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Desktop operating systems such as Windows and Linux base scheduling decisions on CPU con-

sumption — processes that consume fewer CPU cycles are prioritized, assuming that interactive

processes gain from this as they spend most of their time waiting for user input. However, this

doesn’t work for modern multimedia applications, which require significant CPU resources. We

therefore suggest a new metric to identify interactive processes, by explicitly measuring interac-

tions with the user, and use it to design and implement a process scheduler. Measurements using

a variety of applications indicate that this scheduler is very effective in distinguishing between

competing interactive and non-interactive processes.

Categories and Subject Descriptors: D.4.1 [Process Management]: Scheduling; H.5.1 [Multimedia Informa-
tion Systems]: ; H.1.2 [User/Machine Systems]: Human factors

General Terms: Algorithms, Design, Performance, Human Factors

Additional Key Words and Phrases: Multimedia, Resource management

1. INTRODUCTION

Modern desktop computers are required to run a plethora of different applications: text
editors, spell and style checkers, network downloads, playing of audio and video, GUIs
with animations, etc. In many cases several threads from different applications execute at
once, some in the background and some with direct user interaction. The operating system
scheduler is charged with allocating CPU resources to the different threads, with the goal
of prioritizing those that are most important to the user.

Prevalent commodity systems use a simple scheduling schemethat has not changed
much in 30 years. Processes are scheduled in priority order,where priority is inversely
related to CPU usage. CPU usage is forgotten after some time,in order to focus on recent
activity instead of distant history. This is true for Windows family [Solomon and Russi-
novich 2000], Linux [Bovet and Cesati 2001], and other variants of Unix such as Solaris
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[Mauro and McDougall 2001], AIX, and BSD [McKusick et al. 1997].

Tying priority to lack of CPU usage achieves two important goals. The obvious one is
fairness: all active processes get a fair share of the CPU. The second one is responsive-
ness: the priority of a blocked (I/O-bound) process grows with time, so that when it is
awakened, it has higher priority than that of other (CPU-bound) processes and is therefore
scheduled to run immediately. In fact, in most systems this is theonly mechanism that
provides responsiveness for I/O-bound (interactive) processes. This was sufficient in the
past, when user-computer interaction was essentially text-based, and interactive applica-
tions exhibited very low CPU consumption. Nowadays, computer workloads (especially
on the desktop) contain a significant multimedia component.These workloads are not
well supported by conventional operating system schedulers [Nieh et al. 1993; Etsion et al.
2004], as multimedia applications are very demanding in terms of CPU usage and are
therefore indistinguishable from traditional background(batch) jobs.

For example, the left graph in Fig. 7 of the experimental results demonstrates what
happens when a Xine movie-player displays a short clip alongwith an increasing number
of synthetic CPU-bound processes (which we callstressors) executing in the background.
When no such processes are present, Xine gets all the resources it needs (which is about
40% of the CPU). Adding one stressor process is still tolerable since it takes the place of
the idle loop. But after that, each additional stressor reduces Xine’s relative CPU share,
and causes a significant decline in its displayed frame rate.Thus, when 4 stressors are
present, each gets about 15% of the CPU, and Xine only gets about 20% (half of what it
needs), thereby causing the frame rate to drop by a bit more than 50%.

To prevent such scenarios, better support for interactive and multimedia jobs is required.
We suggest that, on a general purpose system, this should be done in two phases. First,
the system has to correctly identify the interactive and multimedia processes. Second, the
system has to schedule all the running processes, giving special attention to the interactive
and multimedia ones.

As an alternative to CPU usage we propose that scheduling decisions should be based
on a direct measurement of the level of user interaction [Evans et al. 1993]. This is done by
monitoring the amount of user I/O performed by the differentprocesses (e.g. mouse and
keyboard input events and screen-oriented output events).We also monitor inter-process
interactions, to identify the closure of processes that interact with the user indirectly via
another process. This approach captures both traditional interactive applications (such as
text editors) and modern multimedia applications, which wecollectively denote as being
Human Centered(HuC).

The availability of this information regarding user I/O enables a new type of scheduling:
prioritize processes based on I/O production rather than CPU consumption. In other words,
instead of equalizing the CPU consumption of all processes,we try to allocate processor
shares based on the various processes’ interactions with the user, thus favoring HuC pro-
cesses over non-HuC ones; at the same time, we take care to eliminate the possibility of
process starvation. The right side of Fig. 7 shows this for the Xine process competing with
the stressors. No matter how many stressors are added, the scheduler correctly identifies
the Xine processes and continues to allocate all the required resources to Xine; the stres-
sors have to make do with whatever is left over. This is completely automatic, and requires
neither modifications to Xine nor special actions by the user.

This effect can also be achieved by simply placing both the X server and the Xine threads
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in theSCHEDFIFO / SCHEDRRreal time scheduling classes mandated by the POSIX
standard [Gallmeister 1995]. However, doing that would cause the system to starve all
other running processes, as processes running in both thosereal time classes arealways
preferred over those running in the defaultSCHEDOTHERclass. Moreover, this solution
requires manual intervention by the user or administrator to select the appropriate schedul-
ing class (SCHEDFIFO / SCHEDRR/ SCHEDOTHER) for each application.

Other scenarios, however, can be problematic. For example,what should be done when
multiple interactive applications compete against each other? We have experimented with
creating a model of how output production depends on CPU usage, and using this to allo-
cate CPU resources so as to equalize I/O production. This model works well for competing
applications from the same class, e.g. multiple movie viewers, and leads to an equitable and
graceful degradation of the service received by all of them.But it might do the wrong thing
when an application that produces sporadic text output competes with a graphical visual-
ization. The bottom line is that using output production forprioritization is complex, and
probably cannot be used as the sole metric. Instead, it should be integrated with other
metrics in order to provide the scheduler with a complete picture of application behavior.
However, to fully understand human-computer interaction dynamics in order to fine tune a
scheduling algorithm such as the one we propose, more research is needed in the cognitive
area.

We have presented the basic problems that current schedulers exhibit when scheduling
human centered processes in [Etsion et al. 2004], as well as suggested the use of user I/O
as an alternative metric. The main contributions of this paper are a the design and imple-
mentation in the Linux kernel of a user I/O based scheduling algorithm that autonomously
identifies human centered applications and prioritizes them accordingly. Also, we demon-
strate the effectiveness of such a system in scheduling human centered processes.

The rest of this paper is organized as follows: We survey related work in Section 2, then
go on to describe our methodology and test platform in Section 3. The next three sections
discuss the first phase of HuC scheduling — identifying the HuC processes. Section 4
examines the failure of the standard identification based onCPU consumption patterns.
Section 5 explains the concepts of I/O quantification, whileSection 6 describe how this
is measured and used to identify HuC process. The second phase, scheduling the HuC
processes per-se, is discussed in Section 7, and its integration into the Linux kernel is
described in Section 8. We then show experimental results comparing the classical CPU-
based scheduler with our HuC scheduler in Section 9, and conclude in Section 10.

2. RELATED WORK

Scheduling on a desktop machine attempts to achieve a combination of goals. One is to
run interactive applications in a timely manner, providinglow response times. Another is
to enable the use of leftover processing resources for background processes, be they non-
interactive jobs belonging to the machine’s owner (e.g. a large compilation or download),
or imported work as part of a load sharing environment. The challenge is that this should
not interfere with the support for the interactive jobs.

Traditionally, schedulers on desktop machines prioritized processes based on their CPU
usage, or rather, lack of CPU usage. However, the reasoning that lack of CPU usage iden-
tifies interactive processes is now obsolete [Etsion et al. 2004; Nieh et al. 1993]. Modern
desktop applications span a whole spectrum of CPU usage levels, from text editors that
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use little CPU up to interactive games that can dominate 100%of the CPU. Those that use
significant CPU resources are therefore indistinguishablefrom non-interactive jobs such
as compute-bound computations or large compilations. Thus, a scheduler based on CPU
usage patterns will not give the interactive applications sufficient resources, leading to de-
graded performance or an inability to run a mix of interactive and non-interactive jobs.

Desktop operating systems such as Windows have taken initial steps to identify and
prioritize interactive applications, e.g. by increasing the CPU allocation of threads that
are associated with the focus window or have waited for a slowdevice like the keyboard
[Solomon and Russinovich 2000]. However, this is obliviousto their actual needs, and does
not necessarily solve the problem (what about displaying output in a non-focus window?
or if the focus application depends on services provided by others?).

Several research projects have devised systems specifically to allow interactive multi-
media applications to run successfully. These can be broadly classified into two groups,
that place the burden on the programmer or on the user of the application.

The solution adopted by the first group is to provide soft real-time support so that multi-
media applications can sustain frame rates and audio samplerates. The programmer must
then use special interfaces to utilize these services. On the system side, support includes
three components: high resolution timing services, a preemptive and responsive kernel, and
appropriate scheduling [Goel et al. 2002]. Several schedulers have been designed and im-
plemented, including SMART [Nieh and Lam 1997] and BEST [Banachowski and Brandt
2002]. The latter has the distinction of also trying to identify applications with periodic
computation needs automatically.

The solution adopted by the second group is to use fair-sharescheduling [Childs and
Ingram 2001]. This does not require any modifications in the applications, but shifts the
burden of configuring the system to the user, who must specifythe resource requirements
of select applications. This is probably not a good solutionfor transient interactive and
multimedia tasks that come and go during normal work. Example systems of this type
include Lottery Scheduling [Waldspurger and Weihl 1994] and Borrowed Virtual Time
[Duda and Cheriton 1999]. An extension to this is the use of hierarchical schedulers, that
allocate CPU time between other, class-specific schedulers[Goyal et al. 1996; Candea and
Jones 1998]. This principle is somewhat similar to the hierarchical scheduler we describe
in Section 8. The Eclipse operating system [Bruno et al. 1998] takes an additional step,
and supports guaranteed portions of multiple resources at once: not only the CPU, but also
memory blocks, disk bandwidth, and network bandwidth.

In a related vein, Zhang and Sivasubramaniam [2001] attemptto schedule real-time jobs
along with best-effort ones in a manner which will maintain the real-time deadlines. Their
proposed solution is dividing the CPU time among the two classes according to a user
supplied “fairness” ratio, and letting each class scheduleits processes in a hierarchical
model. The real-time class uses the earliest-deadline-first (EDF) scheme. Similar work by
Rau and Smirni [1999] requires the user to specify a tolerance threshold for performance
degradation, and the system then adjusts allocations to tryto meet this specification. Their
notion of quality for multimedia applications is based on missed deadlines, which is closely
related to our use of output rate (a generalization of frame rate).

In contrast to the aforementioned related work, one of our principal goals is to automate
the scheduling mechanism, shifting the tuning burden from the programmer/user to the
scheduler itself, by making it aware of user–process interaction.
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3. EXPERIMENTAL METHODOLOGY

Before presenting our arguments and results, we first describe our platform and introduce
the applications used to evaluate the newly proposed scheduler.

3.1 The Test Platform

Most measurements were done on a 664 MHz Pentium 3 machine equipped with 256
MB RAM and a 3DFX Voodoo3 graphics accelerator with 16 MB RAM that supports
OpenGL in hardware. The operating system was a 2.4.8 Linux kernel (RedHat 7.0), with
the XFree86 4.1 X server. The clock interrupt rate was increased from the default 100Hz to
1,000Hz. This clock rate has already been adopted in the new Linux 2.6 kernel, and is more
suitable for multimedia applications which require millisecond timing resolution [Nieh
and Lam 1997; Etsion et al. 2003]. We have also verified that the increase in overhead is
negligible [Etsion et al. 2003].

It can be argued that our test platform is somewhat antiquated, both in terms of hard-
ware (processor generation) and software (kernel version). However, this does not affect
the validity of the results: although the Linux kernel process scheduler has undergone a
major revision in the 2.6 kernel version [Love 2005], this revision has focused mainly on
the scheduler’s data structures — most notably re-implementing the classic priority feed-
back queue [Silberschatz et al. 2004] so as to reduce the dispatch overhead by eliminating
its dependency on the number of runnable processes. The scheduling algorithm proper,
however, is still based on processes’ CPU consumption patterns, even though there was
some improvement in support for interactive processes. This scheduler is thus still prone
to the same problems as in the 2.4 kernel.

Regarding hardware performance, experience shows that every processor performance
improvement is soon used by software to enhance the quality of service provided, maintain-
ing roughly the same level of use of processor capabilities.1 In the context of multimedia
applications, improved performance enabled higher frame rates (60fps for the HDTV stan-
dard [Benson and Fink 1990]) and better video compression codecs and standards (such
as DivX [Zimmermann 2003] and MPEG-4 [Ebrahimi and Pereira 2002], to name a few).
As such, newer processors which yield better performance than our test platform will sim-
ply be utilized to run more demanding applications, leavingus with the same problem of
scheduling an overloaded processor.

3.2 The Kernel-Logger Utility

The measurements were conducted usingklogger[Etsion et al. 2005], a kernel logger we
developed that supports fine-grain events. While the logging code is integrated into the
kernel, its activation at runtime is controlled by applyinga specialsysctlcall using the
/proc file system. In order to reduce interference and overhead, logged events are stored
in a sizable buffer in memory (typically 4MB), and only exported at large intervals. This
export is performed by a daemon that wakes up every five seconds. The implementation is
based on inlined code to access the CPU’s cycle counter and store the logged data. Each
event has a 20-byte header including a serial number and timestamp with cycle resolution,
followed by event-specific data. The overhead of each event is only a few hundred cycles
leading to a total of< 1%. Logging is performed for all scheduling-related events:context

1This effect even inspired the phrase “What Groves giveth, Gates taketh away” (referring to the famous CEOs of
Intel and Microsoft).
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switching, recalculation of priorities, forks, execs, changing the state of processes, and
monitoring of activity on Unix-domain sockets (to track potential interactions with the X
server).

3.3 The Workload

As there are numerous different applications in contemporary desktop workloads, we have
identified several dominant application classes and chose to focus on a representative or
two from each class.

—Classic interactive applications: The (traditional) Emacs and the (newer) OpenOffice
text editors. During the test, editors were used for standard typing at a rate of about 8
characters per second.

—Classic batch applications: Artificial CPU-bound processes (stressors) and a complete
compilation of the Linux kernel. These serve as two variantsof background jobs, that
can absorb any number of available CPU cycles, and compete with HuC processes. They
differ however in their I/O behavior: while stressors represent completely CPU-bound
applications, kernel compilation also employs extensive disk I/O.

—Movie players: MPlayer and the Xine MPEG viewer, which were used to show vari-
ous video segments encoded with different standard frame rates. While MPlayer is a
single threaded application, Xine’s implementation is multithreaded, making it a suit-
able representative of this growing class of applications [Flautner et al. 2000]. In our
experiments audio output was disabled, to allow focus on interactions with the X server.

—Modern interactive applications: The Quake III Arena action game. An interesting
feature of Quake is that it is adaptive: it can change its frame rate based on how much
CPU time it gets. In our experiments, when running alone it can use almost all available
CPU time.

In addition, the system runs a host of default processes, mostly various daemons. Of these,
the most important with regard to interactive processes is obviously the X server.

4. THE FAILURE TO IDENTIFY HUC PROCESSES BY CPU USAGE PATTERNS

Prioritization based on CPU usage can take various forms. Inthis section, we show that all
of them do not work, as modern HuC processes may use significant CPU resources, and
are essentially indistinguishable from non-HuC work.

4.1 CPU Consumption

The simplest measure of CPU usage is total consumption. Mostgeneral purpose schedulers
base priority mainly on this metric. Processes that use the CPU lose priority, while those
that wait in the queue gain priority.

The question, however, is whether low CPU consumption can beused to identify HuC
processes. Figure 1 demonstrates that this is not the case. HuC processes are seen to
span the full range from very low CPU usage (the Emacs and OpenOffice editors) to very
high CPU usage (the Quake role-playing game). Movie playerssuch as Xine provide
an especially interesting example: their CPU usage is proportional to the viewing scale.
Showing a relatively small movie, taking about 13% of the screen space, required about
15% of the CPU resources for the player and X combined. Using azoom factor of 2:1, the
viewing size quadrupled to about half the screen, and the resource usage also quadrupled
to about 60%. Attempting to view the movie on the full screen would overwhelm the CPU.
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Fig. 2. Cumulative distribution function of the effective quanta when applications are run alone.
(a) Editors have very short effective quanta.(b) Movie players also have short effective quanta, but
this is similar to the profile of the kernel-make batch job.(c) Quake can consume all available CPU
cycles, so when running in demo mode it behaves like a stressor. Both are occasionally interrupted
by various system daemons, causing around 50% of the effective quanta to end prematurely.(d)
When a stressor runs together with Quake (in either demo or user mode), both end up with the same
distribution, because Quake interrupts the stressor.

This is despite using an optimization by which the frame datais handed over to X using
shared memory.

4.2 Effective Quantum Lengths

While CPU consumption is the main metric used by current schedulers, other (new) metrics
are also possible. A promising candidate is the distribution of effective quantum lengths.
An effective quantum is defined to be the time period between the time a process is allo-
cated a processor and until the processor is relinquished, either because the process is pre-
empted when its allocation expires or when a higher priorityprocess awakens, or because
the process blocks, waiting for some event. The intuition isthat although HuC processes
may exhibit large CPU consumption, their effective quanta probably remain very small due
to their close interaction with I/O devices, and because they often need to use timer alarms
to pace themselves (e.g. to generate the correct frame rate regardless of processor speed).
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Emacs Open MPlayer Xine Quake Quake Kernel Stressor
Office user demo make

99.6 99.1 98.5 83.1 14.3 1.2 81.6 0.5

Table I. Percent of context switches that are voluntary for the various applications.

Thus, we expect to see a difference between the allocated quanta and the effective ones in
HuC processes, but expect non-HuC processes to typically use their full allocation.

Figure 2 shows these distributions for different groups of applications. Multimedia ap-
plications, in particular, are indistinguishable from other application types: on one hand
Quake behaves just like a CPU stressor, both when running alone and when running with
a competing process, and on the other hand Xine resembles thewell-known kernel-make
benchmark.

4.3 Voluntary vs. Forced Context Switches

Another possible metric is thetype of context switch. HuC processes (such as movie
players) often relinquish the processor voluntarily, due to their dependency on I/O and
timing devices, through which they communicate with the user in a paced manner. We can
therefore classify processes according to thefraction of their effective quanta that ended
voluntarily, rather than thedurationof the effective quanta (as described above).

We define a voluntary context switch as one that was induced bythe process itself, either
explicitly by blocking on a device, or implicitly by performing an action that triggered
another process to run (such as releasing a semaphore). We were able to trace such context
switches by monitoring the various kernel queues. The results shown in Table I indicate
that this new metric also fails to make a clear distinction between HuC and other processes.
Quake is again similar to stressors, and Xine looks like kernel-make.

5. QUANTIFYING USER I/O

Before describing mechanisms to track interactions between processes and the user, we
must first define what we want to track and how. Simply put — how do we quantify user
interactions?

5.1 Quantifying User Input

Input events can be perceived as an immediate and explicit expression of the user’s wishes.
The number of events is typically not so important: draggingwith the mouse, which gen-
erates multiple events per second, can be argued to convey about the same amount of user
interest as a single mouse button click or the typing of a single character. The most im-
portant metric is recency: the process receiving the most recent user input should get the
highest priority. This stems from the fact that nowadays users interact with computers
solely through the use of their hands (although other means are right around the corner).
Given that, along with the fact that the time to switch input between different applications
is measured in seconds, input can be considered a binary trait — either the application
is receiving input now, or not — as opposed to output, which different applications can
produce simultaneously while competing for the user’s attention.

Reflecting these considerations, we implement input ratings as a binary state variable:
either the process has received input recently, or it has not. “Recently” means within a
certain predefined number of seconds, which is a tunable parameter (see below).
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It should be noted that this approach has the additional desirable effect of implicitly
recognizing the application associated with the focus window. X assigns input to the focus
application, so input events imply focus. Thus, we do not need a separate mechanism
for prioritizing the focus application, as is done in Windows. It can also be argued that
our approach is even better, as it uses real input (a direct measure) rather than the focus
property (an indirect measure).

5.2 Quantifying Output to the User

Quantifying output is more complex than input: firstly, because various applications may
simultaneously produce output to different windows, secondly, because of different output
modalities (e.g. with or without the concept of a frame rate), and finally, because we don’t
know which of these output events are more significant to the user.

Two metrics suggest themselves for measuring importance ofoutput to different win-
dows: the size of the window, and the rate of change. We preferto use rate, motivated by
the fact that human vision is known to be more sensitive to movement (a remnant of our
hunting predecessors) [Shneiderman 1998]. Thus, quantifying the rate of change produced
by each application will lead to a reasonable guess about which process has the user’s
attention.

The question remains of how to quantify the rate of screen changes. We see three possi-
ble candidates.

(1) The simplest approach is to count output events. This maybe justifiable in cases where
each output event represents a unit of information, such as printing a single character.
However, output events may come in very different sizes. Specifically, this approach
is not suitable for the X-Windows system, as an X-protocol output request can change
a single character, draw a line, or change the entire image ina window.

(2) Another option is to count pixels. Thus, a “large” outputevent that modifies many
pixels will confer a larger amount of user interaction, in accordance with the notion
that human vision is more sensitive to movement. When counting the output in pixels
the result is biased towards larger windows, in which a single change is likely to affect
more individual pixels.

(3) The third option is to use normalized pixel counts, basedon the following formula:

output rate=
pixels changed in last second

window size in pixels

Normalizing the changed-pixel count by the window size is motivated by the desire to
distinguish between raw I/O and a higher level of I/O. Consider video or animation,
for example. Although simple pixel count is biased towards larger windows, in accor-
dance with human vision, it is rarely considered to be part ofan application’s quality
of service, as opposed to the frame rate metric. Normalizingpixel count by the win-
dow size yields a count of the frame rate, which is independent of window size, uses
the same quality metric as the application level, and placesthe competing processes
on an equal footing.

Our prototype implementation uses the third approach, as itis implicitly geared toward
video applications.
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6. IDENTIFYING HUC PROCESSES BASED ON USER INTERACTION

Our basic idea is to actually follow the flow of information between the user and the various
processes, and explicitly characterize HuC processes as such according to the magnitude
of this flow. We achieve this using a combination of two mechanisms. The first, described
in section 6.1, is responsible for quantifying the volume ofdirect interaction between each
process and the user. This by itself is insufficient because processes may interact with the
user in an indirect manner. This motivates the second mechanism, described in Section
6.2, that tracks interprocess communication to unearth dependence relationships between
them. Finally, newly forked processes inherit the HuC counts of their parent. Together,
these mechanisms allow the scheduler to correctly identifyand prioritize HuC processes.

Interestingly, the mechanisms described here have been proposed in the past for other
uses. The idea of identifying HuC processes as those that interact with the X server, and
notifying the kernel about them, was proposed a long time agoby Evans et al. [1993].
However, they did not consider interactions among processes. Using the closure of pro-
cesses that interact with the X server has been proposed by Flautner et al. [2000] — but in
the context of power management, not scheduling.

6.1 Monitoring Direct User I/O

6.1.1 HuC Devices and the X Server.I/O between the user and the various processes
is mediated by peripheral devices. Identification of user interaction must therefore start
with the devices that represent the user: the keyboard, mouse, screen, joystick, sound card,
tablets, and touchscreens (to name a few) — which will be referred ¡to collectively as
HuC devices. For the purpose of this research, we’ve decided to only monitor the “bare
necessities”, namely the keyboard, mouse, and screen. Furthermore, we focus on the use
of windowing systems, and ignore the possible direct use of atext console interface.

Unix environments use the X-Windows system [Scheifler and Gettys 1986] as the con-
ventional mechanism to multiplex I/O between the user and the various applications. Ap-
plications that wish to use the keyboard, mouse, and screen are referred to asX-clients.
Clients connect to theX-serverand communicate with it using theX-protocol. The server
usually associates a window with each client, such that userinput events performed within
this window are forwarded to the client (in the form ofX-events), and output produced by
the client (in the form ofX-requests) is directed to this window. Consequently, the X server
centralizes all work concerning the kernel mechanisms thatallow communication with the
canonical HuC devices, and hence with the user. It is therefore natural to use the X server
as a meta-device when monitoring user I/O [Etsion et al. 2004]. A similar approach can be
implemented for the Windows family of operating systems using theDirectX subsystem
[Gray 2003].

Additional reasons for focusing on X are that it represents the common denominator of
all systems (many don’t have joysticks, and some even don’t have sound cards). Moreover,
the applications using other devices are typically the sameones using X: when playing a
game using the joystick, for example, the game displays graphics on the screen and uses the
sound card for sound effects. Also, most systems do not allowmore than one application
at a time to use HuC devices. Thus, monitoring other devices will add some information
about additional I/O modes, but not about other processes. Finally, trying to incorporate
other devices would increase complexity by requiring us to quantify their I/O rates using a
common metric, and combine them into a single number.
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We remark that even though the X protocol is the conventionalparadigm used to perform
user I/O in Unix environments, other mechanisms do exist. The Direct rendering Infras-
tructure (DRI) [Paul 2000] is the dominant alternative since it is used by theOpenGL
graphical library, which in turn is heavily used by graphical software, and in particular
games. DRI interacts directly with the graphics controller, circumventing the X protocol.
Thus, a complete implementation of our ideas should includeinstrumentation of OpenGL,
similar to our instrumentation of the X server described below.

The mechanism described in this section is but one example ofimplementing user in-
teraction monitoring in a kernel subsystem. The same approach described here for the
graphics kernel/user subsystem can be generalized into a scheduler hints mechanism inte-
grated into other major kernel device subsystems, such asALSAfor audio,Input Corefor
input devices, and theVideo4Linuxsubsystem [Bovet and Cesati 2001; Corbet et al. 2005]
(or even theDirectX subsystem in Windows [Gray 2003]).

6.1.2 Instrumenting the X Server.The mechanisms of Section 5 were implemented
by instrumenting the X server. The code for handling processinput is simple. X already
has a list of callbacks to invoke whenever an input event is read from the device files; we
have added another callback that logs this event. Counting changed pixels is also feasible
since the X protocol defines a reduced set of only seventeen graphical X-requests that
are available to clients (drawing a polygonal line, a character string, an image, etc.). For
each X-request, we have implemented a function that approximates the amount of change
it introduces to the screen, using a simple bounding box schema. Figure 3 depicts how
this works for two common operations: drawing a diagonal line, and drawing a character
[Etsion et al. 2004].

Note, however, that output events may refer to hidden portions of windows. As our
motivation for using rate of change as a metric is based on howchange is perceived by
the user, changes that can’t be seen by the user shouldn’t be included in the application’s
ratings. We therefore hooked into the X clipping mechanism in order to find out how much
of the change is indeed visible to the user.

To be useful, the data regarding each I/O event needs to be attributed to the correct pro-
cess and communicated to the kernel. The X server maintains in its internal data structures
a client recordfor each client. We have added three fields to this record:
—client’s process ID (pid),
—client’s input status (input or not), and
—client’s output ratings (the relative pixel change rate)

The values of these fields are communicated periodically to the kernel using the X na-
tive timer mechanism (the prototype does this once a second)through the standard POSIX
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Fig. 4. Information flow between the user and theVI text editor.

schedsetparamsystem call [Gallmeister 1995]. We have simply concatenated these fields
to theschedparamstructure, which is the principal argument ofschedsetparam. In ad-
dition to these periodic updates, whenever a client with zero input ratings receives an input
event, the kernel is immediately notified (again, throughschedsetparam). This allows the
scheduler to maximize responsiveness by promptly handlingsuch events – for example,
raise the priority of a process that just received some input.

Client pids are needed because eventually the scheduler will base its decisions upon the
I/O ratings associated with each process. X doesn’t maintain pids, because one of its major
design goals is to serve local or remote clients in the same way, and the pid of a remote
client is meaningless. In the context of desktop scheduling, however, we are only interested
in monitoring local clients, since these are the candidatesfor being HuC processes (the
option of running HuC applications remotely in a distributed environment is beyond the
scope of the current paper). To obtain the pids of connectingclients we slightly modified
the communication layer of the X server, to which local clients connect using Unix-domain
sockets. While standard Unix-domain sockets do not provideaccess to a peer’s pid, Linux
provides some non-standard Unix-domain socket options enabling such access.

6.2 Indirect User I/O

As noted above, the main process that interacts with the userin a Unix system is the X
server. HuC applications interact with the user indirectly, using X and other processes as
intermediaries. Figure 4 demonstrates this with a scenarioin which the user writes some
document using theVI text editor from within anxtermterminal emulator. When the user
presses a keyboard key, the X server reads the associated character from the keyboard’s
device driver, sends it as an X-event message toxterm, which in turn forwards it through
a pseudo-terminal connection toVI. The latter performs the necessary processing and may
update the user’s view by propagating data in the opposite direction. This simple example
highlights the fact that the HuC quality has a transitive nature, and therefore its definition
must be refined to include processes that indirectly interact with the user.

The second component of identifying HuC processes is therefore finding the transitive
closure of the processes that enjoy direct interaction. To do so, we must first identify the
graph of process interactions.

6.2.1 Identifying Process Interactions.Process interactions may take different forms:
communication using a pipe, storing to and loading from shared memory, the use of
semaphores, etc. While all these mechanisms are in some way mediated by the kernel,
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keeping track of all of them is very arduous. Moreover, if newmechanisms are introduced,
they will require separate monitoring. Finding all the dependencies is therefore difficult
[Mosberger and Peterson 1996].

The alternative is to find a single mechanism that facilitates anapproximationof the
interactions that have taken place. For this, we propose to monitor attempted insertions
into the ready queue. When one process causes another to enter the ready queue, it implies
that the second process was waiting for the first one, and hence that they interact with each
other.

Implementing this idea in Linux is very simple, because attempts to insert a waiting task
to the ready queue are always performed via thetry to wakeup(process)function. Signifi-
cantly, the invoking process does not verify that the targetprocess is indeed waiting (which
explains the “try” prefix in its name). Thus, an invocation oftry to wakeup represents a
true logical dependency between the two processes, regardless of what their current status
happens to be. A similar idea was recently explored by leading Linux developers [Tor-
valds et al. 2003], but eventually was not adopted in the 2.6 kernel. The possibilities of this
technique were also demonstrated in [Zheng and Nieh 2004], in which this dependency
data was used together with information about system calls,to uncover both direct and
indirect process dependencies, thus preventing priority inversion problems (as oppose to
the simpler use of tracking information flow described here).

The above heuristic has the apparent drawback that some dependencies might go un-
noticed. This can happen when non-blocking mechanisms are used, e.g. if information is
passed using shared memory. However, using shared memory istypically accompanied by
some synchronization mechanism such as semaphores, which do include blocking. In ad-
dition, we consider sets of processes that share their address space as a single entity, rather
than considering each of them individually. As a consequence, we find that in practice our
heuristic produces excellent results in identifying all the processes in the X server’s IPC
graph closure.

The interprocess communication graph is by far the most complex part of the HuC sys-
tem. We implemented it in full to get the most accurate user I/O statistics, by which we can
prioritize the various processes. While this is befitting for a proof-of-concept implementa-
tion, it is less desirable to incorporate it in a production system. However, it is sufficient
to approximate this graph using mechanisms similar to thoseused to support priority in-
heritance and overcome priority inversion issues, common in modern operating systems
[Silberschatz et al. 2004; Solomon and Russinovich 2000; Mauro and McDougall 2001].

6.2.2 Propagating HuC Input.As noted above, input is a direct reflection of user in-
terest. We therefore define the “HuC input” status to be infectious. This means that if a
“HuC input” process inserts another process into the ready queue, that process also be-
comes “HuC input”. Moreover, this is communicated to the kernel immediately, without
waiting for the next periodic update.

For example, consider the scenario depicted in Fig. 4. The X server is identified as HuC
input when it reads a character from the keyboard. When the character is passed to the
xterm application, xterm too becomes HuC input. When it is passed to VI, so does VI.

6.2.3 Propagating Output Ratings.Output is different from input in that it is quan-
tified rather than being binary. The output ratings need to bepropagated in the opposite
direction from process interactions, in order to assign theratings to the processes that in-
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deed initiated the output operation.
Process interactions induce a directed graph, which we callthe Process Dependency

Graph (PDG). The nodes of this graph are all active processes in thesystem. The graph
contains an edge(Pi, Pj) iff Pj was recently inserted to the ready queue due to an action
taken byPi. Returning to the example in Fig. 4, when VI generates outputand sends it
to xterm, we get(PV I , Pxterm) ∈ PDG; then we also get(Pxterm, PXserver) ∈ PDG

when xterm forwards the request to X.
Our instrumentation of the X server includes the quantification of output attributed to

processes that interact with it directly, e.g. the xterm process. The PDG is used to propagate
this rating further. In the example, the edge(PV I , Pxterm) implies that xterm depends on
VI, and that VI may therefore be the source of the output. So the output rating of xterm is
also attributed to VI. If several such edges exist, the output rating is divided among them
according to their weights. The weights reflect the number oftimes that the process at the
head of the edge tried to wake the process at its tail.

In future work we intend to consider possible simplifications of this approach. Specifi-
cally, it may be better to propagate output information on the fly as each interaction occurs,
as is done for input.

6.2.4 Aging the Data.Applications may change their behavior over time, e.g. accept
input parameters from the user interactively and then perform a long non-interactive com-
putation. It is therefore desirable that the identificationof HuC processes be based only on
recent user I/O. In order to actually maintain the I/O data, we need to define the meaning
of “recent”.

After some deliberations, our final algorithm is very simple: we have a tunable parameter
that specifies for how long data is maintained, currently setto 8 seconds. Initially we
experimented with exponential aging, in which the weights of the edges are divided by a
factor of 2 each second, until they become smaller than one. However, edge weights are
typically smaller than 100, so this implies that output datais retained for 5–7 seconds.
Also, aging input data would need a different treatment, as it is binary to begin with. In
light of these considerations, using a life span of 8 secondsis a reasonable compromise that
provides for even handling of both data types. Any event on either an input or output edge
initializes its life time. While this seems to work nicely inpractice, further experimentation
with real users is required to fully justify this approach, or to refine it.

7. THE HUC SCHEDULING ALGORITHM

Until now, we have only discussed how to identify the HuC processes. Now, we describe
the HuC scheduling algorithm — how we allocate CPU time for these and competing
processes. It should be noted however that the HuC scheduling algorithm only affects those
processes identified as human centered. A system containingno such processes behaves
just like a regular Linux system

Given the approximation of how much user I/O is associated with each process, we need
to use this information to decide on CPU allocations. The traditional Unix scheduler em-
ploys a negative feedback mechanism to achieve a uniform distribution of CPU resources
(within the constraint that some processes may not need as much as others). When a pro-
cess runs its priority drops, until the CPU is relinquished and given to another process. In
contradiction, our HuC scheduler allocates CPU resources so as to achieveuniform output
ratesby the different processes. This means that CPU allocationsneed not be equal; rather,
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Fig. 5. The Knee model for application behavior, and its use in our scheduling algorithm

each process gets the CPU resources it needs to produce the target level of output. In this
sense it is similar to the schedulers proposed by Massalin and Pu [1990] and by Steere
et al. [1999], who adjust the processing power allocated to aproducer and a consumer so
that the producer’s production matches the consumer’s consumption.

The scheduler operates at two levels of granularity. Like the Linux scheduler, we have
a notion ofepochs. In each epoch, anallocation is made for each process. During the
epoch the different processes execute in an interleaved manner as decided by thedispatch
algorithm. When all processes have exhausted their allocations, or no ready process is
available, a new epoch is started. Unlike Linux, we set a maximum on the duration of an
epoch, 200ms in the current implementation. This is needed in order to bound the time
until a process gets to run. The scheduler guarantees that every process will get some CPU
time at least once per epoch. Note that until recently∼ 200ms was the default length of a
scheduling quantum on many Unix variants, but in practice much smaller effective quanta
are typical for many interactive applications on today’s hardware [Etsion et al. 2003].

7.1 The Knee Model of Application Behavior

In order to achieve a certain target level of output activity, we need a model of how output
production is related to CPU resources. We suggest theknee modelof application behavior
for this purpose. Simply put, it states that the level of output can be approximated as a
linear relation to the CPU allocation, up to a certain limit.Above that limit the application
does not need any more CPU resources, so additional allocations will not be used, and in
particular, will not lead to additional output.

We have evaluated this model using a few actual measurementsof application behavior
to find how accurate it is. Fig. 5(a) shows such measurements for the Xine MPEG viewer
(measurements for the X server exhibit a similar structure). The measurements were con-
ducted by running X and Xine with different numbers of competing stressor (synthetic

ACM Journal Name, Vol. V, No. N, Month 20YY.



16 · Yoav Etsion et al.

CPU-bound) processes under the default Linux scheduler. When there are no stressors,
the application simply uses whatever it needs (we consider the “allocation” to include the
system’s idle time, since it is in fact at the application’s disposal); this serves to iden-
tify the knee point. When enough stressors are present, the application receives less CPU
resources, and produces less output. This example demonstrates that while not 100% accu-
rate, the Knee model serves as a good approximation for HuC processes’ output production
as a function of their CPU allocation.

Importantly, the model is simple enough so that model parameters are accessible to the
scheduler. At runtime, the scheduler can keep track of how much CPU was actually used by
each process, and also get a quantification of the output produced (as described in Section
6). The quotient of the output volume to the CPU usage provides the slope of the line. Any
discrepancy between the allocated and used CPU gives an indication about the location of
the knee.

7.2 CPU Time Allocation

If the total CPU requirements of all applications are less than the full capacity, the scheduler
does not have to make any hard decisions, allowing all application to reach their desired
output rate. But if requirements exceed capacity, the scheduler needs to decide how to
allocate the CPU resources. Our algorithm performs this allocation in a way that will lead
to uniform levels of output production, subject to the constraint that some applications can
only produce a limited amount of output. This is similar in spirit to a fair-share scheduling
algorithm, except that the shares are calculated automatically (and indeed this prioritization
mechanism can be used on top of most fair-share schedulers).

Let us start by justifying this approach. Consider a system that is used for video-
conferencing, and is displaying two incoming streams, one in a small window and one
in a larger window, with 4 times the area. Assume also that thesystem is overloaded,
so the processes displaying the two streams cannot get the full CPU resources they need
to display their respective streams at the full frame rate. Using a conventional scheduler,
both processes will receive about the same CPU time. But displaying a frame in the large
window requires about 4 times more processing power than displaying a frame in a small
window [Etsion et al. 2004]. As a result, the smaller window,which is probably less im-
portant (otherwise, why did the user choose to make it smaller?) will end up displaying 4
times more frames, and providing better video quality! At the same time, the larger, more
important window, will lose more frames and provide reducedquality.

Now, consider allocating CPU time so as to achieve a desired output rate. Recall that
we define the output rate in relative terms, that is counting pixels that changed divided
by total pixels in the window. Using this metric, having equal output rates translates to
displaying the videos at the same frame rate, regardless of window size. So an allocation
that equalizes output rate achieves the desired balance between competing applications.
Under this allocation, the small-window Xine will receive only a quarter of the CPU time
that the large-window one gets.

Our allocation algorithm is based on the knee model as illustrated in Fig. 5(b). As the
model is simply a linear relationship, the allocation is just the amount of CPU that will
generate the desired level of output. For example, assume that for application B the current
CPU allocation wasBcpu and the generated output wasBout. If the target output level is
T ∗

out, the allocationB∗

cpu will be
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B∗

cpu =
Bcpu

Bout

T ∗

out

because(Bcpu, Bout) and(B∗

cpu, T ∗

out) lie on the same slope, and therefore have the same
ratios. For application C the maximal possible output rate is lower than the target, so
the knee has to be identified and the allocation will be that ofthe knee. Note that when
the system is underloaded (i.e. requirements are less than capacity) this is the case for all
applications, and they all get allocations that bring them to their perspective knees.

One may wonder at this point how the target value ofT ∗

out is set. The answer is that there
is a circular dependency, in thatT ∗

out should be set so that the total CPU time allocated will
be about the duration of the scheduling epoch. To break the circle we initially setT ∗

out

to be the average of theAout, Bout, . . . values of all HuC processes from the previous
epoch, derive CPU allocations, and then rescale them so thattheir sum matches the total
allocation. If this sum is less than the total CPU allocation, no scaling is needed — meaning
the system is not overloaded and all applications are granted their desired CPU share.

A special case occurs when a new process is inducted into the HuC class. Such a process
might have had a small allocation previously, but a very large new allocation, especially if
its slope in the knee model is low. However, it is dangerous for system stability to give a
large allocation at once to such a new process. The solution is to grow exponentially. At
each new allocation, the process is limited to some factorα times the previously used time,
e.g. doubling it (α = 2). The expression for the CPU allocation is then

B∗

cpu = min

{

Bcpu

Bout

T ∗

out, αBcpu

}

For new HuC input processes, which do not yet have any measured output, an arbitrary
initial allocation is used (in the prototype, this is 1% of the epoch). The reason for this is
that when a process receives input we know it is important, but we do not yet know how
much CPU it needs. Therefore we initially just give it a chance to produce output, and base
future allocations on this output.

Another special case concerns the X server. As all I/O activity passes through X, it needs
to be able to handle a larger amount of I/O thanT ∗

out. We therefore set its allocation based
onT ∗

out multiplied by the number of applications using it.

7.3 Dispatching

Dispatching is the decision of which process to run next, given that a few ready processes
with non-zero allocations are available. In principle, we would like all processes to make
progress together, at their respective rates (i.e. according to their allocations). In practice,
progress is made in a granular manner, as only one process actually runs at any given
time. The challenge is then to select the processes in a way that will allow all of them to
make progress at about the correct rate, without leaving anyprocess too far behind (which
amounts to starvation).

The common solution to this problem is to schedule accordingto virtual time (VT)
[Nieh et al. 2001]. Each process has a virtual time, that advances at a rate that depends
on its allocation (or weight). Thus, the virtual time of a process that has a large allocation
will advance more slowly when it runs, and the virtual time ofa process with a small
allocation will advance more quickly. When called, the scheduler chooses the process with
the smallest virtual time to run next.
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running C, A is again more behind than D, so it runs again, and Dis delayed again (arrows at time 3). At time
4, D is finally selected. The end result is that the symmetry between the low-allocation processes is broken, and
they are dispersed rather than running one after the other.

For example, consider four processes of which one has an allocation of 4 “ticks”2 (call it
process A) and the other three an allocation of 1 each (call them B, C, and D). When B, C,
or D run, their VT immediately becomes 1. But when process A runs, its VT only increases
by 1

4
. It will therefore have an advantage over those processes whose VT is already 1.

The problem with VT is that once process A runs, its VT (1

4
) is already higher than that

of any process that has not run yet (0). Therefore the scheduler will select B, C, and D
within the first 4 time slots, and leave the last three slots for A. To solve such problems,
one can consider the upcoming run time in the decision, and use thevirtual finish time
(VFT) instead of the VT. Thus, we hypothetically add the nextquantum to each process in
turn, and see what its virtual time will be if the quantum is allocated to this process.

Note that when some allocations are very small, VFT may be as bad as VT: it simply
delays B, C, and D to the end rather than running them first. However, interactive and
multimedia processes typically fragment their allocations into many short runs (less than a
full tick), based on their real-time needs [Etsion et al. 2003]. It is therefore actually better
to use VT and not VFT, because VT better reflects how CPU time isreally used. VFT will
lose this information, as it always assumes that the full allocation will be used.

What we would really like to achieve is an interleaving of thedifferent processes, ideally
a sequence of dispatch decisions like A, B, A, C, A, D, A. This can be approximated by
a scheme we callprocessor sharing virtual time(PSVT). Under this scheme, scheduling
priority is proportional to the difference between a process’s running time and its hypothet-
ical running time if the system were to use processor sharing. Under processor sharing, all
processes advance all the time, with rates that are proportional to their shares (dashed lines
in Fig. 6). Thus, when process A does not run, its PS runtime advances quickly, while its
real runtime stays the same, leading to a large mismatch and ahigh priority. As a result,

2The units of time allocation, defined by the operating systemclock interrupt rate.
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the scheduler will tend to pick process A after it has not run,even if some low-allocation
process has not run at all yet.

The current implementation supports both VF and VFT dispatching. We plan to imple-
ment PSVT in the future.

7.4 Workload Dependence

As hinted above, some of the choices made in designing the algorithm are workload depen-
dent. For example, the idea of equalizing output rates as measured by normalized counts
of pixel modification is geared toward multimedia applications, allowing the same frame
rate to be achieved. But this may be the wrong thing to do in other scenarios. For example,
consider the following.

—Some applications simply do not have a frame rate. For example, if a kernel make
competes with a movie player, the sporadic prints from the make will create much less
output, and therefore the make will be given a much larger allocation in order to enable
it to make up.

—Just as multimedia applications exhibit CPU-usage profiles that are indistinguishable
from those of compute-bound processes, so do animated popupads display I/O pro-
files that are indistinguishable from multimedia applications. By prioritizing I/O we
also prioritize such popups. This however is not unique to the HuC scheduler, as this
phenomenon also affects CPU pattern based schedulers. For example, a web browser
experiencing popups under the regular Linux scheduler willconsume more CPU thus
having its priority reduced.

The lesson from this is that there is probably no single solution that will be good for
all possible situations. However, it seems that monitoringI/O is certainly an interesting
addition to the toolbox of system designers. In some cases, it provides exactly the support
that is needed. In others, it may be possible to combine it with other tools to achieve the
desired results.

8. INTEGRATION WITH LINUX

The HuC scheduling algorithm described above specifies how CPU resources are allocated
to HuC processes. But a general purpose desktop system also runs other types of processes.
Moreover, processes may be classified as belonging to different classes during their exe-
cution. In this section, we describe the allocation of CPU resources between the different
classes, and the issue of class mobility.

8.1 Scheduling-Classes Hierarchy

The Linux scheduler is POSIX compliant and therefore supports three scheduling classes:
FIFO, Round-Robin, and OTHER (the latter is not defined by POSIX but its implemen-
tation is mandated and it is the default [Gallmeister 1995]). Each process is associated
with a single class that can be changed through the standardschedsetparamsystem call.
FIFO and Round-Robin processes are categorized by POSIX as realtime, and when ready
to run should always be preferred over OTHER processes. Unfortunately, in Linux all
three schedulers are hard-coded into one complex function which makes it very tricky to
add adequate handling for HuC processes. For this reason we have decided to rewrite the
scheduler in such a way that will allow new policies to be easily incorporated. Our design
was inspired by that of the Solaris 8 scheduling scheme [Mauro and McDougall 2001] and
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Class Subclass Description

Realtime FIFO POSIX first-in first-out
RR POSIX round-robin
KTHREAD kernel threads

Collective HUC processes identified as HuC
OTHER Linux default

Idle IDLE idle loop

Table II. Scheduling classes hierarchy ordered by importance.

can be described as ahierarchical scheduler: The various scheduling classes are organized
in a hierarchy, in order of importance. Whenever the scheduler needs to choose the next
process to run, it goes to the top class with a ready process, and “asks” it to pick its most
desirable process.

Table II lists the scheduling classes we have implemented inour scheduler. FIFO and
RR are retained with the same semantics as in Linux. KTHREAD is populated by the
various kernel processes which may be considered as part of the operating system (e.g.
daemons involved with paging). Originally, such processesbelonged to the OTHER class.
But once we identify HuC processes and give them a higher priority, we need to ensure that
we do not starve these system processes, as this may have a disastrous effect on the system.
We therefore created the KTHREAD class, above the HUC class,but still below the FIFO
and RR classes. Prioritizing within the KTHREAD class is done as in the original OTHER
class.

Next come all the processes that should share available resources and all make progress
collectively. Our scheduler’s goal is that HuC processes should be prioritized relative to
other processes. The HUC class includes all processes identified as HuC by virtue of
having positive input or output ratings. Scheduling withinthe HUC class is as described in
the previous section.

OTHER processes are scheduled as in standard Linux: each hasits allocation, and the
sum of allocations define the epoch. But this does not necessarily correspond to the epoch
as defined in Section 7. To make ends meet, we rescale the Linuxepoch so as to fit into
our epoch (200ms) after subtracting the allocations to the HuC processes.

IDLE currently contains only the idle loop. However, it is possible to envision situations
in which this class will be used to run processes that should only be run when the system
doesn’t have anything better to do. For example, one can havea TUNE subclass for special
system processes that perform self tuning [Feitelson and Naaman 1999], and a STANDBY
class for user processes such as participation in the SETI@home effort.

8.2 Class Allocations and Class Mobility

Traditional Unix schedulers are stable because they include a negative feedback loop. High
priority processes get to run and lose priority, whereas waiting processes gain priority. As
a result active processes quickly converge to the same priority level and share the CPU
equitably.

Our scheduler has the potential danger of an unstable positive feedback loop: processes
that generate output get a higher allocation, which allows them to run more, potentially
creating even more output (obviously input cannot be affected by a positive feedback loop
since it solely depends on the user). Thus, a new HuC process may be unable to get started
and gain enough momentum to compete with existing HuC processes. This may not to
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Fig. 7. Competition between the Xine movie player and background stressor processes. Using the Linux sched-
uler (left), Xine receives less CPU resources as more stressors are added, resulting in increased frame loss rates.
With the HuC scheduler (right) it receives enough resourcesdespite this competition.

be a problem for new processes that inherit the user-interaction counts of their parents,
but it could in principle happen to processes forked by non-HuC processes or processes
that change their nature over time. We therefore need a solution that allocates CPU time
to processes despite the fact that their I/O ratings are low or nil. Luckily, this meshes in
nicely with the concept of an epoch. During an epoch, all active processes get a chance to
run. Rather than defining the epochs within each scheduling class, we can define an epoch
to span all collective classes.

The allocation of time within the epoch depends on the class.HuC processes get as
much of the allocation as they need to meet the target output level. OTHER processes get
whatever is left over. Note that if the HuC processes have high requirements, they will
tend to monopolize the full epoch; time will be left over onlyif all HuC processes reach
their knee. If not enough time is left for the OTHER class, theepoch is rescaled so as
to ensure that each OTHER process gets at least one tick. Thisis needed to ensure that
such processes will be able to generate some output and thus become identified as HuC.
And indeed, our tests indicate that starvation is not a problem, and processes that generate
output are quickly identified and prioritized.

It should be noted that our approach is only one of a whole spectrum of possibilities. It is
also possible to decide to give the OTHER class a certain share of the CPU time, or a share
that depends on the number of processes in it. For example, this may be desirable in order
to guarantee good progress for background tasks (e.g. compilations or network downloads)
even when the user is engaged in an interactive game to pass the time. Evaluating such
options is currently left for future work, while the currentimplementation simply favors
the HUC class.

9. EXPERIMENTAL RESULTS

To evaluate the concept of HuC scheduling and our Linux implementation of this concept
we conducted measurements with several workloads. The workloads typically included
one or more HuC process, and different numbers of stressor processes that compete for the
CPU. Results here are slightly different from the preliminary ones in [Etsion et al. 2004]
due to further development of the scheduler.
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Fig. 8. CPU allocations and frame rates of competing Xine viewers with different sizes. Small is 1:1, and big is
2:1, in all cases showing the same movie coded with 30 frames per second.
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Fig. 9. Allocations to a dynamic workload of Xine movie players. Four Xine players of different sizes are started
5 minutes apart and run for 22 minutes each. Left: Linux scheduler. Right: HuC scheduler.

9.1 Prioritizing HuC Processes

A striking result is shown in Fig. 7. This shows profiles of executing Xine showing a movie
at a 2:1 size ratio, with up to 10 stressor processes. Xine andthe X server require about
60% of the CPU in this case. Under the original Linux scheduler, they do not get this
percentage when there are two or more stressors, resulting in an increasing frame-loss rate
as stressors are added. But with the HuC scheduler Xine and X are identified and given
priority over the stressor processes, and they continue to get 60% of the CPU regardless of
the number of stressors. As a result the frame loss rate remains negligible.

Similar results are obtained for other applications as well. At the low end of CPU us-
age, applications like the Emacs editor are unaffected by the HuC scheduler. Emacs only
requires about 1% of the CPU resources, and gets it even underthe default scheduler; the
HuC scheduler provides the same.

9.2 Equalizing Output Production

The above experiments show that HuC processes are correctlyprioritized relative to non-
HuC processes. But what happens when multiple HuC processescompete against each
other? As an example, we test the performance of 4 Xine movie players showing a 22-
minute movie at two different sizes. The results are that theLinux scheduler attempts to
provide them with equitable CPU resources, allowing the small ones to display many more
frames (Fig. 8). Under HuC, on the other hand, the average frame rates are equalized. To
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Linux scheduler. Right: HuC scheduler.

achieve this, about 3% of CPU time is taken from each of the three small Xines, and given
to the large one.

Another important question is how the allocation adjusts todynamic load conditions. To
check this we again measure four Xines, starting them up at 5 minute intervals. The above
behavior was repeated, with the HuC scheduler adjusting allocations so they all achieve
the best rate possible at each instant (Fig. 9 right), whereas under Linux the small window
sizes are given priority when the system is overloaded (left). For example, in the period
between 10 and 15 minutes into the test, two big and one small Xine are active. As the
small one needs less CPU, it is unperturbed under Linux, and only the big ones suffer. With
the HuC scheduler, the big ones achieve a somewhat higher frame rate, at the expense of
the small one that is also brought down to this level. Also note that new processes manage
to get up to speed very quickly and don’t fall behind those that are already running (the
vertical lines indicate a Xine instance start or stop). Thisis especially noteworthy given
that the processes are spawned by a script, and therefore do not start out identified as HuC.

9.3 Combining HuC Prioritization with Output Equalization

After separately demonstrating the HuC scheduler’s abilities to both identify human cen-
tered processes over background ones and equalize their frame rate, the remaining question
is how those two effects combine. To examine this combination we repeated the previous
4-Xine experiment depicted in Figure 9, but with a 2-way parallel kernel make running as
background load. The results are shown in Figure 10. On the left we see the frame rate
achieved by all the different Xine players when using the default Linux scheduler, with the
HuC scheduler on the right.

As opposed to the previous background load, in this case the load is not purely CPU
bound, but rather both CPU and I/O bound. The most notable effect in the Linux scheduler
are the perturbations in the frame rate throughout the movies’ playing time. Since both
Xine — running a∼ 300MB movie — and the kernel compilation are I/O bound, giving
both equitable shares for the CPU results in enhanced dependency on disk performance.
This dependency is best demonstrated in the first five minutesof the experiment, when only
a single Xine is running. When comparing the stability of theframe rate achieved during
this time with that achieved between minutes 10 and 15 in Figure 9 — time in which the
CPU was also overloaded — we see that the kernel compilation dramatically degrades
the predictability of the I/O bandwidth available to Xine, resulting in a perturbed frame

ACM Journal Name, Vol. V, No. N, Month 20YY.



24 · Yoav Etsion et al.

Linux Scheduler

0 1 2 3 4 5 6 7 8 9 10D
is

pa
tc

h 
la

te
nc

y 
[m

s]

0

2

4

6

8

10 HuC Scheduler

Number of Stressors
0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10
123456789012345678901

1234567890123456
1234567890123456

OpenOffice 
Xine
X (with Xine)
Emacs

Fig. 11. Average dispatch latency of HuC applications under the default and HuC schedulers.

rate. Another effect caused by the Linux kernel’s attempt toequalize CPU allocations are
the different frame rate ranges achieved by the smaller and bigger Xine processes. Even
though both suffer from extreme perturbations, the difference in the frame rate ranges is
clearly visible.

When using the HuC scheduler, on the other hand, CPU allocation is geared towards
multimedia and the frame rate is stable throughout the movieplaying time. The only
changes in the frame rates occur when more Xine processes arelaunched — at minutes
5, 10, and 15 into the test — but again these result in prompt graceful degradation of all
processes’ frame rates into a single, relatively stable range. These changes in the frame
rates correspond to the ones shown in Figure 9, with the addedeffects of I/O collisions.

Equalizing output production is still prone to a few pathological cases of mis-scheduling:
a small window showing a high frame rate movie might be more important to the user than
a competing larger window showing a lower frame rate movie. The frame rate equalization
metric might reduce the small window’s frame rate, contraryto the users’ wishes. How-
ever, consciously scheduling such a case correctly (note that the classic, CPU equalizing
scheduler will make this decision unconsciously) requiresknowledge about the importance
of movies’content, which requires explicit user intervention. The general case though is
closer to the examples depicted in figures 7, 8, 9 and 10, showing the superiority of our
scheduling metric over the classic CPU equalizing one in multimedia environments.

9.4 Keeping Latency Low

The HuC scheduler not only allocates CPU time preferentially to HuC processes, it also
does so promptly. The left of Fig. 11 shows the dispatch latency of various process types
under loaded conditions when served by the Linux scheduler (we define dispatch latency
as the period from entering the ready queue to being dispatched). The right side shows the
results of running the same experiment with the HuC scheduler. The dispatch latencies of
HuC-processes remains very low (typically< 2ms), regardless of the background load.

While the worst results are obtained for Emacs, they are still extremely good in absolute
terms, and significantly lower than the 150ms threshold of human perception [Dabrowski
and Munson 2001]. To verify this, Fig. 12 shows the total latency from the time of a
keystroke (as timestamped in the device driver) to when the corresponding character is
displayed on the screen (as timestamped upon completion by the X server). The average
grows to about 6ms, which corresponds to three dispatch latencies (from whatever process
is running to X, then to Emacs, and back to X again). Before each keystroke we have
verified that Emacs has timed out as a HuC process, and returned to the OTHER class. As
such, the maximal measurements of up to 30ms include the timeneeded for the scheduler
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Fig. 12. Latency of displaying characters typed into Emacs.

to identify Emacs as a HuC process again. But even this relatively high value is actually
extremely good, and there is no real need for additional prioritization, which might come
at the expense of other competing applications.

Another point worth mentioning in this context is the improved responsiveness of the
window-manger itself. While conducting measurements involving heavy background load
under the default scheduler, we have noticed that moving windows around produces ex-
tremely jerky and abrupt results. By contrast, the HuC scheduler impressively rectified this
misfeature: identifying the window-manager as HuC allowedsmooth window movement
which (subjectively) felt as if no background load was present.

9.5 Costs

One cost of running a scheduler is the direct overheads involved in its operations. Cal-
culating all priorities each second when new information arrives takes 69,276 cycles on
average, aggregating at only∼ 0.01% overhead of the CPU’s cycles on our 664MHz pro-
cessor, as it only occurs once a second. Other overheads include starting a new epoch
which takes 14,878 cycles, dispatch overhead is about 1,559cycles, and moving a process
between classes takes 1,425 cycles. As dispatch and epoch starts occur more often, their
total effect is higher, and stands at 0.6% and 0.04% respectively. The total overhead of the
scheduler activity is thus about 0.65% These results show little if any dependence on queue
length with 0 to 10 stressors and several Xines running. In comparison, averaging both the
dispatch and epoch restart in the default Linux 2.4 scheduler is measured at∼ 5000 cycles
[Tsafrir 2001] total, resulting in roughly similar overheads.

As noted in Section 3.1, these measurement are not applicable to the Linux 2.6 ker-
nels, as data structure changes made the dispatch overhead independent of the number of
runnable processes in the system. Also, time slices for eachquantum are now dispensed in
the previous schedule-out event, effectively canceling the epoch restart loop.

Another cost of the HuC scheduler is the possible effect on non-HuC processes. For
example, such an effect occurs when network activity occursin the background. Under
sufficiently high loads, allocating the CPU preferentiallyto HuC activities may deprive
the networking process from timely access to the CPU, reducing the achievable commu-
nication bandwidth. For example, we ran a test of Xine showing a 50 frames per second
movie at double size together with a communicating process.The achieved Xine frame
rate grows from 21 under Linux to 37 with the HuC scheduler. Asa result, the achieved
communication bandwidth drops from 10.9MB/s to 3.9MB/s.

Finally, it should be noted that the HuC scheduler may be susceptible to some user
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recent time to retain I/O status or count (8 sec)
countout metric for output (normalized pixels)
Tupdate period of updates from X to kernel (1 sec)
epoch maximum scheduling cycle (200 ms)
α factor by which initial allocation grows (2)
init initial allocation for new HuC (1% of epoch)
min alloc minimal allocation to OTHER process (1 tick)

Table III. Configurable parameters of user-I/O monitoring and HuC scheduling.

counter-measures. For example, it is possible to envision an application that opens a small
window for a short time just in order to perform some spuriousoutput and gain priority.
While we do not currently address such concerns, we note thatmost schedulers are actually
open to such manipulations.

10. DISCUSSION AND CONCLUSIONS

To summarize, the main observation leading to our work is that it is impossible to use CPU
usage patterns to identify processes that are of immediate interest to the user [Etsion et al.
2004]. A possible alternative is to directly track the activities of the user, and compute the
closure of processes that participate in user interactions. These processes, which we call
human-centered, are then prioritized relative to other processes in the system.

Our main contribution is the proposal of a new metric to quantify user interest in running
processes, based on their input and output events. This was then used to prioritize the
processes and allocate CPU resources with the goal being equalizing output production.
We have found this new metric to be much more suitable for multimedia environment than
the contemporary metric of equalizing CPU allocations. Implementing this idea involved
considerable work and modifications to the Linux system and Xserver, because it runs
contrary to current designs. As such, it should be understood that many issues were left
open. For example, the system has various parameters (some of which are listed in Table
III) that need to be optimized. In particular, the choices wemade were geared towards
multimedia applications such as movie viewers. Other choices may be more appropriate
for other workloads.

The idea of prioritization by user I/O opens many new and intriguing directions. For
example, being based on I/O events also allows our schedulerto respond to very simple
cues from the user. Simply clicking on a window will cause an X-event to be sent to the
associated application, and will raise its priority, even if it completely ignores the actual
input. This opens intriguing possibilities for new types ofinteractions between the user
and the system. It is also possible to consider a tighter coupling of the machine and the
user. In our work, we need to infer what the user wants from input and output events.
But one can also use devices that can provide even better measurements of user comfort
or frustration, e.g. galvanic skin response meters and respiration sensors [Scheirer et al.
2002], a webcam joint with a face recognition software to track if the user is looking at the
screen [Dalton and Ellis 2003], or even pupil sensors to track which window the user is
looking at, like some SLR cameras use for accurate focusing [Canon Inc. 2004]. This will
enable the user’s mood and actions to directly affect systembehavior.
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