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ABSTRACT
The overhead of a context switch is typically associated
with multitasking, where several applications share a
processor. But even if only one runnable application is
present in the system and supposedly runs alone, it is
still repeatedly preempted in favor of a different thread
of execution, namely, the operating system that services
periodic clock interrupts. We employ two complement-
ing methodologies to measure the overhead incurred by
such events and obtain contradictory results.

The first methodology systematically changes the inter-
rupt frequency and measures by how much this prolongs
the duration of a program that sorts an array. The over-
all overhead is found to be 0.5-1.5% at 1000 Hz, linearly
proportional to the tick rate, and steadily declining as
the speed of processors increases. If the kernel is con-
figured such that each tick is slowed down by an access
to an external time source, then the direct overhead
dominates. Otherwise, the relative weight of the indi-
rect portion is steadily growing with processors’ speed,
accounting for up to 85% of the total.

The second methodology repeatedly executes a simplis-
tic loop (calibrated to take 1ms), measures the actual
execution time, and analyzes the perturbations. Some
loop implementations yield results similar to the above,
but others indicate that the overhead is actually an or-
der of magnitude bigger, or worse. The phenomenon
was observed on IA32, IA64, and Power processors, the
latter being part of the ASC Purple supercomputer. Im-
portantly, the effect is greatly amplified for parallel jobs,
where one late thread holds up all its peers, causing
a slowdown that is dominated by the per-node latency
(numerator) and the job granularity (denominator). We
trace the bizarre effect to an unexplained interrupt/loop
interaction; the question of whether this hardware mis-
feature is experienced by real applications remains open.
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1. INTRODUCTION
A context switch is defined to be the act of suspend-
ing one execution thread in favor of another. This term
is commonly associated with the notion of multitasking,
by which operating systems provide the illusion of being
able to simultaneously run a number of applications that
exceeds the number of available processors. The reason
for this association is the fact that multitasking is real-
ized by means of systematic context switching between
competing applications and time slicing the processor.
And so, the phrase “context switching” is usually im-
plicitly suffixed by the phrase “between applications”,
which is assumed without being said.

However, as implied by its definition above, “context
switch” is in fact a broader term. It applies to any
two threads of execution that share the same processor,
even if one is not associated with an application per-se.
Specifically, this is the case when a hardware interrupt
fires: the operating system temporarily suspends the
currently running application, switches to kernel space,
and invokes the interrupt handler (during which the ker-
nel is said to be running in “interrupt context”). When
the handler finally terminates, the operating system re-
turns to user space and restores user context.

The interleaving of interrupts and applications directly
coincides with how context switching is defined. Yet the
associated overhead is usually overlooked, or at least not
considered in isolation. This may have to do with the
perception that hardware interrupts often yield a “tradi-
tional” application-to-application switch. For example,
when a user interacts with a text editor by pressing a
keyboard key, the typical reaction of a general-purpose
OS (to the consequent hardware interrupt) would be to
immediately suspend whichever process that happens
to be running, dispatch the editor, and deliver to it the
associated event (illustrated in Figure 1). This policy
is part of the dominant doctrine to favor “I/O bound”
applications that are consistently blocked waiting for
some event to occur. As hardware interrupts signify the
occurrence of such events, they therefore often yield a
regular application-to-application context switch (from
the currently running- to the waiting application) and
so the overhead of the associated handler is typically
bundled with the overall overhead of this switch.

1



stdin

VI

stdout

keyboard
device
driver

Xgeneratesoutput

X−event

write
character

read
character

pseudo
terminal

UNIX
domain
socket

display
adaptor
driver

user
types

inputreadsX

xtermX

kernel space user space

X−request

Figure 1: The chain of events triggered by a user keystroke on typical a UNIX system. The key press generates
a hardware interrupt that invokes an appropriate handler-routine and consequently propagates through a chain of
connected blocked-waiting processes, each of which is awakened as a result of a matching context switch. This
sequence usually takes place immediately after the keystroke, because all the processes involved are “I/O bound”
and therefore possess a relatively high priority that allows them to preempt any currently running “CPU bound”
application. The end result is that the context switch to and from the interrupt-handler is often temporally coupled
with an application-to-application switch.

The assumption underlying this approach of aggregat-
ing the overhead penalty is that the operating system
is reactive in nature and just passively waits for events
initiated by various external entities to occur. However,
this is not the case. In fact, the OS embodies a dis-
tinct proactive component. This is manifested in the
form of repeated periodic clock interrupts that are used
by the OS to maintain control and measure the passage
of time. The practice of utilizing clock interrupts for
this purpose has started at the dawn of OS research in
the 1960s [1] and has continued ever since, such that
nowadays it is used by most contemporary OSs, includ-
ing Linux, the BSD family, Solaris, AIX, HPUX, IRIX,
and the Windows family. Roughly speaking, the way
this mechanism works is that at boot-time, the kernel
sets a hardware clock to generate periodic interrupts
at fixed intervals (every few milliseconds; anywhere be-
tween 1/2ms to 15ms, depending on the OS). The time
instance at which the interrupt fires is called a tick, and
the elapsed time between two consecutive ticks is called
a tick duration. The interrupt invokes a kernel routine,
called the tick handler that is responsible for various
important OS activities including (1) delivering timing
services and alarm signals, (2) accounting for CPU us-
age, and (3) initiating involuntary preemption for the
sake of multitasking.

Note that ticks always occur, regardless of the number
of runnable processes that are present in the system (or
even if it is idle). Importantly, the tick-rate is strictly
time-driven and is independent of whether the respec-
tive handler triggers an application-to-application con-
text switch or not. Consider the current stable FreeBSD
release (6.2), which employs a 1000 Hz tick-rate and
a 100 millisecond quantum. Assuming there is only
one runnable process in the system, one might presume
it will be allowed to continuously run, uninterrupted.
However, in reality, it will endure 1000 context switch
events per second during which it will be repeatedly pre-
empted while the tick-handler takes charge (only to be

resumed when the handler terminates). Likewise, if the
system contains several runnable processes, it will not
allow them to run uninterrupted throughout their quan-
tum; instead each of them would be preempted/resumed
99 times before their quantum expires and an application-
to-application context switch finally occurs.

We thus contend that the context switch overhead in-
flicted by interrupts deserves a focused attention and
merits a separate evaluation that specifically addressees
the issue. This paper attempts to supply such an eval-
uation: it builds on knowledge and results we gathered
during the last 5 years under different titles [2, 3, 4, 5, 6,
7], aggregating and extending those parts that are most
relevant to the topic at hand, as noted in each section.

We begin by noting that the common wisdom amongst
system practitioners (partially reinforced by sporadic
measurements [8, 9, 10]) states that the overall over-
head incurred by ticks amounts to less than 1% of the
available CPU cycles. This statement might be overly
simplistic as it ignores

1. the platform being used,

2. the workload that is running,

3. the tick frequency, and

4. whether the specified overhead only relates to the
direct component (time to execute the handler) or
also includes the indirect penalty (degradation in
performance due to cache state change).

We consider all of the above (along with a fifth point,
which is the effect the associated overhead has on par-
allel jobs). For this purpose we evaluate the direct and
indirect components in the face of different tick rates
and workloads, across multiple generations of Intel pro-
cessors spanning over a decade.

Section 2 deals with the first workload we use, which
is a simple program that sorts an integer array. We
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processor trap tick handler

TSC (default) PIT
cycles µs cycles µs cycles µs

P-90 153±024 1.70 814±180 9.02 498±466 5.53
PPro-200 379±075 1.91 1654±553 8.31 462±762 2.32
PII-350 343±068 0.98 2342±303 6.71 306±311 0.88
PIII-664 348±163 0.52 3972±462 5.98 327±487 0.49
PIII-1.133 364±278 0.32 6377±602 5.64 426±914 0.38
PIV-2.2 1712±032 0.72 14603±436 6.11 445±550 0.19

 100

 1000

 10000

 100000

PIV-2.2

PIII-1.133

PIII-664

PII-350

PPro-200

P-90

cy
cl

es

 TSC
 PIT

 0.1

 1

 10

PIV-2.2

PIII-1.133

PIII-664

PII-350

PPro-200

P-90

m
ic

ro
se

co
nd

s

Figure 2: The left table specifies the direct overhead component of tick context-switching, broken down to trapping
to/from the kernel and the processing of the interrupt (average±standard deviation). In TSC mode, the slow access to
the 8253 for the sake of a faster gettimeofday dominates the handler’s runtime and makes it largely independent of
the CPU speed; the PIT mode eliminates this access and makes the handler scale.

measure the direct overhead by instrumenting the ker-
nel, and the overall overhead by systematically changing
the tick rate and observing the degradation in sorting
performance. We then deduce the indirect component
by analyzing the difference between the two, while iden-
tifying the trends emerging from varying the processor.
In all cases, though, the widely used 1000Hz tick-rate
yields around 1% of (overall) overhead, in accordance
to the the common wisdom.

Section 3 deals with the second workload we use, which
consists of repeatedly executing a simplistic loop that
was calibrated to take one millisecond. Such loops are
termed “do nothing” loops.1 This workload attempts to
model one thread within a bulk synchronous parallel job.
In this setting, each thread is dedicated a processor and
repeatedly engages in a compute-phase, after which it
synchronizes with its peers. This means that no thread
is allowed to continue to the next compute-phase until
all its peers have completed the previous (every phase
is followed by a barrier to insure safe access to shared
data structure, or by a communication period to ex-
change data that is needed for the next computation).
Thus, if one thread is late, all its peers must stand idle
until it catches up, which dramatically amplifies the im-
pact of any local disturbances that prevent the thread
from completing its work on time. In general, this phe-
nomenon is termed “OS noise” and is currently the fo-
cus of extensive research efforts in the supercomputing
community, which attempt to both assess and reduce
the noise [11, 12, 13, 14, 15]. We show that a delay
of D seconds would cause a job with a compute-phase
duration of G seconds to experience a slowdown of 1 +
D

G
if it spans enough nodes. Importantly, if D is caused

by a tick, then the resulting global slowdown can only
be considered as part of the indirect overhead inflicted
by interrupt/application context switching.

Analyzing the perturbations in the do-nothing loops re-
sults in the contradictory conclusion that the overhead
inflicted by ticks is in fact an order of magnitude big-
ger than what was reported above and sometimes much
worse. This pathology was observed on Intel’s Pentium

1Somewhat of a misnomer: a do-nothing loop can have
an empty body, but it can also do some work.

and Itanium processors, and on IBM Power processors
that are part of the ASC Purple [16, 17]. Through detail
cache analysis we identify the cause of the effect as an
unexplained interaction between ticks and do-nothing
loops. Then, in Section 4, we address the contradic-
tory results and describe our attempts to resolve this
“overhead dispute”. Finally, in Section 5, we conclude.

2. IMPACT ON A SERIAL PROGRAM
In this section we explore the direct and indirect impact
of ticks on a real application (that actually computes
something useful). The two overhead components are
individually addressed by the following two subsections,
respectively. To generalize the results and to obtain
a broader perspective, all experiments are conducted
on a range of Intel platforms: (1) Pentium 90 MHz,
(2) Pentium-Pro 200 MHz, (3) Pentium-II 350 MHz,
(4) Pentium-III 664 MHz, (5) Pentium-III 1.133 GHz,
and (6) Pentium-IV 2.2 GHz. The operating system
is a 2.4.8 Linux kernel (RedHat 7.0): the same kernel
was compiled for all architectures, which may have re-
sulted in minor differences in the generated code due to
architecture-specific ifdefs. The data which serves as the
basis of this section was collected during October 2002
in preparation towards [2], but a significant portion of
the analysis presented here is new.

2.1 Direct Overhead
Trapping. The direct component in the context switch
overhead incurred by ticks can be divided into two mea-
surable subcomponents. The first is the trap time, namely,
the overhead of switching from user- to kernel-space and
back. The second is the duration of the tick-handler,
namely, the kernel routine that is invoked upon each
tick and is in charge of performing all the required pe-
riodic activities. We estimated the first component by
repeatedly invoking the getpid system call, which is rea-
sonably suitable for this purpose because it is hardly
doing any work other than trapping (we made sure that
the pid was not cached in user space and that the traps
indeed took place). The results are shown in the left of
Figure 2 (second column). They do not coincide with
Ousterhout’s claim that “operating systems do not be-
come faster as fast as hardware” [18], because trapping
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takes roughly the same number of cycles regardless of
the CPU clock speed (except on the P-IV 2.2GHz which
was an early unsuccessful model that often fell behind
its P-III predecessor [19]).

KLogger. The harder part was measuring the duration
of the handler. For this purpose we have instrumented
the kernel by using klogger, a kernel logger we developed
that supports efficient fine-grain events [20]. While the
code is integrated into the kernel, its activation at run-
time is controlled by applying a special sysctl call using
the /proc file system. In order to reduce interference
and overhead, logged events are stored in a 4 MB buffer
in memory, and only exported at large intervals when
space is about to run out. The implementation is based
on inlined code to access the CPU’s cycle counter and
store the logged data. Each event has a header includ-
ing a serial number (by which made sure events do not
get lost) and timestamp with cycle resolution, followed
by optional event-specific data. In our use, we logged
all scheduling-related events, two of which mark the en-
try/exit points of the tick-handler and so by computing
the difference we obtain the handler’s execution time.

The Handler. In contrast to the trap duration, we find
that the overhead for processing the clock interrupt is
dropping at a much slower rate than expected according
to the CPU clock rate — in fact, it is relatively stable
in terms of absolute time. This turned out to be related
to an optimization in the implementation of gettimeof-
day(): Linux keeps track of time using the standard 8253
PIT (programmable interrupt timer) chip, so whenever
the kernel needs the wall-clock time it can simply ac-
cess the 8253 through the I/O bus and read the data.
However, as this is a relatively expensive operation, a
possible alternative is to do it upon each tick instead,
such that a gettimeofday() call would only have to in-
terpolate the current time from the last value read, by
using the time-stamp cycle counter (TSC). Since the
latter is a much faster operation, this mode of oper-
ation limits the overhead incurred by the PIT to the
number of timer interrupts per second. The two modes,
common to both the 2.4.x and the 2.6.x kernel series,
are somewhat confusingly called the PIT mode (each
gettimeofday invocation accesses the 8253) and the TSC
mode (only ticks do the access), such that the latter is
the default. The respective measurements are specified
and depicted in Figure 2.

2.2 Indirect Overhead
The Benchmark. The indirect overhead of clock in-
terrupt processing can only be assessed by measuring
the total overhead in the context of a specific appli-
cation (as was done, for example, in [21]) and then
by subtracting the direct component. The application
we used is sorting of an integer array, somewhat simi-
larly to the LMbench benchmark that sums a large ar-
ray to assess cache effects of context switching [22, 23].
The sorted array occupies half of the L2 cache (the L2
cache was 256 KB on all platforms but the P-II 350
which had an L2 cache of 512 KB). The sorting algo-

processor proc time to sort one array [milliseconds]

num. 100Hz 1KHz 5KHz 10KHz 20KHz
P-90 1 120.10 117.48 127.73 136.03 156.56

2 120.65 117.86 126.30 136.54 157.07
4 120.03 119.98 126.70 138.57 161.10
8 121.05 122.13 129.21 140.03 162.97

PPro-200 1 44.05 44.54 46.29 49.10 54.56
2 44.26 44.66 46.41 49.31 54.68
4 44.96 45.17 46.98 49.88 55.55
8 45.26 45.41 47.28 50.13 55.93

PII-350 1 50.90 51.33 52.68 54.64 58.22
2 51.14 51.48 52.84 55.01 58.37
4 51.58 52.08 53.55 55.56 59.17
8 51.92 52.40 53.81 55.75 59.53

PIII-664 1 12.67 12.72 12.97 13.40 14.05
2 12.70 12.75 13.00 13.43 14.08
4 12.77 12.82 13.09 13.52 14.18
8 12.80 12.85 13.12 13.56 14.23

PIII-1.133 1 7.40 7.43 7.55 7.77 8.06
2 7.41 7.44 7.57 7.77 8.06
4 7.43 7.46 7.58 7.79 8.09
8 7.45 7.47 7.58 7.80 8.11

PIV-2.2 1 10.93 11.01 11.25 11.62 12.26
2 10.90 10.98 11.21 11.58 12.16
4 10.89 10.98 11.22 11.57 12.15
8 10.90 10.97 11.22 11.58 12.16

Table 1: The time it takes to sort an integer array that
occupies half of the L2 cache as a function of (1) the pro-
cessor, (2) the tick frequency, and (3) the number of si-
multaneously sorting processes. Kernels were compiled
with the gettimeofday/TSC optimization turned off.

rithm was introsort, as implemented by the STL version
that ships with gcc. The sorting was done repeatedly,
where each iteration first initializes the array randomly
and then sorts it (but the same random sequences were
used to compare the different platforms). By measur-
ing the time per iteration under different conditions,
we can factor out the added total overhead due to ad-
ditional clock interrupts (as is shown below). To also
check the overhead inflicted by ticks along side regu-
lar application-to-application context switching, when
cache contention is increasingly growing, we used dif-
ferent multiprogramming levels, running 1, 2, 4, or 8
copies of the test application at the same time; we used
the combined throughput of the multitasked processes
to determine the time per iteration. All this was re-
peated for the different CPU generations running ker-
nel versions compiled with different tick rates of 100Hz,
1000Hz, 5,000Hz, 10,000Hz, and 20,000Hz, amounting
to a total of 120 runs (= 6 processors times 4 multipro-
gramming levels times 5 tick rates).

Raw Results and Anomalies. The results of all the
runs are shown in Table 1 and typically make sense
when examining the individual machines, namely, mov-
ing left the right (increasing the tick rate) or top to bot-
tom (increasing the multiprogramming level) results in
a longer sorting time due to the added (application-to-
interrupt or application-to-application) context switch
overhead. However, this is not always the case, espe-
cially in relation to the P-90 machine. We failed to ex-
plain the horizontal anomaly. But the vertical anomaly
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Figure 3: Overall scheduling overhead as a function
of runnable processes is U shaped, a result of two con-
trasting effects: less renew events vs. a longer run-list.

is due to the scheduling algorithm employed by Linux
2.4, which heavily depends on the notion of epochs. An
old epoch ends and a new one begins when all runnable
(not sleeping) processes in the system exhaust their al-
located quantum. The scheduler identifies this when
attempting to choose the next process to run by iterat-
ing through the runnable processes list, only to find no
process is eligible because all quanta are worn out. The
scheduler then proclaims a new epoch has started and
cycles through all the processes (runnable and sleeping
alike) to renew the quanta. This linear renew-loop can
be time consuming, as there are dozens of sleeping dae-
mons that are resident in the system by default. Impor-
tantly, with a multiprogramming level of one, the loop
is executed more frequently — whenever the sorting-
process finishes its quantum (every 50ms) and there-
fore a new epoch is started (recall that this is the only
runnable process in the system). Increasing the mul-
tiprogramming level reduces the renew frequency and
hence the overall overhead. Figure 3 plots the overhead
of the scheduling routine as a function of the number of
competing sorting processes and illustrates the effect,
which is gradually overshadowed by the fact that the
run-list traversal (done upon each scheduling decision)
becomes longer with each additional runnable process.

Deducing the Indirect Component. The measure-
ments that are specified in Table 1 allow for an assess-
ment of the relative costs of direct and indirect over-
head. For example, when switching from 100 Hz to
10000 Hz, the extra time can be attributed to 9900 ad-
ditional clock interrupts each second. By subtracting
the cost of 9900 calls to the interrupt processing rou-
tine (from Figure 2), we can find how much of this extra
time should be attributed to indirect overhead, that is
mainly to cache effects. For example, consider the case
of a P-III 664 MHz machine running a single sorting pro-
cess. The average time to sort an array once is 12.675
ms on the 100 Hz system, and 13.397 ms on the 10,000
Hz system. During this time the 10,000 Hz system suf-
fered an additional 9900 × 0.013397 = 133 interrupts.
According to Figure 2 the overhead for each one (with-
out accessing the 8253 chip) is 0.49 µs for the handler
plus 0.52 µs for the trap, amounting to 1.01 µs. Hence,
the total additional direct overhead was 133 × 1.01 =

134µs. But the difference in the time to sort an array
is 13397 − 12675 = 722µs! Thus 722 − 134 = 588µs
are unaccounted for and should be attributed to other
effects. In other words, 588/722 = 81% of the overhead
is indirect, and only 19% is direct.

Consistency and Applicability. In the above para-
graph, the decision to use a multiprogramming level
of one, along with a Hz value of 100 vs. 10000, was
an arbitrary one. The fact of the matter is that we
could have used another multiprogramming level and
Hz values when figuring out the indirect component in
the overhead penalty inflicted by ticks. The question
is whether we would have gotten the same result had
we used a different set of parameters? (Say, a multi-
programming level of 4 and a tick frequency of 5000 Hz
vs. 20000 Hz.) For our reasoning to be sound, and for
our deduction methodology to have general applicabil-
ity, the answer should be affirmative. In other words,
we should make sure that any choice of the above three
parameters yields the same result for a given processor,
which would mean that our model is able to foresee the
impact of changing the tick rate on the system perfor-
mance. Otherwise, it only reflects sporadic measure-
ments with no boarder applicability. Indeed, the lin-
ear approach of attributing a constant overhead penalty
per-tick might simply be inadequate; in this case, our
modeling effort would loose its predictive merit: it would
be unable to infer the overhead of a hypothetical system
(with a different Hz or multiprogramming level) based
on the present observations.

Luckily, this is not the case. We have computed the in-
direct overhead component, as specified above, for each
multiprogramming levels and each possible Hz pair. The
results are shown in Figure 4, e.g. the 81% of indi-
rect overhead associated with the PIII-664MHz / one-
process / 100Hz / 10000Hz example given above is po-
sitioned within the fourth subfigure and aligned with
the “100Hz : 10,000Hz” X-stub as marked by the arrow
(the cross associated with one process is hardly visible
because it occupies the same space as the other multi-
programming levels). Note that every processor is as-
sociated with 40 results: 4 possible multiprogramming
levels times

`

5

2

´

=10 possible Hz pairs. Evidently, the
methodology successfully passes this sanity check, with
results being largely invariant to the specific manner
by which they were obtained on a per-processor basis.
The exception is the two slower machines, when lower
tick frequencies and smaller multiprogramming levels
are involved, which corresponds to the data anomaly
discussed above. Overall, the relative weight of the in-
direct component appears to be growing as processors
get faster, possibly due to the increasing gap between
the CPU and memory clocks.

Putting It All Together. Table 2 summarizes our
findings in terms of percentage of CPU cycles lost due to
a thousand ticks: for each processor, the indirect com-
ponent is the average over the 40 alternatives by which
it can be computed (as explained above), whereas the
direct component simply transforms the tabulated data
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Figure 4: The indirect portion of the overall context-switch overhead incurred by ticks is largely invariant to the
configuration from which this data is derived, indicating our methodology is sound. See text for details.
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Figure 5: Visualizing the contribution of each component to the overall overhead, based on Table 2. This highlights
the downside of using the TSC-optimized gettimeofday that causes the handler to replace the indirect component as
the dominant slowdown factor.

processor overhead per 1000 ticks [%]

PIT gettimeofday TSC gettimeofday
trap han- indi- sum trap han- indi- sum

dler rect dler rect
P-90 0.17 0.55 0.60 1.32 0.17 0.90 0.60 1.67

PPro-200 0.19 0.23 0.56 0.98 0.19 0.83 0.56 1.57

PII-350 0.10 0.09 0.49 0.68 0.10 0.67 0.49 1.26

PIII-664 0.05 0.05 0.41 0.51 0.05 0.60 0.41 1.06

PIII-1.133 0.03 0.04 0.35 0.42 0.03 0.56 0.35 0.95

PIV-2.2 0.08 0.02 0.51 0.61 0.08 0.66 0.51 1.25

Table 2: Percentage overhead of a thousand ticks.

from Figure 2 to percents (by dividing the respective
overhead cycles with the processor’s speed). The over-
all overhead of a thousand ticks turns out to be 1-1.7%
when the faster TSC version of gettimeofday is employed
Out of this, only 35-40% is attributed to indirect effects,
a result of the slow 8253 access being factored in as part
of the direct portion. Note that the general trend is a
declining overall overhead, but that this trend is over-
turned for P-IV. The same observation holds for the
slower PIT version of gettimeofday, though this configu-

ration yields a smaller overall overhead of only 0.4-1.3%,
with the relative indirect component steadily growing to
account for 85% of this (see also Figure 4).

As our model is linear, we can express the impact of
ticks on a system that employs a frequency of n clock
interrupts per second using the function

f(n) = n × (Ptrap + Phandler + Pindirect)

where the coefficients are taken from Table 2. This func-
tion is visualized in Figure 5, which breaks down the
contribution of each coefficient to the overall overheads.
Similarly, by using Tables 1-2, we can calculate the time
to sort an array on a hypothetical tickless system. For
example, sorting on a P-III 664GHz at 10000 Hz with
one running process takes 12.675 ms (Table 1). How-
ever, we know that 0.51% × 10 = 5.1% of this time was
wasted on ticks (Table 2), so a tickless system would
require only 12.675 × (1 − 0.051) = 12.028 ms to com-
plete the task. By applying this reasoning to the other
tick frequencies associated with the same configuration
(a multiprogramming level of one within P-III 664GHz)
and averaging the results, we obtain a more represen-
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Figure 6: Plotting the predictions of the model against the added overhead of Table 1’s empirical observations
relative to a hypothetical tickless base case, reveals a reasonable match. The practical limit on tick frequency lies
somewhere between 10,000 Hz and 100,000 Hz. (Data associated with the PIT gettimeofday version.)

tative value, denoted Bproc1
p664 . This value allows us to

put the model to the test, as we can compare the added
overhead of each frequency as predicted by f(n) to the
added overhead as observed by our measurements. In
our initial example, we would be comparing f(10000) to

100 ×
12.675 − Bproc1

p664

Bproc1
p664

A consistent small difference for each of the associated
five n values would indicate the model is successful. Fig-
ure 6 does this comparison for all measurements in Ta-
ble 1, and indicates that this is indeed largely the case.

3. IMPACT ON A PARALLEL JOB
The previous section was only concerned with how clock
interrupts interfere with the run of a serial program, and
with the extent to which they slow it down. But ticks
have potentially a far worse effect on a bulk-synchronous
parallel program, where one late thread deems all its
peer idle until it catches up. This dynamic, which is il-
lustrated in Figure 7, is commonly referred to as operat-
ing system “noise”, and is the focus of intensive research
efforts within the supercomputing community [11, 12,
13, 14, 15]. The reason being that Supercomputers com-
posed of hundreds, thousands, or tens of thousands of
processors are increasingly susceptible to this pathol-
ogy. A single long tick out of 10,000 clock interrupts
will presumably have negligible impact on a serial pro-
gram; but with a fine grained job that spans 10,000 pro-
cessors, experiencing this long event on each compute-
phase becomes almost a certainty. (This is true for any
noise event, not just ticks.) Thus, bulk-synchronous
jobs have the property of dramatically amplifying an
otherwise negligible slowdown incurred by sporadic OS
activity. Importantly, if the delay is due to the fact the
OS is handling some interrupt, then the resulting slow-
down can only be attributed to the indirect overhead of
the associated application/interrupt context switch.

We begin by suggesting a simple probabilistic model to
quantify the effect of noise. Incidentally, similarly to
the model that was developed above in the context of
a serial program, this too has a linear nature (Section
3.1). But the new model is not enough to assess the
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Figure 7: Due to synchronization, each computation
phase is prolonged to the duration of the slowest thread.

slowdown, as it only addresses the probability for a de-
lay, not the duration. We therefore conduct some addi-
tional analysis that highlights the granularity-to-delay
ratio as the dominant factor in the resulting slowdown
(Section 3.2). Consequently, we investigate the delays a
fine-grained thread might experience by measuring the
perturbation in the completion times of a short fixed do-
nothing loop (emulating a compute phase). The results
are overwhelming and contradictory to the previous sec-
tion, indicating the effect of ticks on a serial program
(let alone a parallel one) can actually be an order of
magnitude worse than was suggested earlier in this pa-
per (Section 3.3). The experiments which serve as the
basis of this section were conducted during February
2005 in preparation towards [5], on which Sections 3.1
and 3.3 are largely based. Section 3.2 is new.

3.1 Modeling the Effect of Noise
In this subsection we are interested in quantifying the
effect of OS noise in general (not just the one incurred
by ticks). As additional nodes imply a noisier system,
one can expect the delay probability of the entire job
to increase along with the number of the nodes that
it utilizes. Petrini et al. [13] assessed the effect of noise
through detailed simulation of its (per-site) components.
In contrast, here we analytically show that if the single-
node probability for delay is small enough, the effect of
increasing the node-count is linear: it simply multiplies
the single-node probability.

Let n be the size of the job (number of nodes it is al-
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located). Let p be the per-node probability that some
process running on it is delayed due to noise, within the
current compute phase. Assuming independence and
uniformity (namely, delay events on different nodes are
independent of each other and have equal probability,
as is the case for ticks), then the probability that no
process is delayed on any nodes is (1 − p)n. Therefore,

dp(n) = 1 − (1 − p)n (1)

denotes the probability that the job is delayed within
the current computation phase. Based on this equation,
we claim that if p is small enough, then

dp(n) ≈ d̄p(n) = pn (2)

constitutes a reasonable approximation. To see why,
consider the difference ∆ between the two functions

∆ = d̄p(n) − dp(n) = pn − 1 + (1 − p)n (3)

Note that ∆ is nonnegative (has positive derivative and
is zero if p = 0). According to the binomial theorem

(1−p)n = 1−pn+
n(n − 1)

2
p2 +

n
X

k=3

 

n

k

!

(−1)k pk (4)

where the rightmost summation has a negative value.2

Therefore, by combining Equations 3 and 4, we get that

0 ≤ ∆ <
n(n − 1)

2
p2 <

n2p2

2

which means that ∆ is bounded by some small ε if p <
√

2ε

n
. For example, ∆ < 0.01 if p < 1

7n
. Additionally,

the relative error of the approximation is smaller than
(say) 5% if

∆

d̄p(n)
<

n2p2

2np
=

np

2
≤ 0.05

which holds if p ≤
1

10n
. Another way of looking at this

constraint is that the approximation is good as long as

dp(n) ≤ 1 −

„

1 −
1

10n

«n

≈ 1 − e−
1

10 ≈ 0.1

Thus, dp(n) ≈ pn may serve as an intuitive approxi-
mated linear “noise law” for small enough p. This ap-
proximation coincides with empirical observations from
real systems, notably the ASCI White and Blue-Oak [12],
and the ASCI Q [13]. Measurements from the latter are
shown in Figure 8 and demonstrate the effectiveness of
the linear approximation. But if p is too big to meet the
above constraint then one can use the more accurate

dp(n) ≈ 1 − e−np

approximation, which applies to a wider p value range.

2Dividing the absolute value of the k and k+1 elements
in the summation yields 1

p
× k+1

n−k
. Assuming p < 1

n
(oth-

erwise dp(n) ≈ 1), the left term is bigger than n. The
right term is bigger than k+1

n
, which is bigger than 1

n
.

Hence, the quotient is bigger than 1, indicating the k-th
element is bigger than its successor. Consequently, the
summation can be divided to consecutive pairs in which
odd k elements are negative, and are bigger (absolute
value) than their even k+1 positive counterparts.
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Figure 8: The average delay experienced by a job upon
each compute-phase is linearly proportional to the num-
ber of (quad SMP) nodes being used. The compute-
phase is either 0, 1, or 5ms long. Synchronization be-
tween threads is achieved by either a barrier or an all-
reduce operations. (Measured on LANL’s ASCI Q; pub-
lished in [13]; reprinted with permission of authors.)

3.2 The Grain-Delay Ratio
Knowing the dp(n) probability for a job to get hit by
a noise event is a first step; but in order to complete
the picture and realize the impact this would have in
terms of slowdown experienced by the job, we must also
factor in G (the granularity of the jobs, namely, the
duration of the compute phase in seconds) and D (the
delay, in seconds, incurred by the noise event on the
corresponding thread). This is true for two reasons.
The first is that G affects p: if the system employs a
tick rate of HZ interrupts per second, then p = G×HZ
(e.g. if G = 1ms and HZ = 100 then p = 1

10
; and if

HZ = 1000 then p = 1). The second reason is that that
ratio between D and G defines the slowdown, which is

dp(n) · (G + D) + (1 − dp(n)) · G

G
= 1 + dp(n) ·

D

G

Thus, in essence, the D/G ratio dominates the effect of
noise: the smaller the granularity, the more significant
the slowdown, which can be arbitrarily big if G goes
to zero; a bigger delay prompts a similar effect, with
an arbitrarily big slowdown incurred as D goes to in-
finity. Figure 9 illustrates how the slowdown is affected
by the granularity and size of the job, assuming a delay
event of D = 1ms every ten seconds (we will show be-
low that this does in fact occur due to interrupt context
switching). Note that since D = 1, the granularity axis
also shows the inverse of the grain-delay ratio. Increas-
ing the number of nodes makes sure that at some point
the delay would occur in every compute phase, thereby
gradually equalizing the slowdown to be the grain-delay
ratio plus one (regardless of the granularity). We note
in passing that Figures 8–9 do not conflict, even though
the former associates a bigger penalty with coarser grain
sizes and the latter does the opposite. The reason is that
Figure 8 presents the delay — D — in absolute terms,
whereas Figure 9 presents the slowdown which is dom-
inated by the grain-delay ratio. Transforming Figure 8
to do the same proves the trends are actually identical.
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Figure 9: As the node count grows, experiencing the
D = 1ms delay on each compute phase quickly becomes
a certainty. For a G = 10ms job, this means a slowdown
of 1.1. But for a G = 1ms the slowdown is 2.

When assuming a fine enough granularity G, then it is
reasonable to argue that p is actually G×HZ, and that
the linear noise approximation of dp(n) applies. Further
assuming that ticks always inflict the same fixed delay
of D seconds, we can apply this to the above slowdown
expression and conclude that it is

1 + n · p ·
D

G
= 1 + n · HZ · D

due to ticks. Indeed, if n = 1, this is the slowdown one
would expect to get. Intuitively, for bigger n values (un-
der the above assumption regarding p), the probability
of overlap between the noise on two distinct nodes is
negligible, so each additional node simply adds the de-
lay to the overall slowdown (as the delay is propagated
to the entire job in the next synchronization point).

As will shortly be demonstrated, our above “perfect
world” assumption that all ticks inflict a fixed delay is
incorrect. In fact, some ticks inflict a much longer delay
than others. To truly get an idea about the impact of
ticks (and other interrupts) on parallel jobs, we have no
choice but to investigate the nature of the “D” and “p”
they incur. The sort application from the previous sec-
tion will not suffice for this purpose as we must be able
to repeatedly do a fixed amount of fine-grained work
(G) in order to obtain our goal. Likewise, Table 2 is not
helpful either because it only addresses the average.

3.3 Assessing Delays and their Probability
Methodology. Our approach to measure the overhead
inflicted by interrupts is the following. On an otherwise
idle system we run the following microbenchmark:

for(int i=0 ; i < 1000000 ; i++) {
start = cycle_counter();
for(volatile int j=0; j<N; j++) {/*do nothing*/}
end = cycle_counter();
arr[i] = end - start;

}

such that N is carefully calibrated so that the do-nothing
loop3 would take G = 1ms (a common grain size for par-
allel jobs [13]; we explored other grains in [5]). As we
3We made sure that the loops are not optimized out.

ID CPU main memory cache size bus

clk size clk type L2 L1 clk
date code

GHz MB MHz SD = SDRAM KB KB Kµops MHz

M1 2.4 1024 266 DDR-SD 512 8 12 533
M2 2.8 512 400 DDR-SD 512 8 12 800
M3 3.0 1024 400 DDR2-SD 1000 16 12 800

Table 3: The Pentium-IV machines we used.

quickly found out, obtaining such a “definitive” N is
not possible due to an inherent variance in the associ-
ated completion time. We have therefore chosen an N
that attempts to place the main body of the distribution
(of the values stored within the arr array) on 1ms. The
heuristic we used is to run the above microbenchmark
with an arbitrary N = 106, ascending-sort the content
of arr, and average the samples between the 20 and 30
percentiles in the resulting sequence (3rd decile). This
average was translated to an actual time (by dividing
it with the CPU frequency) and served as the interpo-
lation basis to approximate the N which is required to
obtain a 1ms long computation. We note that regardless
of this particular heuristic, what matters when assess-
ing the impact of interrupts is the span of the values in
arr, namely, how spread or concentrated are they.4

We ran the experiment on three Pentium IV generations
as listed in Table 3 (note that each configuration is as-
signed an ID, M1-M3, for reference purposes within this
text). All the machines ran a Linux-2.6.9 kernel with
its default 1000 Hz tick rate. No other user processes
were executing while the measurements took place, but
the default daemons were alive. In order to make sure
that all the perturbation we observe within the sam-
ples that populate arr are not the result of interven-
ing daemons, but rather purely due to interrupts, the
microbenchmark was also executed with the standard
SCHED FIFO realtime priority (no non-realtime process
is ever allowed to preempt a realtime process, even if the
former is a kernel thread; the default non-realtime pri-
ority is denoted SCHED OTHER). Note that since com-
pute phases are modeled as empty loops, the measured
noise-impact is supposed to constitute an optimistic ap-
proximation, as phases are hardly vulnerable in terms
of data locality (the only data used is the array).

Results. The very disturbing results are presented in
Figure 10 (left) in a CDF format, where the X axis
shows the phase (=loop) duration, and the Y axis shows
the fraction of samples from within arr that were shorter
than or equal to the associated X value. We can see
that nearly 60% of the samples are indeed 1 ms long,
but that the rest are lengthier. The survival function,
shown in Figure 10 (right), exposes the tail of the dis-
tribution by associating each X value with one minus
its original CDF value from the left. We can therefore
see, for example, that one in 10,000 samples takes 2 ms.
The statistics of the samples distribution are summa-
rized in Table 4. With no overheads, the average should

4The array was initialized beforehand to make sure it is
allocated in physical memory rather than using a single
copy-on-write page, so as not to effect the benchmark.
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focuses on the tail by showing the survival function.
Head and tail are shown with a log Y scale.

priority avg. median stddev min max
OTHER 1060 999 127 668 8334
FIFO 1080 1025 140 778 1959

Table 4: Statistics associated with the two distribu-
tions presented in Figure 10, in microseconds.

have been 1ms (=1000µs). When comparing this to the
empirical averages we got, we have no choice but to
conclude that the overhead penalty is 6-8%, an order
of magnitude bigger than was reported in the previous
section. By further examining the maximal sample du-
ration in Table 4, we see that with the default OTHER
priority the situation is especially bad, as system dae-
mons might interfere. But a realtime process will never
be preempted in favor of a non-realtime process, and
our benchmark was in fact the sole realtime process in
the system. The only remaining activity that is able to
perturb our benchmark is therefore system interrupts.

Indeed, instrumenting the kernel to log everything that
it is doing (with the help of klogger) revealed that the
only additional activity present in the system while the
FIFO measurements took place were about a million
ticks and 6,000 network interrupts (see Table 5), indicat-
ing ticks are probably the ones to blame. On the other
hand, the total direct overhead of the interrupts was ap-
proximately 0.8%, an order of magnitude smaller than
the 8% reported above.5 Nevertheless, we still know for
a fact that it is ticks which prompt this bizarre result,
because gradually reducing the tick frequency has a sig-
nificant stabilizing effect on the results, as indicated by
the CDF line that gradually turns vertical when the tick
frequency is reduced (left of Figure 11).

Caching Analysis. The only remaining factor for caus-
ing the 8% penalty is the indirect overhead of inter-
rupts, due to cache misses. Nevertheless, due to the
distinct peculiarity of this result we decided to inves-
tigate further. We therefore repeated the experiment

5Note that the direct component is in agreement with
the values reported in Table 2 about the P-IV 2.2GHz
(in sharp contrast to the overall overhead).
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Figure 11: Left shows the phase duration CDF of the
1ms/M2/FIFO benchmark, with decreasing tick rates.
Right shows the tail of the distribution obtained by this
benchmark with disabled caches (inner curves gradually
subtract the direct overhead of interrupts).

interrupt / IRQ count direct overhead

description ID cycles percent
tick 0 1,082,744 25,112,476,772 0.830%
network 18 5,917 102,987,708 0.003%

Table 5: Interrupts that occurred in the M2/FIFO
benchmark (total duration was 18 minutes or
3,023,642,905,020 cycles, on the 2.8 GHz machine).

with all caches disabled. Under this setting, there aren’t
any “indirect” overheads: we have complete knowledge
about everything that is going on in the system and ev-
erything is directly measurable. This has finally allowed
us to provide a full explanation of the loop duration vari-
ability: The “noisy” curve in Figure 11 (right) shows
the tail of the no-cache loop duration distribution. To
its left, the “minus tick” curve explicitly subtracts di-
rect overhead caused by ticks, from the phases in which
they were fired. Finally, the “minus net” curve further
subtracts direct overhead of network interrupts. The
end result is a perfectly straight line, indicating all loop
durations are equal and all variability is accounted for.

We were still unsatisfied: We wanted to see those alleged
misses “with our own eyes”. This was made possible
by using Intel’s performance counters: the result of the
FIFO run is shown in Figure 12. It appears that the
weaker and older the machine, the more cache misses it
endures. Note that the L1 graph show millions, while
the L2 graph shows thousands (three order of magnitude
difference), so the problem is mostly due to L1 because
an L2-miss is only one order of magnitude more ex-
pensive; indeed, increasing the tick frequency from 100
Hz to 1000 Hz has an order of magnitude affect on the
L1 and almost no affect on the L2. Not surprisingly,
as shown by Figure 13, the per-machine cache-misses
statistics perfectly coincided with the delays endured
by the machines, such that additional misses were im-
mediately translated to longer delays.

A final question we addressed was what’s causing the
cache misses, considering our “do nothing” benchmark
hardly uses any memory? Figure 14 reveals the answer
by partitioning the misses to those that occurred in user-
vs. kernel-space. It turns out the problematic L1 misses
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Figure 14: Partitioning the misses from
Figure 12 to user- vs. kernel-space exposes
the kernel as the problem.

are of the handler, not the microbenchmark. This por-
trays an almost absurd situation where the kernel-user
roles are seemingly reversed, and the handler may be
viewed as an application that pays the indirect price
of context switching to and form the user. Neverthe-
less, since all kernel processing occurs at the expense of
the running application (as an interrupt indeed perturbs
the empty loop which is suspended until the interrupt-
handling is completed), this price is immediately trans-
lated into a slowdown experienced by the benchmark.

4. THE CONTRADICTORY RESULTS
Aggregating the above two sections to one continuity
puts us in an awkward situation. On the one hand,
we have Section 2 stating that the overhead of 1000 Hz
worth of ticks is around 1%, and that this should ac-
count for both direct and indirect effects (Table 2). On
the other hand, we have Section 3 that indeed agrees
with the results regarding the direct component (Ta-
ble 5), but provides an undeniable proof that the indi-
rect component is an order of magnitude more expensive
(Table 4). There appears, however, to be an easy way
to seemingly sort out this discrepancy: the machines
used by the two sections for experimentation are, con-
veniently enough, different. Section 2 ends with a P-IV
2.2 GHz, whereas Section 3 begins with a P-IV 2.4 GHz.
One might argue that the difference in the results is due
to the difference in the experimental settings and leave
it at that. But we believe this is far from being the case.
Thus, in this section we explicitly address the contra-
diction and attempt to resolve the “overhead dispute”.
Apparently, some light can indeed be shed on the mat-
ter, but unfortunately some unknowns remain.

4.1 The Fasties Phenomenon
We begin by tackling a strange phenomenon that we
neglected to address in the previous section. Reinspect-
ing the middle of Figure 10 highlights this unexplained
phenomenon: the loop duration distribution appears
to have a small “head” composed of samples that are
considerably shorter than the 1ms baseline. We denote
such samples as “fasties”. Table 4 specifies the short-
est fasties. This is 778 µs in the FIFO case (where all
perturbations are due to interrupts, because no other
process was allowed to interfere with the benchmark).
Recall that, on our test system, a tick occurs every 1ms.
Likewise, the granularity of our benchmark was 1ms too.
We therefore conjectured that the fasties that populate

the distribution’s head may possibly be samples that
managed to “escape” the tick. We found that such sam-
ples do in fact exist, and that they indeed reside in the
“head”, but that they do not account for all of it.

In the face of such results, one might argue that the
778 µs value is actually more appropriate (than 1ms)
to serve as the baseline, as this fastie may arguably be
more representative of what would have occurred on a
tickless system. Following this rationale, the overhead
of interrupts would actually (presumably) be

100 ×
1080

778
− 100% ≈ 140% − 100% = 40% (!)

Note that our reasoning methodology is standard (and
in any case is identical to the one we applied in Sec-
tion 2). Upon informal consultation with Haifa’s Intel
research on the matter, in an attempt to explain the
phenomenon, we were told that “it is possible the pro-
cessor occasionally works faster” [24]...

Figure 15 shows the histogram of 10,000 samples as mea-
sured on an a Intel(R) Xeon(TM) MP CPU 3.00GHz
employing a tick frequency of 1,000 Hz.6 The left sub-
figure is associated with a grain size of 500 µs, imply-
ing that half the samples would experience a tick and
half will not. The intent was to explicitly address the
question raised above regarding the difference between
the two kinds of samples. The results were largely as
one would expect, namely, a bimodal distribution with
nearly half the loops taking 499 µs, and nearly half the
loops taking 501 µs. Not running the benchmark under
a realtime regime accounts for some of the tail (extends
to 8147 µs; not shown). But nothing accounts for the
three fasties at 460, 486, and 492 µs.

To further complicate things, fasties turned out to be
elusive. For example, when using a third of a tick’s
duration instead of half, the fasties mysteriously dis-
appeared (right of Figure 15). This prompted a finer
measurement, the finest possible, of adjusting the “do
nothing” loop to do “something”, which is to repeatedly
read the cycle counter and save the values in a large ar-
ray. (Writing such a program was somewhat tricky, as
too often the fasties mysteriously disappeared.) Most
of the time, when there were no fasties, the shortest

6The Xeon experiments were conducted at HP labs by
David C. P. LaFrance-Linden, March 2006.

11



 0.1
 1

 10
 100

 1000
 10000

 460  470  480  490  500

granularity of 500 µs

sample duration [µs]

sa
m

pl
e 

nu
m

be
r

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

 310  320  330  340  350

granularity of 333 µs
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and dominant delta between successive reads was 116
cycles. But when a fastie was finally encountered, then
many adjacent deltas of 104 cycles were found, account-
ing for up to a 50 µs difference between the fastie and
the norm. Strict 104-sequences, however, were never
longer than 511-deltas in a row (suspiciously close to
28). And many of the 511-counts were separated by a
single 116-delta.

We view fasties as a fascinating and curious phenomenon,
which we unfortunately do not fully understand. It
appears, however, that the “maybe it just runs faster
sometimes” conjecture might actually be true.

4.2 The Slowies Phenomenon
We now address the other side of the samples distribu-
tion. This is the “tail” in Figure 10, which is populated
by the longer loops termed “slowies”. Under a con-
servative estimate — that doesn’t factor in fasties as
the baseline but rather uses the 1ms calibration target
value for this purpose — this yields an 8% slower execu-
tion, with an average loop duration of 1080 µs instead
of 1000. Recent measurements from real systems, that
used a similar methodology to ours indicated the situ-
ation can be far worse. Specifically, a slowdown of 1.5
was observed while trying to assess the impact of noise
with the P-SNAP benchmark [25] running on an IA64
cluster at a granularity of 1ms and a multiprogramming
level of a mere four threads; finer grain sizes of 100–
150 µs increased the slowdown factor to as high as 3
[26]. Experiments associated with the same application
that were conducted on the ASC Purple [16] (composed
of Power5 processors) resulted in similar findings [17].
Therefore, the problem is not just Pentium-IV, or In-
tel specific.7 Slowies were also observed on a FreeBSD
system [5] and on an AIX system [17], so the problem
is not OS-specific too. In all cases Hyper-threading was
not supported or was explicitly disabled. The bottom
line is that the problem is (1) real, and (2) widespread.

The researchers that conducted the experiments on the
IA64 cluster and on the ASC Purple were unsatisfied

7The IA64 measurements, however, exhibited no fasties
as were defined above, that is, the baseline was (1) the
minimal value, and (2) the most frequent value. While
we have no knowledge if this was also the case for the
ASC Purple, we suspect that fasties are a Pentium-IV
specific problem, e.g. they were also not observed on a
Pentium-III, a PowerPC 970MP, and an AMD Opteron.
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Figure 16: The real durations of 100,000 M2/FIFO
consecutive samples (that were supposed to take 1ms)
exhibit significantly different variability for slightly dif-
ferent versions of “do nothing” loops.

with the above results and sought a benchmark that
would be more “well behaved”. In the ASC Purple case,
this turned out to be surprisingly similar to code ap-
pearing at the beginning of Section 3.3, requiring only
a minor modification to the empty loop and turning it
from “do nothing” to “do something”:

for(int i=0, sum=0 ; i < 1000000 ; i++) {
start = cycle_counter();
for(int j=0; j<N; j++) { sum += j; }
end = cycle_counter();
arr[i] = (end - start) + (sum & zero);

}

The difference between this code and the one presented
earlier is the sum accumulator that is bitwise ’and’-ed
with a zero and added to to the sample (obviously with
no affect). The compiler is presumably not sophisti-
cated enough to figure out that the zero global variable
always holds a zero value, as its name suggests. This
code was not satisfactory for the IA64 case.8 But it was
enough to “rectify” the situation in the case of our M2
machine (Table 3). Figure 16 compares the duration of
100,000 consecutive samples, as were obtained by the
older and newer versions of the microbenchmark and
illustrates the dramatic change.

8For IA64, the desired effect was achieved by placing a
different expression in the body of the inner loop, which
was inspired by a Fibonacci series structure: summing
up three previous elements instead of two.
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4.3 Discussion
In summary, we have two slightly different versions of
“do nothing” loops that produce completely different
results, such that the “empty” version is much noisier
than its “summation” counterpart. We feel that this
observation is fascinating as well as very surprising, re-
gardless of any practical considerations. However, there
is in fact a distinct practical aspect that strongly mo-
tivates making a decision regarding which of the two
versions is more representative of “the truth”. The rea-
son is that do-nothing loops often serve to model real
applications, for system design and evaluation purposes
(the P-SNAP benchmark [25] is a good example). In
this context, “being more representative of the truth”
translates to “exhibiting a behavior that is more simi-
lar to that of real applications” (which was our purpose
to begin with). Additionally, if the noise phenomenon
is not anecdotal, it might possibly highlight some defi-
ciency in the design of the underlying hardware.

When weighing the two alternatives, the quieter “sum-
mation” version might initially seem to have the up-
per hand. Firstly, it has an inherent appeal of making
the analysis simpler and inspiring the notion that ev-
erything is as it “should” be, and that the system is
well understood. An argument in this spirit would be
that a summation loop that does in fact “something”
constitutes a better analogy to real applications that
also do “something”. But such an argument conve-
niently ignores the many “do something” loops that
were nevertheless found to prompt the noisy behavior,
e.g. recall the IA64 case for which both the summation
loop and the Fibonacci loop were not enough, neces-
sitating an even more complicated do-something loop
that finally obtained the desired effect. Additionally,
in one of the Xeon experiments, making the loop less
complicated was actually the thing that got rid of the
noise.9 The question that follows is therefore which ob-
jective properties make the sufficiently-complicated-so-
that-the-noisy-behavior-will-not-occur loops more rep-
resentative? “A quieter system” is not a good answer.
Especially when considering real short loops (like the
inner part of matrix addition) that can be quite similar
to those “misbehaved” do-nothing loops that prompted
a noisy system. Further, Figure 16 suggests that even
with the summation alternative the situation is not per-
fect, and that there is a bigger than 1/2000 chance to
experience a 0.4 ms latency. This would translate to
an almost definite 1.4

G
slowdown for jobs that make use

of only a few thousands of nodes. Should we there-
fore search for a “better” loop that will make this phe-
nomenon disappear too?

A second argument that seemingly favors the quieter
alternative is our analysis from Section 2. This involved
a real application and yielded the conclusion that the
overhead of a thousand ticks should be in the order of
1%, in contrast to the noisy conditions triggered by the

9In this experiment a “misbehaved” loop included a
function call, but compiling it with a gcc -O4 flag (that
inlined the function) turn it to be “well behaved”.

“misbehaved” loops that suggest the overhead is much
bigger. Such an argument is flawed in two respects.
The obvious first is that this is only one application
and other applications might be influenced by inter-
rupts in other ways. The more illusive second flaw is
that our methodology from Section 2, which undoubt-
edly appears reasonable, might nevertheless be inade-
quate, as will be argued next.

Consider, again, the data presented in Figure 11. If
nothing else, the right subfigure proves we have com-
plete knowledge about what’s going on the system. Like-
wise, the left subfigure proves that interrupts have a
large part in the nosiness we observe, since reducing
the Hz stabilizes the system (period). However, the fig-
ure also proves we do not understand the phenomenon
we’re observing, as with the lowest frequency, the only
remaining non-application activities are 6 network in-
terrupts (Table 5) and 10 ticks, per second: not enough
to account for the 50 (5% out of 1000) samples that are
longer than 1ms (by Figure 11, left). Moreover, when
normalizing the aggregated cache miss counts (from Fig-
ure 12) by the number of ticks that occurred throughout
the measurement (a million), we see that there are only
a few tens to hundreds of misses per tick, which by no
means account for the overall overhead.

Thus, there is some weird interaction between the appli-
cation and the interrupts that tickle various processor
idiosyncrasies, which might not comply with the lin-
ear reasoning applied in Section 2. Specifically, it may
very well be the case that, under some workloads, the
mere presence of interrupts incur some (misbehaved)
overhead penalty that is not strictly proportional to the
exact Hz frequency being used (as suggested by the 10
Hz curve in Figure 11); in such a case, our analysis from
Section 2, which targets throughput differences, would
be unable to expose the actual price. Importantly, there
is no real justification for assuming that the differences
we observed in the behavior of the various do-nothing
loops do not exist when real applications are involved.
Until the phenomenon is fully understood, one can’t just
rule out the possibility that real loops also have fastie
and slowie behaviors, and that the modes interact with
or triggered by interrupts.

5. CONCLUSIONS
The results regarding the indirect overhead inflicted by
periodic interrupts are inconclusive and workload de-
pendent. Focusing on hardware clock interrupts (called
“ticks”), we found that their overall impact on an array-
sorting application is a 0.5-1.5% slowdown at 1000 Hz,
such that the exact value is dependent on the processor
and on whether each tick is slowed down by an external
timer chip read or not. (Access/no-access versions are
termed TSC/PIT, respectively.) Multiple experiments
that varied the Hz and the system conditions revealed
that the impact of ticks is robustly modeled by

overhead(hz) = hz × (Ptrap + Phandler + Pindirect)

where hz is the tick frequency and the respective co-
efficients are the time to trap to the kernel and back,
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the direct overhead of the interrupt handling routine,
and the per-application indirect overhead due to cache
effects. Considering a set of increasingly faster Intel
processors, we identify the following general trends:

1. The overall overhead is steadily declining.

2. For PIT, the dominant indirect component is steadily
growing in relative terms (up to 6 times the direct
component), but is declining in absolute terms.

3. For TSC, the overhead is dominated by the direct
component (incurred by the slow external read
with fixed duration across processor generations).

Generalizing the above, we show that the slowdown en-
dured by a bulk-synchronous job spanning n nodes is

1 + (1 − e−np) ·
D

G
−→

n→∞
1 +

D

G

where G is the granularity of the job and p is the per-
node probability for one thread to experience a latency
D due to an interrupt (or any other reason). When
emulating a single serial G=1ms thread (by repeatedly
invoking a do-nothing loop that is calibrated to spin for
1ms) and assessing the resulting duration/probability
for a delay, we find that certain do-nothing loop trig-
ger extremely high values for both p and D, indicating
that the serial overhead due to ticks is actually an order
of magnitude higher than was stated above. This type
of behavior, and much worse, was observed on IA32,
IA64, and Power5 processors (the latter being part of
the ASC Purple [16, 17]). Importantly, some of the “do-
nothing” loops involved, did enough operations to re-
semble “real” loops. We prove (through systematic Hz
changes, detailed cache analysis and kernel instrumen-
tation) that the effect is triggered due to an interaction
between the interrupts and the do-nothing loops. But
we are unable to pinpoint the exact hardware feature
that is directly responsible. The question whether the
phenomenon identifies a real hardware problem, experi-
enced by real applications, remains open.
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