects of the typeSorter t. We next instantiate two objects
of theSorter t type,set lt andset gt, and, during their con-
struction, we provide them with the comparator functions
that we have just defined. (Sorters and comparators are as-
sociated by their name). As planned, we end up with two
objects that have the sametypebut employ different com-
paratorinstances. We can therefore push the two objects to
the vectorv, which is passed to the database constructor.

2.3.1 Drawbacks of Using an Abstract Comparator

At first glance, it appears that abstracting the comparator
yields a cleaner, shorter, and more elegant implementation
than abstracting the iterator (instead of Figures 4–8 we only
need Figure 5). Moreover, abstracting the comparator does
not generate any of the overheads associated with abstract-
ing the iterator (see Section 2.2.1), because we do not use
the abstraction layers depicted in Figure 3. It consequently
seems as though abstracting the comparator yields a solu-
tion that is superior in every respect. But this isnot the case.
There is a tradeoff involved.

Sorted containers likestd::set, which are required to
deliver O(logN) performance, are inevitably implemented
with balanced trees. When a new item is inserted to such a
tree, it is compared against each item along the relevant tree
path. If the comparator is abstracted, each comparison trans-
lates to a non-inlined function call (this is the price of run-
time polymorphism). But if the comparator is not abstracted,
its code is typically inlined, as it is known at compile time.
For example, in Figure 9, comparisons resolve into a hand-
ful of inlined machine operations. This observation applies
to insertion, deletion, and lookup. (Later, we quantify the
penalty of abstract comparators and show it is significant.)

We conclude that there are no clear winners. If users want
to optimize for iteration, they should abstract the compara-
tor. (Comparators do not affect the iteration mechanism in
any way, as discussed in the next section.) But if they want
to optimize for insertion and deletion, they should abstract
the iterator instead. In the next section, we show that it is in
fact possible to obtain the benefits of both approaches.

3. Independent Iterator: The New Approach
Let us reconsider the two alternative database designs from
the previous section. The specification of the problem (Ta-

data member, which is invoked in the “operator()” of the class [29].

ble 2) requires supporting iteration over the database accord-
ing to multiple sorting criteria using the same iterator type.
We have utilizedstd::sets with different comparators to al-
low for the different sorting criteria, and we were therefore
required to face the problem of having multiple iterator types
instead of one.

The heart of the problem can be highlighted as follows.
Given two comparator typesC1 andC2, and given the fol-
lowing type definitions

typedef std::set<int,C1> S1 t; // sorting criterion #1

typedef std::set<int,C2> S2 t; // sorting criterion #2

typedef S1 t::iterator I1 t;

typedef S2 t::iterator I2 t;

the iterator typesI1 t andI2 t are different. In the previous
section we have dealt with this difficulty by either

1. adaptingI1 t and I2 t to an external iterator hierarchy
rooted by a common ancestor which is an abstract iterator
(Section 2.2), or by

2. morphingI1 t andI2 t into being the same type, by favor-
ing to usemultiple instancesof one abstract comparator
type, over usingmultiple typesof comparators that are
unrelated (Section 2.3).

Both solutions required trading off some form of compile-
time polymorphism and excluded the corresponding inlin-
ing opportunities. Importantly, the need for abstraction has
arisen due to a perception that has, so far, been undisputed:
that if we instantiate a generic class (std::set) with differ-
ent type parameters (C1 andC2), then the type of the cor-
responding inner classes (I1 t andI2 t) will differ. We chal-
lenge this perception, both conceptually and technically.

3.1 The Conceptual Aspect

As noted, the data structure underlingstd::sets is inevitably
a balanced search tree, because of theO(logN) STL-
mandated complexity requirement. A distinct feature of
search trees is that the order of the items within them is
exclusivelydictated by the structure of the tree [12]. Specifi-
cally, by definition, the minimal item in a tree is the leftmost
node; and (assuming the search tree is binary) the successor
of each nodex is the leftmost item in the subtree rooted by
x.right (if exists), or the parent of the closest ancestor of
x that is a left child. These two algorithms (“minimal” and
“successor”) completely determine the traversal order. And
both of themneverconsult the keys that reside within the
nodes. Namely, the algorithms are entirely structure-based.

As keys are not consulted, then, obviously, the compara-
tor function associated with the tree (which operates on
keys) is unneeded for realizing an in-order traversal. Like-
wise, as nodes are not created or destroyed within the two
algorithms, the memory allocator of the tree is unneeded too.

template<typename T, typename C, typename A> class set {

public:

class iterator {

// code does not utilize C or A ...

};

// ...

};

template<typename T> class iterator {

// ...

};

template<typename T, typename C, typename A> class set {

public:

typedef iterator<T> iterator;

// ...

};

Figure 11. Left: the iterator is dependent on the comparatorC and the allocatorA. Right: the iterator is independent.

It follows that, by definition, in-order traversal is an ac-
tivity which is independent of comparators and allocators.
And since iterators are the technical means to conduct such
a traversal, then, conceptually, iterators should be indepen-
dent of comparators and allocators too. In particular, there is
no conceptual reason that requiresstd::sets that disagree on
comparators or allocators to have different iterator types.4

3.2 The Technical Aspect

The question is therefore whether we are able, technically,to
eliminate the unwarranted dependencies and utilize a single
iterator type for different integerstd::sets that have different
comparators or allocators. The answer is that we can as
shown in Figure 11. All that is required is removing the
code of theiterator class from within the internal scope
of the set, placing it in an external scope, and preceding
it with a template declaration that accurately reflects the
dependencies, including only the item typeT (integer in our
example) and excluding the comparator and allocator types
C andA. The removediterator code is then replaced with
an alias (typedef) that points to theiterator definition that
is now external. The functionality of the alias is identicalto
that of the original class for all practical purposes.5

We conclude that our goal is achievable. Namely, it is
possible to define a nested class of a generic class such that
the nested class only depends on some, but not all, of the
generic parameters. Thus, there is no need to modify the
language or the compiler. Rather, the issue is reduced to a
mere technicality: how the generic class is implemented, or,
in our case, how the STL is implemented.

Table 1 lists several mainstream compilers and specifies
if the std::set iterator class that they make available (in their
default mode) is dependent on the comparator or allocator.
It should now be clear that this specification is a product of
the STL that is shipped with the compiler.

Table 3 lists the four most widely used STL implementa-
tions. All the compilers in Table 1 that are associated with
a dependent iterator make use of Dinkum STL; the excep-
tion is the compiler by Sun, which uses an implementation
that is based on an early commercial version of RogueWave

4 Technically, to share an iterator type,std::sets must agree on the fol-
lowing nested types and nothing else:value type (T), pointer (to T),
const pointer (to T), anddifference type (of subtracting twopointers).
5 Alternatively, we could have (1) defined a base class forstd::set that only
depends onT and (2) cut-and-pasted theiterator to the base class’s scope.

STL iterator
Dinkum dependent
libstdc++ independent
STLPort independent
RogueWave both (depends on version and mode)

Table 3. Standard template library implementations.

STL. Conversely, the compilers with an independent iterator
all make use of the GNU open source libstdc++ STL.

Some compilers ship with more than one STL implemen-
tation and allow users, through compilation flags, to spec-
ify whether they want to use an alternative STL. For exam-
ple, when supplied with the flag “ -library=stlport4”, the Sun
compiler will switch from its commercial RogueWave-based
implementation to STLport; the iterator will then become in-
dependent of the comparator and allocator.

Interestingly, the iterator of the most recent RogueWave
(open source) is dependent on or independent of the com-
parator and allocator, based on whether the compilation is in
debug or production mode, respectively. The reason is that,
in debug mode, one of the generic parameters of the itera-
tor is the specificstd::set type with which it is associated
(which, in turn, depends on the comparator and allocator).
The debug-iterator holds a pointer to the associatedstd::set
instance and performs various sanity checks using thebe-
gin andend methods (e.g., when the iterator is dereferenced,
it checks that it does not point to theend of the sequence).
Such sanity checks are legitimate and can help during the de-
velopment process. But there is no need to make the iterator
dependent on itsstd::set in order to perform these checks;
this is just another example of an unwarranted dependency
that delivers no real benefit. Indeed, instead of thestd::set,
the iterator can point to the root node of the balanced tree
(which, as explained in Section 3.1, should not depend on
the comparator and allocator); thebegin andend of the tree
are immediately accessible through this root.

3.3 The Database with an Independent Iterator

To implement our database with the new approach we need
Figures 4, 5, and 8, as well as the following type definition

typedef std::set<int, SomeC, SomeA>::iterator Iter t;

It does not matter whichC or A we use, because we as-
sume that the iterator do not depend on them. Figure 9 ex-

emplifies how to instantiate this type of database. This is
the same example we used in Section 2.2 (“abstract itera-
tor”). But, in contrast to Section 2.2, we now do not need
Figures 6–7 (the external iterator hierarchy), because all
set<int,C,A>::iterator types are one and the same regard-
less ofC or A, and so there is no reason to introduce an
abstraction layer to hide the differences.

Importantly, notice that, with the current type definition
of Iter t, we now use SCARY assignments in all the figures
involved (4, 5, and 8). Specifically, every return statementin
every method within these figures that has anIter t return-
type is such a statement, because the returned value is asso-
ciated with containers that utilize different comparator types.
Only if these containers share the same iterator type will this
code compile. Thus, this implementation is only valid with
STLs like libstdc++, which define an independent iterator; it
will not compile with STLs like Dinkum.

3.4 Advantages of Using an Independent Iterator

The overheads induced by the new approach are similar to
that of the abstract iterator design (Section 2.2.1) in that
we cannot avoid using theSorter t interface. This is true
because we are utilizing different types ofstd::sets (have
different comparator types), and so thestd::sets must be
adapted to conform to one interface in order to facilitate
uniform access (which is required by the database imple-
mentation in Figure 5). Every operation that is done through
theSorter t interface involves an added virtual function call,
which is entirely avoided when utilizing the abstract com-
parator design. And since there areK sorting criteria, there
are actuallyK such extra function invocations.

This, however, does not mean that the new approach is
inferior. In fact, the opposite is true. To understand why,
assume that the database is currently empty, and that we have
nowadded the first item. In this case, contrary to our claim,
the abstract comparator design is superior, because, as noted,
the new approach inducesK extra virtual function calls that
are absent from the abstract comparator design.

We nowadd the second item. While the abstract com-
parator design avoids the virtual calls, it must compare the
second item to the first. This is done with the help ofK
pointers to comparison functions and therefore induces the
overhead ofK function invocations. Conversely, the com-
parisons performed by thestd::sets of the new approach are
inlined, because the implementation of the comparator types
is known at compile time. Thus, for the second item, the two
designs are tied:K vs.K invocations.

We nowadd the third element. With the new approach,
there are still onlyK function calls; nothing has changed in
this respect. But with the abstract comparator design, there
might be up to2K function invocations (and no less than
K), depending on the values of the items involved.

In the general case, whenever a new item is added, the
abstract comparator design performsO(K · logN) function
invocations (logN comparisons along each of theK inser-

tion paths), whereas the new approach performs exactlyK.
The same observation holds for deletion and lookup.

Focusing on iteration, we note that the new approach does
not (de)allocate iterators throughnew anddelete. The ab-
stract comparator design still has the advantage that itsbe-
gin and end are not virtual. But in accordance to the iter-
ation procedure shown in Figure 2, this advantage occurs
only once per iteration, during whichN elements are tra-
versed. In both designs, the pointer-like iterator operations
that are exercisedN times are identical, as both directly uti-
lize the nativeset<int>::iterator without abstraction layers.
Thus, the advantage due to the one extra virtual call quickly
becomes negligible asN increases. We later show that the
difference is noticeable only whileN ≤ 4.

We conclude that, excluding a few smallN values, the
new approach is superior to the two standard designs: It is
better than the abstract iterator design when iterating and
finding, and it is better than the abstract comparator design
when finding, adding, and deleting.

3.5 Consequences

In relation to our running example, we contend that the
independence of the iterator should be made part of the STL
specification, or else programmers would be unable to use
the new approach if their environment does not support the
right kind of STL, or if they wish to write portable programs
that compile on more than one platform.

But this is just one example. The more general princi-
ple we advocate is that, when designing a generic class,
designers should (1) attempt to minimize the dependencies
between the class’s type parameters and nested types, and
(2) should make the remaining dependencies part of the user
contract, declaring that no other dependencies exist.

Reducing dependencies directly translates to increased
compile-time interchangeability; and explicitly declaring
that no other dependencies exist makes it possible for pro-
grammers to leverage this increased interchangeability for
writing faster programs.

3.6 Disadvantages of Using an Independent Iterator

Independent iterators make one problem slightly worse. As-
sume, e.g., that vectorsv1 andv2 hold elements of typeT
but utilize different allocator types. The following error

p = v1.begin();

q = v2.end();

std::sort(p,q); // error!

can be caught at compile time ifv1 andv2 have different
iterator types (which is the case if the iterator depends on
the allocator); otherwise, the error can only be caught at
runtime. Such problems do occur in real life, however, the
only complete solution is to have related iterators extracted
from their container by code rather than by hand, as is made
possible by C++0x, the upcoming revision of ISO C++.

4. Experimental Results: Runtime
In this section we evaluate the two standard solutions de-
scribed in Section 2 against our proposal from the previous
section. We denote the three competing database designs as:

1. the “iterator design” (Section 2.2),

2. the “comparator design” (Section 2.3), and

3. the “new design” (Section 3.3).

We conduct a two-phase evaluation. In Section 4.1, we use
microbenchmarks to characterize the performance of each
individual database operation. And in Section 4.2, we evalu-
ate the overall effect on a real application.

The experiments were conducted on a 2.4 GHz Intel
Core 2 Duo machine equipped with 4GB memory and run-
ning lenny/sid Debian (Linux 2.6.20 kernel). The bench-
marks were compiled with GCC 4.3.2, using the “-O2” flag.
While running, the benchmarks were pinned to a single core,
and times were measured using the core’s cycle counter; the
reported results are averages over multiple runs. Except from
the default Debian daemons, no other processes were present
in the system while the measurements took place.

4.1 Microbenchmarks

We use four microbenchmarks to measure the duration of
adding, deleting, finding, and iterating through the items.
Figure 12 displays the results. Durations are presented as a
function ofN (number of database items), andN is shown
along thex axis. The “add” microbenchmark sequentially
addsN different items to an empty database, whereN is 2i

for i = 0, 1, 2, ..., 22. The y axis shows how long it took
to perform this work, normalized (divided) byN ·K. (K
was chosen to be 2, as shown in Figures 9–10.) They axis
thus reflects the average time it takes to add one item to one
container associated with one sorting criterion.

The other three microbenchmarks are similarly defined
and normalized: “delete” sequentially erases theN items
in the order by which they were inserted; “find” looks up
each of theN items within the database according to each of
theK sorting criteria (and checks that the returned iterator
is different than the correspondingend of sequence); and
“iterate” traverses theN items (using the procedure shown
in Figure 2) according to each of theK sorting criteria.

The results coincide with our analysis from Section 3.4.

Comparator vs. new Figure 12 illustrates that the new de-
sign adds, deletes, and finds items faster than the comparator
design. Indeed, these activities require repeated item com-
parisons along the associated search tree paths; the compar-
isons translate to function invocations in the comparator de-
sign, but resolve into inlined code in the new design. Itera-
tion, on the other hand, involves no comparisons, and so the
performance of the comparator and new designs is similar.

Figure 13(a) shows the corresponding relative speedup,
defined as the ratio of the duration it takes to perform each

operation under the two competing designs. (Values bigger
than 1 indicate the new design is faster.) Initially, for small
N values, the comparator design may be faster. This happens
because the new design utilizes theSorter t interface and
thus induces one extra virtual function call (two in the case
of the “iterate” benchmark:begin and end). But whenN
is increased, the relative weight of this overhead decreases,
as more and more items must be compared (“iterate”: must
be traversed), such that beyondN=4 the speedup is always
bigger than 1 (“iterate”: equal to 1).

We were initially surprised by the fact that the “find”
speedup is smaller than that of “add” and (sometimes) of
“delete”. As the latter perform a lot more work that does not
involve comparisons (allocation, deallocation, and balanc-
ing), we anticipated that the relative weight of the compar-
isons would be smaller. It turns out that “add” and “delete”
actually require more comparisons, because the underlying
(red black) search tree is generally “less balanced” while
they execute. The reason is that, when we repeatedly add
items and monotonically grow the tree, we systematically
encounter those cases that trigger the balancing activity,
which occurs only when the tree is not “balanced enough”.
(Monotonically deleting items has the same affect.) Such
cases always involve an extra comparison, and “find” never
encounters these cases because it does not alter the tree.

Overall, the speedup behavior is the following. It goes up
(for the reasons discussed above), reaches a kind of steady
state that peaks at nearly 1.7, and then “falls off a cliff”
to a level of around 1.15. We investigated the reason that
causes the fall and discovered that it is tightly connected to
the size of the L2 cache. Figure 14 plots the “delete” speedup
curve and superimposes on it the associated resident set size
(RSS) as reported by the operating system through theproc
filesystem [44]; the RSS reflects the size of physical memory
the benchmark utilized. On our testbed machine, the size
of the L2 cache is 4MB, and according to Figure 14, the
biggest database size to fit within the L2 isN=64K. We can
indeed see that immediately after thatN , the speedup drops.
The reason is that memory accesses can no longer be served
by the cache and require going to main memory. As such
accesses may take hundreds of cycles, the relative benefit of
inlined comparisons within the new design diminishes.

Iterator vs. new By Figure 12, the time to add and delete
items by both designs is similar, which should come as no
surprise because they utilize the same exact code to perform
these activities. The new design, however, finds items and
iterates through them faster than the iterator design. The rea-
son is that, with the iterator design, both activities dynami-
cally (de)allocate iterator instances throughnew anddelete;
moreover, every operation applied to these instances is real-
ized through an abstract interface and induces a virtual func-
tion call (as opposed to the new design that inlines these op-
erations). This was explained in detail in Section 3.4.

 0

 200

 400

 600

 800

 1000

 1200
 1 4 1
6

 6
4

 2
56 1K 4K 16
K

64
K

25
6K 1M 4M

add

tim
e

[c
yc

le
s]

size of database [number of items; log scaled]
 1 4 1
6

 6
4

 2
56 1K 4K 16
K

64
K

25
6K 1M 4M

delete

 1 4 1
6

 6
4

 2
56 1K 4K 16
K

64
K

25
6K 1M 4M

find

 1 4 1
6

 6
4

 2
56 1K 4K 16
K

64
K

25
6K 1M 4M

iterate

iterator
comparator

new

Figure 12. The results of the four microbenchmarks as achieved by the three competing database designs.

 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7

 1 4 1
6

 6
4

 2
56 1K 4K 16
K

64
K

25
6K 1M 4M

a. new vs. comparator

sp
ee

du
p

size of database [number of items; log]

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 1 4 1
6

 6
4

 2
56 1K 4K 16
K

64
K

25
6K 1M 4M

b. new vs. iterator

delete
find
add

iterate

Figure 13. The microbenchmark speedups achieved by the new design
relative to the comparator (a) and iterator (b) designs.

256KB

1MB

4MB

16MB

64MB

 1 4 1
6

 6
4

 2
56 1K 4K 16
K

64
K

25
6K 1M 4M

 1

 1.2

 1.4

 1.6

 1.8

R
S

S
 (

lo
g)

sp
ee

du
p

new vs. comparator: delete

L2 size

la
st

 fi
t i

n
L2

size of database
speedup

RSS

Figure 14. Speedup drops when the microbenchmark’s
resident set size (RSS) no longer fits in the L2 cache.

The associated speedup, shown in Figure 13(b), can
therefore be explained as follows. Initially, for smallN val-
ues, the dynamic (de)allocation is the dominant part, as there
are relatively few items to process. But asN increases, the
price of dynamic (de)allocation is amortized across more
items, causing the speedup ratio to get smaller. The speedup
then enters a steady state, untilN=64K is reached and the
database no longer fits in L2, at which point it drops to a
level of around 1.75.

Throughout the entireN range, the “iterate” speedup is
higher than that of “find”, because the former involves an
additional virtual call (“find” only compares the returned it-
erator toend, whereas “iterate” also increments the iterator).

4.2 Real Application

To evaluate the new design in the context of a real applica-
tion, we use an in-house scheduler simulator, which is used
for researching and designing the scheduling subsystem of
supercomputers such as the IBM BlueGene machines. The
simulator is capable of simulating the schedulers of most
machines within the top-500 list [15], and it has been exten-
sively used for research purposes [41, 21, 20, 50, 46]. Others
have implemented similar simulators [40, 16, 31].

The workload of supercomputers typically consists of a
sequence of jobs submitted for batch execution. Accord-
ingly, years-worth of logs that record such activity in realsu-
percomputer installations are used to drive the simulations.
The logs are converted to a standard format [10] and are
made available through various archives [42, 43]. Each log
includes a description of the corresponding machine and the
sequence of submitted jobs; each job is characterized by at-
tributes such as its arrival time, runtime, and the number of
processors it used. The simulator reads the log, simulates
the activity under the design that is being evaluated, and out-
puts various performance metrics. For the purpose of perfor-
mance evaluation, each log is considered a benchmark.

The simulator is a discrete event-driven program. Events
can be, e.g., job arrivals and terminations. Upon an event, the
scheduler utilizes two main data structures: the wait queue
and the runlist. It inserts arriving jobs to the wait queue and
removes terminating jobs from the runlist. It then scans the
runlist to predict resources availability, and it scans thewait
queue to find jobs that can make use of these resources.
According to various dynamic considerations, the order of
the job-scanning may change; the algorithm that makes use

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

SDSC
CTC

KTH
BLUE

THUNDER

STAR
mean

no
rm

al
iz

ed
ex

eu
ct

io
n

tim
e

logs

iterator vs. comparator vs. new

iterator
comparator

new

Figure 15. Normalized execution time of the three
simulator versions, when simulating six activity logs.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

SDSC
CTC

KTH
BLUE

THUNDER

STAR

logs

a. iterator vs. new

other
add/del
iterate

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

SDSC
CTC

KTH
BLUE

THUNDER

STAR

logs

b. comparator vs. new

Figure 16. Breaking the execution time from Figure 15 to three disjointcom-
ponents: addition/deletion of items, traversal through the items, and the rest.

of the scanning is otherwise the same. Adequate candidates
are removed from the wait queue and inserted to the runlist.

It follows that the main data structures of the simulator
must support functionality similar to that of the database
we have developed earlier. Originally, the simulator was
implemented using the classic iterator design pattern. We
have modified the simulator and implemented the other two
competing designs, such that the one being used is chosen
through a compilation flag. The evaluated scheduler required
four sorting criteria for the wait queue (job arrival time, run-
time, user estimated runtime, and system predicted runtime)
and three for the runlist (termination time based on: real run-
time, user estimated runtime, and system predicted runtime).
The data structures store job IDs (integers) that serve as in-
dices to a vector that is initialized at start-up and holds all
the jobs (and, thus, comparators refer to this vector).

Figure 15 shows the time it takes to complete the sim-
ulation when simulating six workload logs.6 All execution
times are normalized by that of the new design, on a per-log
basis. We can see that the execution time of the iterator de-
sign is x1.7 to x2.1 slower than that of the new design, and
that the execution time of the comparator design is x1.2 to
x1.3 slower, depending on the log.

Figure 16 breaks the execution time to three disjoint com-
ponents: cycles that were spent on adding or deleting jobs
to/from the wait queue and runlist, cycles that were spent
on traversing the jobs, and all the rest. (The simulator does
not utilize the find operation.) We have shown in Section 4.1
that the new design is superior to the comparator design in
terms of adding and deleting; and indeed, the majority of
the difference in their executions times is caused by addition
and deletion. Likewise, we have shown that the new design
is superior to the iterator design in terms of traversing; and
indeed, the majority of the difference in executions times be-
tween these two designs is caused by iteration.

6 The logs span months to years and contain tens to hundreds of thousands
of jobs submitted by hundreds of users operating within different sites
under different load conditions; further details can be found in the Parallel
Workload Archive site [42].

A minor part of the difference is caused by the other op-
erations, which are identical across all designs. We speculate
that this is caused by caching effects that are triggered by the
less efficient parts of the program.

5. Techniques to Reduce Code Bloat
Compilers generate object code. In this section, we focus
on how the code’s size (in bytes) can be affected by re-
ducing unneeded dependencies between the members and
type parameters of a generic class. To this end, we continue
to use STL containers and iterators. But the discussion no
longer revolves around the three designs from the previous
section. Rather, it focuses on the impact of using multiple
type parameters to instantiate a single class, e.g., as is done
in Figure 9, where we usetwo comparator types (lt andgt)
as type parameters. In Figure 10, we only useonetype pa-
rameter (CmpFunc t) and so our discussion does not apply.
The more type parameters that are used, the bigger the ob-
ject code that is emitted. This increase in code is sometimes
referred to asbloat, and this section is about reducing it.

5.1 What We Have Already Achieved

Let us reconsider Figure 11. On its left, the iterator is inner
and thus depends on the comparator and allocator. The de-
sign on its right defines the iterator outside and removes the
unneeded dependencies. We denote these two designs as “in-
ner” and “outer”, respectively. In Section 4, we have shown
how to leverage the outer design to write faster programs.
Here, we additionally argue that it also allows for reducing
the bloat. To see why, consider the following snippet that
copies two integerstd::sets into two matching arrays.

std::set<int,lt> u; // assume u holds N elements

std::set<int,gt> v; // v holds N elements too

int arr1[N];

int arr2[N];

std::copy(u.begin(), u.end(), arr1); // copy u to arr1

std::copy(v.begin(), v.end(), arr2); // copy v to arr2

Suppose we (1) compile this snippet with an STL that uti-
lizes the inner design, (2) generate an executable called
a.exe, and (3) run the following shell command, which prints
how many times the symbolstd::copy is found ina.exe:

nm –demangle a.exe | grep -c std::copy

The result would be 2, indicating that the functionstd::copy
was instantiated twice. In contrast, if we use an STL that
utilizes the outer design, the result would be 1, reflecting the
fact that there is only one instantiation. The reason for this
difference is that, like many other standard C++ algorithms,
std::copy is parameterized by the iterators’ type:

template<typename Src Iter, typename Dst Iter>

Dst Iter std::copy(Src Iter begin, Src Iter end, Dst Iter target);

With the inner design, the iterator types ofu andv are differ-
ent due to their different comparators, which means there are
two Src Iter types, resulting in two instantiations ofcopy.
The outer design has an independent iterator, yielding only
oneSrc Iter and, hence, only one instantiation. The same
argument holds when using several allocator types.

We conclude that, when unneeded dependencies exist, ev-
ery additional type parameter associated with these depen-
dencies results in another instantiation of the algorithm.This
type of bloat is unnecessary and can be avoided by following
the principle we advocate and eliminating the said depen-
dencies. Thus, in addition to allowing for faster code, our
proposal also allows for code that is more compact.

5.2 What We Can Achieve Further

Our above understandings regarding bloat and how to reduce
it can be generalized to have a wider applicability as follows.

The outer design is successful in reducing the bloat of
standard generic algorithms likestd::copy, because such al-
gorithms suffer from no unneeded dependencies. This is true
because (1) every type parameter that is explicitly associated
with any such algorithm is a result of careful consideration
and unavoidable necessity; and because (2) such algorithms
are global routines that reside in no class and hence are not
subject to implicit dependencies.

The latter statement does not apply to algorithms that
are methods of a generic class. For example, all the mem-
ber methods ofstd::set<T,C,A> implicitly depend on the
key typeT, the comparator typeC, and the allocator typeA.
We observe that this triple dependency occurs even if, logi-
cally, it should not. And we note that this is exactly the same
observation we have made regarding member classes (iter-
ators). We contend that this observation presents a similar
opportunity to reduce the bloat.

5.3 Hoisting

Others have already taken the first step to exploit this oppor-
tunity, targeting the case where a method of a generic class is

logically independent of all the generic parameters. For ex-
ample, thesize method that returns the number of elements
stored by thestd::set7

template<typename T, typename C, typename A>

size type set<T,C,A>::size() const { return this->count; }

This method just returns an integer data member (the alias
size type is some integer type) and so its implementation is
independent ofT, C, andA. Yet, for everyT/C/A combina-
tion, the compiler emits another identical instantiation.

The well-known and widely used solution to this problem
is template hoisting[8]. The generic class is split into a non-
generic base class and a generic derived class, such that all
the members that do not depend on any of the type parame-
ters are moved, “hoisted”, to the base class. In our example,
these members aresize andcount, and their hoisting ensures
that size is instantiated only once. Importantly, hoisting in-
duces no performance penalty, as none of the methods are
made virtual and no runtime polymorphism is involved.

Most STL implementations use hoisting to implement
the standard associative containers. These areset, multiset,
map, andmultimap. (Sets hold keys, maps hold key/data
pairs, and multi-containers can hold non-unique keys.) All
the libraries listed in Table 3 implement these containers
using one generic red-black tree class. Henceforth, we only
consider the latter. As explained in Section 3.1, iteration-
related code and the balancing code of the tree need not
depend onT, C, andA, because they are strictly based on the
structure of the tree. And indeed, these routines are typically
hoisted and operate on pointers to the non-generic base class
of the tree’s node. Thus, there is only one instantiation of the
tree “rebalance” method for all the associative containers.

5.4 Generalized Hoisting

We contend that hoisting can be generalized to reduce the
bloat more effectively. Our claim is motivated by the fol-
lowing analysis. We have examined the code of the generic
red-black tree class of GCC and found that nearly all of its
methods either: (1) exclusively depend onT, T/C, or T/A;
or (2) can be be trivially modified to have this type of depen-
dency. We therefore propose to decompose the tree in a way
that removes the other dependencies.

Figure 17 roughly illustrates this idea. On the left, the red-
black tree is defined using one class, so when, e.g., the bal-
ancing code is required, every change inT, C, or A will re-
sult in another duplicate instantiation ofrebalance. The mid-
dle of the figure rectifies this deficiency by creating a non-
generic base class and by hoistingrebalance. There will now
be just one such instance, regardless of how manyT/C/A
combinations there are. The right of the figure takes the next
step and eliminates the remaining unneeded dependencies.

7 In practice,size is inlined; we assume it is not to allow for a short example.

iterator {…}
swap(tree)

rebalance(node)
find(key)

clear()

erase(key)

generalized
hoisting

hoisting

<T,C,A>

rebalance(node)

<>

iterator {…}
swap(tree)

find(key)

clear()
erase(key)

<T,C,A>

rebalance(node)

<>

iterator {…}
swap(tree)

<T>

clear()

<T,A>

find(key)

<T,C>

erase(key)

<T,C,A>

Figure 17. Generalized hoisting decomposes the generic class to reduce dependencies between members and type parameters. In practice,
to avoid the indirection layers caused by a diamond-shape inheritance relation, we will not use multiple inheritance; see details in Section 6.1.

The erase routine needs the comparator to find an item,
and it needs the allocator to deallocate it, so it depends on
T/C/A. This is not the case for thefind routine, which only
depends onT/C, as it merely compares items. Theclear
routine systematically deallocates the entire tree and does
not care about the order dictated by the comparator; it thus
depends on onlyT/A. Finally, the majority of the code of
theswap routine (which swaps the content of two trees in a
way that does not involve actual copying of items) depends
on only T. (The reminder ofswap’s code will be shortly
discussed.) Likeswap, as we have discussed in much detail,
the nested iterator class only depends onT. In Figure 11 we
have suggested to move its definition to an external scope to
eliminate its dependency onC/A. Generalized hoisting is an
alternative way to achieve this goal.

6. Experimental Results: Code Bloat
We have refactoredRb tree, the red-black tree underlying
all associative containers of GCC’s STL, according to the
generalized hoisting design principle. This section describes
our experience and evaluates its success. We note that we
have intentionally constrained ourselves to only applying
trivial changes toRb tree, even though, in some cases, a
more intrusive change would have been more effective.

6.1 Applying Generalized Hoisting to the STL of GCC

Bloat reduction is only applicable to methods that are (1) not
inlined or (2) inlined, but invoke methods that are not inlined
(directly or indirectly). Henceforth, we refer to such methods
asnoninlined. The code of the remaining methods (that are
not noninlined) is re-emitted for each invocation; this is
inherent to inlining and is unrelated to generics’ bloat.

All of GCC’s STL associative containers are inlined
wrappers ofRb tree, and their methods translate to invoca-
tions ofRb tree’s public methods; this wrapping code leaves
no trace after inlining, and is optimized out in its entirety.

Out of the 46 public methods ofRb tree, 29 are nonin-
lined as listed in Table 4 (we are currently only interested in
the method-name column; the other columns are addressed
in Section 6.2). We have refactoredRb tree using three addi-
tional classes:Rb base (depends on onlyT), Rb alloc (T/A),
andRb cmp (T/C), such thatRb alloc derivesstd::allocator

by default (or the user’s allocator if specified),Rb cmp de-
rivesRb base, andRb tree derivesRb cmp and has an in-
stance ofRb alloc. The design is shown in Figure 18. We

Rb_base<T>

Rb_cmp<T,C>

Rb_tree<T,C,A>

Rb_alloc<T,A>

Figure 18. Our refactored tree does not use multiple inheritance.

avoid the diamond-shape inheritance depicted in Figure 17
(virtual multiple inheritance), because it complicates the
memory layout by introducing certain indirection layers that
might incur a performance penalty. (We did not investigate
what this penalty is.) Furthermore, beyond what is already
in the originalRb tree, we categorically did not add calls to
functions that are not completely inlined so as not to degrade
the performance. Namely, we did not add any indirection.

Group i in Table 4 includes the methods that reside in
Rb base (swap) or in an external scope (comparison oper-
ators). The former is comprised of 40 lines of code, only
2 of which (swaping the comparator and allocator) depend
on C/A; we hoist the first 38 lines, and replace the origi-
nal Rb tree::swap with an inlined version that (1) calls the
hoisted version and (2) invokes the remaining 2 lines.

The comparison operators are inlined calls to the global
std::lexicographical compare, which, likestd::copy, operate
on our hoisted iterator, and so it depends on onlyT .

Group ii includes the noninlined methods that copy or
destroy the tree, or destroy a range of iterators. None of these
activities require the comparator, and so this functionality is
moved toRb alloc. Remaining inRb tree is easily splittable
code like copying of the comparator (as inswap).

Groupiii includes the only two routines that actually use
noninlined methods from bothRb cmp andRb alloc. These
routines need to find a range of iterators associated with a
key (there can be more than one in multi-containers) and
useRb cmp::equal range for this purpose. Once found, the
range is deleted with theRb alloc::erase from Groupii . No
refactoring was needed in this case.

method name original . . refactored . . goodness of fit(R2) diff.
b0 d0 b1 c1 a1 d1 original refactored

i. Noninlined code from only Rbbase, or external

1 swap 1 461 369 0 0 45 0.999998 0.999745 48
2 operator>= 104 589 595 0 0 67 0.999998 0.999896 30
3 operator> 104 589 595 0 0 67 0.999998 0.999896 30
4 operator<= 104 589 595 0 0 67 0.999998 0.999896 30
5 operator< 104 589 595 0 0 67 0.999998 0.999896 30

ii. Noninlined code not from Rbcmp

6 erase(iterator,iterator) 381 1004 382 0 944 79 1.000000 0.999992 -20
7 destructor 238 459 237 0 403 45 0.999998 0.999966 12
8 clear 236 542 236 0 402 128 0.999998 0.999987 12
9 operator= 471 1680 491 0 1114 534 1.000000 0.999997 11

10 copy constructor 87 1760 179 0 1019 643 0.995402 0.972517 4

iii. Noninlined code from both Rbcmp and Rballoc

11 erase(key) 375 2080 386 530 942 583 1.000000 0.999999 14
12 erase(key*,key*) 376 2449 392 527 939 952 0.999999 0.999994 14

iv. Noninlined code not from Rballoc

13 insertequal(iterator,value) 187 1633 208 1556 0 88 0.999996 0.999999 -32
14 insertequal(value) 124 992 144 928 0 70 0.999990 0.999991 -25
15 insertequal(iterator,iterator) 177 1493 207 928 0 568 0.999999 0.999999 -32
16 insertunique(value) 166 1144 212 496 0 580 0.999988 0.999999 21
17 insertunique(iterator,iterator) 239 1641 272 496 0 1060 0.9999990.999999 51
18 insertunique(iterator,value) 188 1893 213 496 0 1363 0.999997 1.000000 8

v. Likewise + entirely contained in Rbcmp

19 count(key) const 0 1092 0 1010 0 42 0.999999 0.999980 39
20 count(key) 0 1092 0 1010 0 42 0.999999 0.999979 39
21 rb verify() const 0 681 0 667 0 28 0.999998 0.999916 -14
22 upperbound(key) const 0 343 0 269 0 50 0.999915 0.999946 23
23 upperbound(key) 0 341 0 268 0 50 0.999918 0.999942 23
24 lower bound(key) const 0 343 0 269 0 50 0.999915 0.999946 23
25 lower bound(key) 0 341 0 268 0 50 0.999918 0.999942 23
26 find(key) const 0 343 0 269 0 50 0.999915 0.999946 23
27 find(key) 0 341 0 268 0 50 0.999912 0.999939 22
28 equalrange(key) const 0 699 0 508 0 131 0.999970 0.999637 60
29 equalrange(key) 0 695 0 504 0 131 0.999970 0.999634 60

Table 4. The noninlined methods of GCC’sstd::Rb tree. We model the associated object code size (in bytes) withs̄0(x, y) = b0 + d0xy

(size of original tree) and̄s1(x, y) = b1 + c1x + a1y + d1xy (size of refactored tree). Fitting against the real data is done with the nonlinear
least-squares Marquardt-Levenberg algorithm; the resulting R2 values are nearly 1, indicating the fits are accurate.

The insertion functions in Groupiv do not require any
Rb alloc code except from allocating a new node, which is
done with a short pure inlinedRb alloc function. The first
insert equal methods (13–14) are multi-container versions
that add the new item even if it is already found in the tree.
We move these toRb cmp and change them such that instead
of getting the new key as a parameter, they get an already
allocated node holding that key; we make the newRb tree
versions inlined calls to the associatedRb cmp versions,
and we incorporate the node allocation as part of the call.
These were one-line changes. Method 15 repeatedly invokes
method 14 and so remains unchanged.

The refactoring of theinsert unique methods (16–18)
was different because they correspond to unique contain-
ers (that allocate a new node only if the respective key is
not already found in the tree), and they therefore involve a
more complex allocation logic. We initially left these meth-
ods nearly unchanged, but later realized that they included

several calls to an internal function that we wrapped in in-
lined code, and this repeated code contributed to the bloat.
Fortunately, an easy fix was possible. The methods consist
of a sequence of conditional branches, such that each branch
ends with a call to the internal function; we replace all these
calls with a single call positioned after the branches.

The remaining methods, in Groupv, are query routines
that only use the comparator and perform no (de)allocation.
We move them in their entirety toRb cmp.

6.2 Evaluation

To evaluate the effect of our design, we (1) fixT, (2) sys-
tematically varyC andA, and (3) measure the size of the
resulting object code on a per-method basis. LetT be an
integer type, and let{C1, C2, ..., Cn} and{A1, A2, ..., An}
be n different integer comparators and allocators, respec-
tively. Given a noninlinedRb tree function f, let f j

i be one
invocation ofRb tree<T,Ci,Aj>::f (i.e., the instantiation

of Rb tree’s f when using key typeT, comparator typeCi,
and allocator typeAj). Givenx, y ∈ {1, 2, ..., n}, we define
s(x, y) to be the size, in bytes, of the file that is comprised
of the invocationsf j

i for i = 1, 2, ..., x andj = 1, 2, ..., y.
For example,s(1, 1) is the size of the object file that only
contains the call tof1

1
; s(1, 2) contains two calls:f1

1
andf2

1
;

ands(2, 2) containsf1

1
, f2

1
, f1

2
, andf2

2
.

Figure 19 (left) showss0(x, y) (size of originalswap) and
s1(x, y) (size of refactoredswap), in kilobytes, as a function
of the number of comparatorsx = 1, ..., 5 and allocators
y = 1, ..., 5 (a total of5 × 5 = 25 object files). Most of
swap (refactored version) resides inRb base, and this part is
instantiated only once. In contrast with the original version,
the code is re-instantiated for every additional comparator or
allocator, which explains whys0(x, y) becomes bigger than
s1(x, y) at approximately the same rate along both axes.

We hypothesize that the sizes1(x, y) of each noninlined
refactoredmethodf can be modeled as follows:

s1(x, y) ≈ s̄1(x, y) = b1 + c1x + a1y + d1xy

whereb1 is the size off ’s code (in bytes) that depends on
only T (or nothing) and is thus instantiated only once;c1

is the size off ’s Rb cmp code (depends on onlyC and re-
emitted for each additional comparator);a1 is the size off ’s
Rb alloc code (depends on onlyA and re-emitted for each
additional allocator); andd1 is the size off ’s Rb tree code
(depends on bothC andA and re-emitted for each additional
comparator or allocator). We likewise hypothesize that the
size s0(x, y) of each noninlinedoriginal method can be
modeled as

s0(x, y) ≈ s̄0(x, y) = b0 + d0xy

(c0 = a0 = 0, as the originalRb tree aggregates all the code
and so none of the code is solely dependent onC or A.)

If the modelss̄0(x, y) and s̄1(x, y) are accurate, they
would allow us to reason about the bloat more effectively.

We fit the data (sizes of2 × 29 × 25 = 1450 object files)
against the above two models for all 29 noninlined meth-
ods. The results ofswap, shown in the middle and right of
Figure 19, demonstrate a tight fit. Table 4 lists the model pa-
rameters of all noninlined methods along with the associated
coefficient of determination,R2, which quantifies the good-
ness of the fit. AsR2 is nearly 1 in all cases, we conclude that
the measurements consistently support our models. Hence-
forth we use the models to approximate the size.

Carefully examining the parameters reveals the positive
nature of the change induced by generalized hoisting. First,
note that the sums of the coefficients of the two trees (b0+d0

vs.b1 + c1 + a1 + d1) are similar, as indicated by the “diff”
column that shows their difference. These sums are in fact
s̄0(1, 1) and s̄1(1, 1), reflecting exactly one instantiation of
the respective method. The sums should not differ, as they
are associated with the same code; our new design has an
effect only when more instantiations are created.

Sinces(x, y) ≈ b + cx + ay + dxy, the real goal of the
refactoring is to reduced, the amount of bytes dependent
on bothC and A. We cannot make these bytes go away.
But we can shift them to other parameters; preferably tob
(bytes independent of bothC andA), but also toc or a (bytes
depend onC or A, but not on both). And indeed, comparing
d0 to d1 in Table 4 reveals that we have successfully done so,
asd1 is significantly smaller thand0 across all the methods.
In Groupi, the bytes are shifted tob1, in Groupii to a1, in
Groupsiv andv to c1, and in Groupiii to bothc1 anda1.

Let R(x, y) = s̄0(x, y)/s̄1(x, y) denote thebloat ratio,
expressing how much more code is emitted by the original
implementation relative to the refactored one. Let us focus
on R(x, 1), which reflects the relative price of adding one
more comparator.R(x, 1) depends onx, but only up to a
point, because systematically increasingx meansR(x, 1)
converges toRc = limx→∞ R(x, 1) = d0/(c1 + d1). We
thus defineRc to be thecomparator bloat ratio. We likewise
defineRa = limy→∞ R(1, y) = d0/(a1+d1) to be theallo-
cator bloat ratio, and we defineRac = limx,y→∞ R(x, y) =
d0/d1 to be thejoint bloat ratio. The ratios allow us to quan-
tify the effectiveness of the new design in reducing the bloat;
they are shown in Figure 20 (same order as in Table 4).

There is no difference between the three ratios of methods
in Group i (swap etc.), because most bytes have shifted to
b1, and none exclusively depend onC or A. We can see that,
asymptotically, the originalswap generates 10x more bloat
than our refactored version. In Groupii , adding a comparator
to the original design can be up to 13x more expensive;
though adding an allocator is equally expensive (as all the
code depends on the allocator even in the refactored design).
The comparator and joint ratios are equal in Groupii , asc1 =
0. In Groupsiv–v, an added allocator can be up to 25x less
expensive with the refactored version. (The allocator/joint
ratios are equal becausea1 = 0.) Finally, Groupiii is the
only case where the joint ratio is different, since bothc1 and
a1 are nonzero, namely, some bytes exclusively depend on
noninlinedRb cmp code, and some onRb alloc code.

6.3 Drawbacks of Generalized Hoisting

Unlike nested classes, which we merely need to move out-
side, generalized hoisting requires “real” refactoring. Still,
the changes we applied to theRb tree were trivial, and we
believe that they can be applied by average programmers.
The technique is certainly suitable for library implementers
in terms of their expertise and the cost-effectiveness of their
efforts, from which all the library users would benefit.

In our example, there were only three type parameters
involved, making the refactoring feasible. More parameters
would make things challenging, and we are doubtful whether
our approach would scale. We speculate, however, that the
principles might still apply, and we believe this subject mer-
its further research. One possible approach might beexter-
nalized hoisting: Similarly to nested classes, we can move
any given member methodf to an external scope and replace

original
refactored

model

 1
 2

 3
 4

 5 1
 2

 3
 4

 5

 0
 2
 4
 6
 8

 10
 12

KB

comparators (x)

allocators (y)

KB

 1
 2

 3
 4

 5 1
 2

 3
 4

 5

 0
 2
 4
 6
 8

 10
 12

KB

comparators (x)

allocators (y)

KB

 1
 2

 3
 4

 5 1
 2

 3
 4

 5

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

KB

comparators (x)

allocators (y)

KB

Figure 19. The sizes(x, y) of multipleswap instantiations. Our refactored red-black tree yields nearly an order of magnitude less code
relative to the original GCC tree (notice the scale-change in the vertical axis of the rightmost figure). The models ofs(x, y) are accurate.

 1

 2

 4

 8

 16

 32

swap
operator>=

operator>

operator<=

operator<

erase(iter,iter)

destructor

clear
operator=

copy constructor

erase(key)

erase(key*,key*)

insert_equal(iter,val)

insert_equal(val)

insert_equal(iter,iter)

insert_unique(val)

insert_unique(iter,iter)

insert_unique(iter,val)

count(key) const

count(key)

rb_verify() const

upper_bound(key) const

upper_bound(key)

lower_bound(key) const

lower_bound(key)

find(key) const

find(key)

equal_range(key) const

equal_range(key)

bl
oa

t r
at

io
 (

lo
g

sc
al

e)

(i) (ii) (iii) (iv) (v)

comparator
allocator

joint

Figure 20. Comparing the two designs with the comparator (Rc), allocator (Ra), and joint (Rca) bloat ratios.

it with an inlined version that invokes the now-external func-
tion; the type parameter list of the generic now-externalf
would be minimized to only include its real dependencies.
The drawback is losing the reference to “this”, and having
to supply the relevant data member as arguments.

7. Compiler and Language Support
Some of the bloat reduction achieved through generalized
hoisting can be achieved by compiler optimizations. We are
aware of one compiler, Microsoft VC++, which employs
heuristics to reuse functions that are identical at the assembly
level. This, however, does not produce perfect results [4].
But more importantly, such heuristics are inherently limited
to methods like those from Groupv (Table 4), that require no
manual modification; all the rest of theRb tree methods are
different at the assembly level for different type parameters
(unless the generalized hoisting technique is applied).

In Section 2, we have presented the conventional solu-
tions to the classic multi-index database problem and noted
that they are based on runtime polymorphism. In Section 3
we have utilized SCARY assignments to devise a new so-
lution that is largely based on compile-time polymorphism,
and in Section 4 we have shown that this solution is faster. In
certain cases, it is possible for the compiler to automatically
transform a solution that is based on runtime polymorphism

to a solution that is based on compile-time polymorphism.
But such transformations would require whole-program op-
timization, which would make it inapplicable to most real-
world C++ programs (which rely on dynamic linking).

Replacing inner classes with aliases and decomposing a
class with generalized hoisting can be perceived as “tricks”
we must employ since the language does not directly support
the notion of minimizing dependencies between the mem-
bers and parameters of a generic class. Alternatively, we
might support a general variant of SCARY in the language
and type system by allowing programmers to explicitly spec-
ify dependencies for class and method members of a generic
type. This would, e.g., be done as briefly illustrated in Fig-
ure 21. We intend to investigate this issue in the future.

8. Generalizing to Other Languages
Our findings are applicable to languages that, upon different
type parameters, emit different instantiations of the generic
class. Such languages can utilize compile-time polymor-
phism and the aggressive optimizations it makes possible,
but at the same time, they are susceptible to bloat.

C# is such a language. Unlike C++, C# emits instantia-
tions at runtime as needed, and if the parameters involved
are references (pointer types), the emitted code coalesce to a
common instantiation. (This is somewhat similar to the C++

template<typename X, typename Y, typename Z> struct C {

void f1() utilizes X,Z {

// only allowed to use X or Z, not Y

}

void f2() {

// for backward compatibility, this is

// equivalent to: void f2() utilizes X,Y,Z

}

class Inner_t utilizes Y {

// only allowed to use Y, not X nor Z

};

};

Figure 21. With the “utilizes” keyword, programmers would be
able to accurately express dependencies; compilers shouldbe able
to enforce and exploit this in a straightforward manner.

void∗ pointer hoisting technique [49].) But if the parameters
are “structures” (value types), then a just-in-time (JIT) spe-
cialization is emitted, compiled, and optimized, achieving
performance almost matching hand-specialized code [36].

C#, however, provides a weaker support to type aliasing.
Its “using” directive is similar to C++’s “typedef”, but the
alias only applies to the file it occurs in. This means that it
is currently impossible to hide the fact that the dependencies
were minimized and that the nested class was moved outside;
users must be made aware and explicitly utilize the now-
external type, possibly by changing their code.

We note, however, that support for generic programming
is improving. In 2003, Garcia et al. compared languages
based on several generics-related desired properties (includ-
ing type aliasing), and they generated a table that lists which
language supports which property [24]. The table entries
were 52% “full”. This table was revisited in 2007 [25] and
in 2009 [47], and became 57% and 84% full, respectively.
(We only consider languages that appeared in more than one
table version; C#’s “score” was nearly tripled.) It is therefore
not unlikely that type aliasing would be added to C# in the
future. And this paper provides yet another incentive.

We note in passing that C#’s standard iterators follow the
classic design pattern (iterators implement an abstract inter-
face) and hence pay the price of runtime polymorphism; we
have shown that the overheads can be significant. However,
there is no technical difficulty preventing a C++-like imple-
mentation. And, regardless, our findings are general and ap-
ply to all generic classes, not just to iterators.

Our ideas also apply to D [5]. If the nested class is static,
moving it outside is like doing it in C++, as D supports type
aliasing. But unlike C++ and C#, D also supports non-static
nested classes, which can access the outer object’s members.
And so moving such classes outside means breaking this as-
sociation. While somewhat less convenient, we can resolve
this difficulty by manually adding a data member referring
to the outer object. This presents the designer with a tradeoff
of convenience vs. the benefits detailed in this paper.

Haskell and standard ML are not object oriented lan-
guages, but both can represent nested types within generic
types [9]. Both languages can be implemented in a way that
utilizes multiple instantiations and compile-time polymor-
phism [34, 52], in which case some of our findings apply
(Section 5.1).

Java utilizes generics for compile-time type safety, not
compile-time polymorphism. Thus, our results do not apply.

9. Related Work
In statically-typed languages like C++, Java, and C#, the
use of runtime polymorphism translates to indirect branches,
where addresses of call targets are loaded from memory. In
the early 1990s, Fisher argued that indirect function calls
“are unavoidable breaks in control and there are few com-
piler or hardware tricks that could allow instruction-level
parallelism to advance past them” [22]. Not only does in-
direct branching prevent inlining, but it also hinders oppor-
tunities for other optimizations such as better register alloca-
tion, constant folding, etc. [6]. In addition, pipelined proces-
sors are bad at predicting such branches, inflicting pipeline
flushes that further degrade the performance [33]. Conse-
quently, the problem is the focus of numerous studies.

“Devirtualization” attempts to transform the indirect calls
of a program to direct calls. Static devirtualization, with
whole program optimizers, was applied to language like
C++ [6, 3] and Modula-3 [14]. But in recent years a lot
of effort has been put into dynamic devirtualization in the
context of Java and JIT compiling. The function call graph
is inferred at runtime [2, 54], and, when appropriate, such
information is used for inlining devirtualized calls [13, 1,
32, 27]. (This work is potentially applicable to also C# and
the .NET environment.) In parallel, architecture researchers
have designed indirect branch predictors in an attempt to
elevate the problem [45, 37], and such specialized hardware
is currently deployed in state-of-the-art processors, like the
Intel Core2 Duo [28]. Despite all this effort, the problem is
consistent and prevalent [7, 18, 39, 54, 33].

Compile-time polymorphism attacks the problem in its
root cause, by avoiding indirect branches. It is explicitlyde-
signed to allow generic code to achieve performance com-
parable to that of hand-specialized code [48], a goal that is
often achieved [51, 35, 36, 26]. The programming technique
we propose makes compile-time polymorphism applicable
to a wider range of problems. To exemplify, we have shown
how to utilize the prevalent classic iterator design pattern
[23] in a way that nearly eliminates indirect branching.

Another problem that has spawned much research is ex-
ecutable compaction [3, 11, 30]. Section 5.1 described tem-
plate hoisting [8], which is the dominant programming tech-
nique to reduce code bloat caused by generic programming.
We have generalized this technique to reduce the bloat fur-
ther. Bourdev and Järvi proposed an orthogonal technique
involving metaprogramming and manual guidance [4].

10. Conclusions
We advocate a design principle whereby the dependencies
between the members and the type parameters of a generic
class should be minimized, we propose techniques to realize
this principle, and we show that the principle can be lever-
aged to achieve faster and smaller programs.

Generic programming is utilized by several languages to
produce more efficient code. The full compile-time knowl-
edge regarding the types involved allows for compile-time
polymorphism, which obviates the need for dynamic bind-
ing and enables aggressive optimizations such as inlining.
But the applicability of compile-time polymorphism is in-
herently limited to homogeneous settings, where the types
involved are fixed. When programmers need to handle a set
of heterogeneous types in a uniform manner, they typically
have to introduce an abstraction layer to hide the type dif-
ferences. They therefore resort to traditional runtime poly-
morphism through inheritance and virtual calls, hindering
the aforementioned optimizations.

We show that the homogeneity limitation is not as con-
straining as is generally believed. Specifically, we targetin-
ner classes that nest in a generic class. We make the case that
instantiating the outer class multiple times (with multiple
type parameters) does not necessarily mean that the types of
the corresponding inner classes differ. We demonstrate that
the resulting interchangeability of the latter can be exploited
to produce faster code. We do so by utilizing the canonical it-
erator design pattern (which heavily relies on dynamic bind-
ing) in a novel way that entirely eliminates dynamic bind-
ing from the critical path. We evaluate the proposed design
and demonstrate a x1.2 to x2.1 speedup. While our example
concerns C++/STL iterators, our ideas are applicable to any
generic class within any programming language that realizes
genericity with multiple instantiations (such as C# and D).

We find that, for programmers, obtaining the runtime
speedups is nearly effortless and only requires to use the
language in a previously unconceived manner (“SCARY as-
signments”) that exploits the interchangeability. But forthis
to be possible, two conditions must be met. The first is tech-
nical. The designers of a generic class should carefully con-
sider the relationship between its type parameters and its
nested classes; if an inner class does not depend on all the
type parameters, it should be moved outside and be replaced
with an alias that minimizes the dependencies. This makes
SCARY assignments legal under existing, unmodified com-
pilers. The designers should then declare that no other de-
pendencies exist and thereby allow users to safely exploit the
consequent interchangeability. We thus propose to amend
standard APIs like STL to reflect the suggested principle;
the change will not break old code, but rather, allow for a
“new” kind of code.

The second condition is overcoming the typical initial re-
action of programmers when presented with SCARY assign-
ments, finding it hard to believe that such assignments con-

form to the type system and, if so, are a useful technique. In
our experience, it is easy to change their minds.

A positive outcome of minimized dependencies is re-
duced code bloat, as less algorithm instantiations are needed
(regardless of whether SCARY assignments are utilized).
We suggest a “generalized hoisting” programming paradigm
that generalizes this principle in order to further reduce the
bloat. By this paradigm, a generic class is decomposed into
a hierarchy that minimizes the dependencies between its
generic type parameters andall of its members (inner classes
andmethods), without introducing indirection that degrades
performance. We apply this technique to GCC’s STL and
obtain up to 25x reduction in object code size. Similarly to
our above suggestions, the technique is useful for languages
that realize genericity with multiple instantiations.

We have submitted a proposal [38] to the ISO C++ com-
mittee to change the standard to reflect our ideas in the up-
coming C++ revision, C++0x.

Acknowledgments
We thank the anonymous reviewers for their insightful com-
ments. The first author also thanks Kai-Uwe Bux (Cor-
nell U.), Dilma Da Silva (IBM), Ronald Garcia (Rice U.),
Robert Klarer (IBM) Uri Lublin (Redhat), Nate Nystrom
(IBM), David Talby (Amazon), Michael Wong (IBM), Ami-
ram Yehudai (TAU), and Greta Yorsh (IBM) for providing
much appreciated feedback. Finally, and most importantly,
the first author thanks Ziv Balshai (Intel) for asking the orig-
inal question that started the whole thing: “Why does this
code compile under Linux but not under Windows?” Hope-
fully, the code will soon compile on both.

References
[1] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney, “Adaptive

optimization in the Jalapeńo JVM”. In 15th ACM Conf. on Object
Oriented Prog. Syst. Lang. & App. (OOPSLA), pp. 47–65, 2000.

[2] M. Arnold and D. Grove, “Collecting and exploiting high-accuracy
call graph profiles in virtual machines”. In IEEE Int’l Symp. Code
Generation & Optimization (CGO), pp. 51–62, 2005.

[3] D. F. Bacon and P. F. Sweeney, “Fast static analysis of C++ virtual
function calls”. In 11th ACM Conf. on Object Oriented Prog. Syst.
Lang. & App. (OOPSLA), pp. 324–341, 1996.

[4] L. Bourdev and J. Järvi, “Efficient run-time dispatching in generic
programming with minimal code bloat”. In Symp. on Library-Centric
Software Design (LCSD), Oct 2006.

[5] W. Bright, “D programming language”. http://www.digitalmars.com/d
[6] B. Calder and D. Grunwald, “Reducing indirect function call

overhead in C++ programs”. In 21st ACM Symp. on Principles
of Prog. Lang. (POPL), pp. 397–408, 1994.

[7] B. Calder, D. Grunwald, and B. Zorn, “Quantifying behavioral
differences between C and C++ programs”. J. Prog. Lang.2,
pp. 313–351, 1994.

[8] M. D. Carroll and M. A. Ellis,Designing and Coding Reusable C++.
Addison-Wesley, 1995.

[9] M. M. T. Chakravarty, G. Keller, S. P. Jones, and S. Marlow,
“Associated types with class”. In 32ndACM Symp. on Principles of
Prog. Lang. (POPL), pp. 1–13, Jan 2005.

[10] S. Chapin et al., “Benchmarks and standards for the evaluation
of parallel job schedulers”. In 5th Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP), pp. 67–90, Springer-
Verlag, Apr 1999. Lect. Notes Comput. Sci. vol. 1659.

[11] D. Citron, G. Haber, and R. Levin, “Reducing program image size by
extracting frozen code and data”. In ACM Int’l Conf. on Embedded
Software (EMSOFT), pp. 297–305, 2004.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to algorithms. MIT Press, 2nd ed., 2001.

[13] D. Detlefs and O. Agesen, “Inlining of virtual methods”. In European
Conf. on Object-Oriented Prog. (ECOOP), pp. 258–278, 1999.

[14] A. Diwan, K. S. McKinley, and J. E. B. Moss, “Using types to
analyze and optimize object-oriented programs”. ACM Trans. on
Prog. Lang. & Syst. (TOPLAS)23(1), pp. 30–72, 2001.

[15] J. J. Dongarra, H. W. Meuer, H. D. Simon, and E. Strohmaier,
“Top500 supercomputer sites”. http://www.top500.org/

[16] C. L. Dumitrescu and I. Foster, “GangSim: A simulator for grid
scheduling studies”. In 5th IEEE Int’l Symp. on Cluster Comput. &
the Grid (CCGrid), pp. 1151–1158 Vol. 2, 2005.

[17] A. Duret-Lutz, T. Géraud, and A. Demaille, “Design patterns for
generic programming in C++”. In 6th USENIX Conf. on Object-
Oriented Technologies (COOTS), p. 14, 2001.

[18] M. A. Ertl, T. Wien, and D. Gregg, “Optimizing indirect branch
prediction accuracy in virtual machine interpreters”. In ACM Int’l
Conf. Prog. Lang. Design & Impl. (PLDI), pp. 278–288, 2003.

[19] A. Ezust and P. Ezust,An Introduction to Design Patterns in C++
with Qt 4. Prentice Hall, 2006.

[20] D. G. Feitelson, “Experimental analysis of the root causes of
performance evaluation results: a backfill case study”. IEEE Trans.
Parallel Distrib. Syst. (TPDS)16(2), pp. 175–182, Feb 2005.

[21] D. G. Feitelson, “Metric and workload effects on computer systems
evaluation”. IEEE Computer36(9), pp. 18–25, Sep 2003.

[22] J. A. Fisher and S. M. Freudenberger, “Predicting conditional branch
directions from previous runs of a program”. In 5th Arch. Support
for Prog. Lang. & Operating Syst. (ASPLOS), pp. 85–95, 1992.

[23] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[24] R. Garcia, J. Järvi, A. Lumsdaine, J. G. Siek, and J. Willcock, “A
comparative study of language support for generic programming”.
In 18th ACM Conf. on Object Oriented Prog. Syst. Lang. & App.
(OOPSLA), pp. 115–134, Oct 2003.

[25] R. Garcia, J. Järvi, A. Lumsdaine, J. G. Siek, and J. Willcock,
“An extended comparative study of language support for generic
programming”. J. Func. Prog. (JFP))17(2), pp. 145–205, Mar 2007.

[26] J. Gerlach and J. Kneis, “Generic programming for scientific
computing in C++, Java, and C#”. In 5th Advanced Parallel
Processing Technologies (APPT), pp. 301–310, Sep 2003. Lect.
Notes Comput. Sci. vol. 2834.

[27] N. Glew and J. Palsberg, “Type-safe method inlining”. J. Sci.
Comput. Program.52(1-3), pp. 281–306, 2004.

[28] S. Gochman et al., “The Intel Pentium M processor: Microarchitec-
ture and performance”. Intel Technology Journal7(2), May 2003.

[29] M. Hansen, “How to reduce code bloat from STL containers”. C++
Report9(1), pp. 34–41, Jan 1997.

[30] H. He, J. Trimble, S. Perianayagam, S. Debray, and G. Andrews,
“Code compaction of an operating system kernel”. In IEEE Int’l
Symp. Code Generation & Optimization (CGO), pp. 283–298, 2007.

[31] A. Iosup, D. H. Epema, T. Tannenbaum, M. Farrellee, and M. Livny,
“ Inter-operating grids through delegated matchmaking”. In
ACM/IEEE Supercomputing (SC), pp. 1–12, 2007.

[32] K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, and T. Nakatani,
“A study of devirtualization techniques for a Java just-in-time
compiler”. In ACM Conf. on Object Oriented Prog. Syst. Lang.
& App. (OOPSLA), pp. 294–310, 2000.

[33] J. A. Joao, O. Mutlu, H. Kim, R. Agarwal, , and Y. N. Patt,
“ Improving the performance of object-oriented languages with
dynamic predication of indirect jumps”. In Arch. Support for Prog.
Lang. & Operating Syst. (ASPLOS), pp. 80–90, 2008.

[34] M. P. Jones, “Dictionary-free overloading by partial evaluation”.
Lisp and Symbolic Computation8(3), pp. 229–248, 1995.

[35] C. E. Kees and C. T. Miller, “C++ implementations of numerical
methods for solving differential-algebraic equations: design and
optimization considerations”. ACM Trans. Math. Softw.25(4),
pp. 377–403, 1999.

[36] A. Kennedy and D. Syme, “Design and implementation of generics
for the .NET common language runtime”. In ACM Int’l Conf. Prog.
Lang. Design & Impl. (PLDI), pp. 1–12, 2001.

[37] H. Kim, J. A. Joao, O. Mutlu, C. J. Lee, Y. N. Patt, and R. Cohn, “VPC
prediction: reducing the cost of indirect branches via hardware-based
dynamic devirtualization”. In 34th Int’l Symp. on Computer Archit.
(ISCA), p. 2007, 424–435.

[38] R. Klarer, B. Stroustrup, D. Tsafrir, and M. Wong, “SCARY iterator
assignment and initialization”. ISO C++ standards committee paper
N2913=09-0103, Jul 2009. Frankfurt, Germany. http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2009/n2913.pdf

[39] J. Lau, M. Arnold, M. Hind, and B. Calder, “Online performance
auditing: using hot optimizations without getting burned”. In ACM
Int’l Conf. Prog. Lang. Design & Impl. (PLDI), pp. 239–251, 2006.

[40] A. Legrand, L. Marchal, and H. Casanova, “Scheduling distributed
applications: the SimGrid simulation framework”. In IEEE Int’l
Symp. on Cluster Comput. & the Grid (CCGrid), p. 138, 2003.

[41] A. Mu’alem and D. G. Feitelson, “Utilization, predictability,
workloads, and user runtime estimates in scheduling the IBMSP2
with backfilling”. IEEE Trans. Parallel Distrib. Syst. (TPDS)12(6),
pp. 529–543, Jun 2001.

[42] “Parallel Workloads Archive”.
http://www.cs.huji.ac.il/labs/parallel/workload

[43] “Grid Workloads Archive”. http://gwa.ewi.tudelft.nl
[44] “Proc(5): process info pseudo-filesystem - Linux man page”.

http://linux.die.net/man/5/proc (Acceded Mar 2009).
[45] A. Roth, A. Moshovos, and G. S. Sohi, “Improving virtual function

call target prediction via dependence-based pre-computation”. In
13thACM Int’l Conf. on Supercomput. (ICS), pp. 356–364, 1999.

[46] E. Shmueli and D. G. Feitelson, “On simulation and design of
parallel-systems schedulers: are we doing the right thing?”. IEEE
Trans. on Parallel Distrib. Syst. (TPDS)20(7), pp. 983–996, Jul
2009.

[47] J. G. Siek and A. Lumsdaine, “A language for generic programming
in the large”. J. Science of Comput. Programming, 2009. To appear.

[48] A. Stepanov, “The standard template library: how do you build an
algorithm that is both generic and efficient?”. Byte10, Oct 1995.

[49] B. Stroustrup,The C++ Programming Language. Addison-Wesley,
3rd ed., 1997.

[50] D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Backfilling using system-
generated predictions rather than user runtime estimates”. IEEE
Trans. Parallel Distrib. Syst. (TPDS)18(6), pp. 789–803, Jun 2007.

[51] T. L. Veldhuizen and M. E. Jernigan, “Will C++ be faster than
Fortran?”. In Int’l Sci. Comput. in Object-Oriented Parallel
Environments (ISCOPE), 1997.

[52] S. Weeks, “Whole-program compilation in MLton”. In Workshop on
ML, p. 1, ACM, 2006.

[53] Wikibooks, “C++ programming/code/design patterns”.
http://en.wikibooks.org/wiki/C++Programming/Code/DesignPatterns.

[54] X. Zhuang, M. J. Serrano, H. W. Cain, and J-D. Choi, “Accurate,
efficient, and adaptive calling context profiling”. In ACM Int’l Conf.
Prog. Lang. Design & Impl. (PLDI), pp. 263–271, 2006.

	Introduction
	Minimizing Dependencies
	Improving Performance
	The Need for Standardization
	Reducing Code Bloat
	Generalizing
	Contributions and Paper Roadmap

	Motivation
	The Problem
	Using an Abstract Iterator
	Drawbacks of Using an Abstract Iterator

	Using an Abstract Comparator
	Drawbacks of Using an Abstract Comparator

	Independent Iterator: The New Approach
	The Conceptual Aspect
	The Technical Aspect
	The Database with an Independent Iterator
	Advantages of Using an Independent Iterator
	Consequences
	Disadvantages of Using an Independent Iterator

	Experimental Results: Runtime
	Microbenchmarks
	Real Application

	Techniques to Reduce Code Bloat
	What We Have Already Achieved
	What We Can Achieve Further
	Hoisting
	Generalized Hoisting

	Experimental Results: Code Bloat
	Applying Generalized Hoisting to the STL of GCC
	Evaluation
	Drawbacks of Generalized Hoisting

	Compiler and Language Support
	Generalizing to Other Languages
	Related Work
	Conclusions

