Barrier Synchronization on a Loaded SMP
using Two-Phase Waiting Algorithms

Dan Tsafrir and Dror G. Feitelson
School of Computer Science and Engineering

The Hebrew University, 91904 Jerusalem, Israel

Abstract

Little work has been done on the performance of barrier
synchronization using two-phase blocking, as the common
wisdom is that it is useless to spin if the total number of
threads in the system exceeds the number of processors. We
challenge this and show that it may be beneficial to spin-
wait even if the number of threads is up to double the num-
ber of processors, especially if the waiting time is at least
twice the context switch overhead (rather than being equal
to it). We also characterize the alternating synchronization
pattern that applications based on barriers tend to fall into,
which is quite different from the patterns typically assumed
in theoretical analyses.

1 Introduction

Symmetric multiprocessors (SMPs) are the most com-
mon parallel machines on the market [2]. The two main
synchronization constructs used by parallel applications on
such machines are locks and barriers. Locks are used to
protect shared data structures in isolation. Barriers are used
to delimit phases of the computation, and ensure that all the
data structures from the previous phase are up to date.

The nature of synchronization is that processes may have
to wait for each other. This can be done in either of two
ways: a process can spin, using the CPU to repeatedly check
the synchronization condition, or it can block, incurring the
context switch overhead (denoted CS) but freeing the CPU
for the benefit of other processes. This choice is very impor-
tant, as synchronization overhead is a major cause of perfor-
mance degradation; one study of the SPLASH2 benchmarks
found that some applications spend half of their time wait-
ing for synchronization [5], while another found that some
applications spend a third of their time on context switching
if they always choose to block [7].

A promising solution to this dilemma is to use two-phase
blocking, in which the process spins for a certain time and
then blocks if synchronization is not yet achieved [9]. When
waiting for a lock, spinning for a time equal to CS is 2-
competitive, meaning that it results in an execution that is
at most a factor of two from that of an optimal execution

in which wait times are known in advance [6]. This is
the best possible result for a deterministic algorithm, but
a randomized algorithm can achieve a competitive factor of
-—7 ~ 1.58. The advantage of two-phase blocking has also
been demonstrated experimentally [7].

Different synchronization mechanisms, however, have
different wait-time distributions. Specifically, assuming
Poisson arrivals, the expected wait times at locks are expo-
nentially distributed, whereas the wait times at a barrier are
uniformly distributed. Given that the distribution is known,
better spin times can be found. Specifically, for locks (ex-
ponential distribution) spinning for In(e — 1) ~ 0.54 of
CS leads to a competitive factor of =, and for barriers
(uniform distribution) spinning for % (\/3 — 1) ~ 0.62 that
overhead results in a competitive ratio of 3 (v/5 +1) ~
1.62 [8]. However, when the number of processes exceeds
the number of processors, spinning was concluded not to be
useful for barriers, and immediate blocking was preferred.

An important factor that is lacking in previous work is
taking a global view of the system when it is overloaded.
For example, the claim that waiting for the duration of CS
before blocking is 2-competitive is based on a local view
of synchronization, taking one operation at a time. But in a
real system, the decision to spin or block may affect the evo-
lution of the computation, and especially the waiting time at
subsequent synchronization events. Consider a simple ex-
ample of two identical jobs with two processes each, on a
two processor system. If initially one process of each job
is running, the locally optimal algorithm will always block.
But a globally optimal algorithm will only block the process
of one job, causing the system to move to a state in which
it always scheduled both processes of the same job, rather
than always scheduling one process from each job. Thus
instead of paying the price of a context switch for each syn-
chronization, it becomes essentially free.

Moreover, it turns out that assumptions such as Poisson
arrivals to a barrier do not necessarily hold in practice. Our
simulations show that applications using barrier synchro-
nization tend to fall into an “alternating synchronization”
pattern, in which the job’s processes are partitioned into two
groups that run alternatively. Due to this pattern, it is some-
times beneficial to spin even if the total number of processes

in the system exceeds the number of processors. Indeed,
by extending the spin duration, it is sometimes possible to
nudge the system into gang scheduling all the processes of a
certain application, leading to much more efficient synchro-
nization than that achieved by always blocking.

2 Methodology
2.1 The Simulator

Throughout this work we use an event driven SMP sim-
ulator. The simulator distinguishes between synchroniz-
ing jobs, which perform barrier synchronizations, and non-
synchronizing jobs, which provide a backdrop of load on
the individual processors. Synchronizing jobs may vary
in many parameters, among which are size (bounded by p
which is typically 32), and granularity (explained below). A
fixed-spinning waiting algorithm is used to perform barrier-
synchronization (unless stated otherwise, the maximal spin
duration used is CS). A thread can be in one of three states:
ready, running, or blocked (waiting for a synchronization).
Spinning is, of course, done in running state.

Typical values used in the simulations are a quantum of
100 steps, and a context switch overhead (CS) of 6 steps.
The latter is probably too long. However, aside from being
considerably shorter than a quantum duration, its only im-
portance lies in the manner in which we classify granularity
of jobs. Checking larger values for the quantum, in order to
improve the resolution, showed practically identical results.

All computation intervals of threads are normally dis-
tributed (i.e. they are not deterministic). Granularity is ex-
pressed based on the mean and standard deviation of this
distribution. Let Xy denote a random-variable representing
the duration of computation intervals between consecutive
barriers of threads from job .J. We classify J as being fine-
grained if around 90% of X ;’s values are smaller than CS.
J is categorized as medium-grained if around 90% of X ;’s
values are smaller than 5CS. Otherwise, J is considered to
be coarse-grained.

The simulator is event based. Only one event is allowed
per processor on a given time step. Each transition between
the various thread states is associated with an event. In ad-
dition, events are used to denote the end of a computation
phase in synchronizing threads, and for the implementation
of spinning. The contention due to synchronization was not
simulated. This is a reasonable simplification when assum-
ing that a barrier completion time (with contention) is still
shorter than CS.

Each simulation starts by reading a configuration file
which describes the various SMP parameters (p, CS etc.)
and the parameters of the jobs it executes (e.g. granular-
ity, sizes, number of barriers, etc.). The simulator’s output
describes how well the synchronization policy performed.

2.2 The SSR Metric

In order to evaluate the advisability of spinning, we will
use the successful-spin-rate (SSR). This metric is defined
to be the percentage of cases in which a process succeeds to
synchronize while spinning, excluding the last one to arrive.
More formally it is: SSR = theies rotalSpin(D) x 100
where S is the set of all synchronizing threads in the
simulation, totalSpin(t) is the number of times thread
t started to spin when waiting for synchronization, and
success ful Spin(t) is the number of times synchronization
was achieved before ¢ blocked. Note that this does not in-
clude the times ¢ was the last thread of its job to reach a bar-
rier, since no spinning was performed. As a rule of thumb, if
the SSR is smaller than 50%), we’ll consider spinning as not
worth while, because threads failed more than succeeded.

We remark that SSR is not a perfect metric and should
be used carefully. For example, if the always-spin waiting
algorithm is used, jobs executing on a preemptive scheduler
(which is what we use in this work) will always achieve an
SSR of 100%. Thus we also use elapsed time and speedup
in parts of this work.

success ful Spin(t)

2.3 The Linux Scheduler

The performance of synchronizing jobs also depends
on the scheduler, which chooses the order in which ready
threads are allocated to processors. Our simulator includes
a rather detailed emulation of the Linux scheduler. Linux
is POSIX compliant, and supports three policies: FIFO,
Round-Robin (RR), and “OTHER”. OTHER is not defined
by POSIX, but its presence is mandated, and it is the de-
fault. In Linux it is a priority-based preemptive scheduler.
Additional details are given in Appendix A.

As the priority function tends to give higher priority to
threads that run less, it is expected to have a strong ef-
fect on synchronizing threads that spend much of their time
blocked waiting for synchronization. However, it is easier
to understand the behavior of the system under RR schedul-
ing. We therefore performed extensive simulations of all
six combinations of the two scheduling schemes (RR and
OTHER) and three workloads:

e A single synchronizing job against a backdrop of non-

synchronizing threads that just get in the way.

e A homogeneous set of identical synchronizing jobs.

e A heterogeneous mixture of synchronizing jobs with

different sizes and different granularities.
Analyzing the first workloads was instrumental in gain-
ing insights that helped understand the latter, more realistic
workload. As tens of thousands of simulation runs were per-
formed, the following sections only present the main find-
ings. A much more detailed description can be found in
[11].

3 Alternating Synchronization

The phenomenon of alternating synchronization is the
main result discovered in the RR simulations. It explains
the finding that many of the simulations led to similar per-
formance, insensitive of the jobs size and (to some degree)
of the system load. For example, simulations of homoge-
neous sets of fine and medium grain jobs converged to an
SSR in the range of 25-42% (Figure 1). The exact number
depended on the job sizes and granularity, but not on how
many jobs were competing with each other!

The answer to this puzzle is that each job’s threads be-
come partitioned into two sets, that are either running simul-
taneously or contiguous in the ready queue. This pattern is
created by itself, within a short time, even if initially the
order of threads in the ready queue is randomized.

The reason this pattern is created is as follows (Figure 2):
Consider a fine-grain job composed of s threads, running
on a p-processor SMP with a total load of n threads. As-
suming all threads are randomly ordered at the beginning,
the probability of all s threads being allocated processors at
the outset is Hf;ol P=, which tends to zero for high loads.
Thus only a subset of the job’s threads will run initially. As
they are fine-grained, they will complete their first iteration,
spin for a while, and block. This scenario will be repeated
several times, as more threads get scheduled, leading to the
stair-like pattern at the left of Figure 2. But when the last
thread arrives, the job is partitioned into two: those threads
that have previously blocked move in unison to the end of
the ready queue, whereas those that are spinning achieve
synchronization and continue for the next iteration. When
this second subset reaches the next barrier, they will all spin
and block together, because the first subset is still in the
ready queue. Hence we find a pattern of alternating syn-
chronization, where the synchronization is achieved by two
subsets of threads alternatively. Note, however, that the sub-
sets are not fixed, and that threads may pass from one to the
other if they are not all scheduled at close proximity.

The consequences of alternating synchronization

We’ve seen that jobs with relatively small granularity , have
a tendency to fall into an alternating synchronization pat-
tern. For this type of computation the SSR has a 50% upper
bound. This is true because the best we can expect from a
thread is to successfully spin at the first barrier it reaches
(causing the blocked threads in its job to move to the ready
queue) and fail spinning at the next barrier (thus entering
blocked state). We get that for every successful spin a thread
performs, it also performs an unsuccessful one.

An immediate result of this scenario is dismal CPU uti-
lization. As spinning succeeds not more than half the time,
it fails more than half the time. That means that at least one
in every two barriers includes the cost of unsuccessful spin-

5 Threads Per Job 11 Threads Per Job

100

50

SSR

0 T T T T 1 T T T T
0 32 64 96 128 0 32 64 96 128

Number of Threads

—~—4 Fine-grain —#—% Medium-grain —+—+ Coarse-grain

Figure 1. Example SSR values achieved for homoge-
neous sets of synchronizing jobs with various sizes, as a
function of the number of threads. From simulation using
RR scheduling. Reasonable SSR values are achieved up to
twice the number of processors, which is 32. However after
this point, SSR is below 50% and is load invariant.

B Blocked [| Ready

[| Running

=

Number of threads
OFRPNWMUUION©®OO

0 200 400 600 800 1000
Time steps
Figure 2. Distribution of states of 10-thread-job show-
ing how it enters into an alternating synchronization pattern.
From a homogeneous simulation of 19 medium grain jobs.

ning and subsequent blocking. Assuming that the spinning
time is set to be equal to CS, this means that each barrier
costs a context switch. If the granularity is very fine, i.e.
the computation is shorter than this overhead, the effective
CPU utilization is less than 50%.

Another interesting feature of the simulations used to
study the alternating synchronization pattern is that this pat-
tern does not occur immediately as the load is increased.
Rather, there is as “intermediate load” range where the sys-
tem is already full (more than 32 threads), but the SSR is
still higher than 50% (Figure 1). This contradicts the argu-
ment made above that the SSR is bounded by 50%. This
phenomenon, to be further discussed below, indicates that
the simple solution of using an “always block™ algorithm to
reduce the overhead of useless spinning may not be advis-
able, at least in this load range.

4 Spin Duration and Wakeup Scheme

The simulations used to elucidate the alternating syn-
chronization pattern were based on an RR scheduler. This
simplified matters because threads retain their order in

the ready queue. But production systems typically use a
priority-based scheduler, in which threads are entered into
the ready queue according to their priority. Priority, in turn,
is typically based on CPU usage (or lack thereof), implying
that fine-grain threads may be placed higher than coarse-
grain threads. The results presented from here on are based
on using the Linux scheduler, as described in Appendix A.

4.1 Conditions for Transition Point

The first simulations done with the Linux scheduler, in
which a single synchronizing job composed of 11 threads
ran against a backdrop of non-synchronizing threads, re-
vealed an interesting pattern: for fine grain synchronization,
the SSR was around 50% most of the time, but whenever the
total number of threads in the system was a multiple of 16 it
shot up to near 100% (Figure 3). The maximal spin duration
used in these simulations was CS.

A detailed analysis of what happens at these loads re-
vealed the following. Initially, the synchronizing job did not
do very well. Its threads spent much of their time blocked,
and typically did not manage to pass more than a single bar-
rier. However, at some point in the simulation, everything
suddenly fell into place: all the job’s threads were sched-
uled at the same time, and they therefore completed mul-
tiple barriers in rapid succession. This caused them to ac-
cumulate CPU time, and their priority dropped. They were
then all preempted more or less together in favor of other
non-synchronizing threads, and moved to the ready queue.
This pattern of interspersed intervals of work and waiting
in the ready queue repeated until the end of the simulation
(Figure 4). We call the point in the simulation at which the
job started to work efficiently the transition point.

The characteristics of the Linux scheduler are appar-
ent in the job’s behavior before the transition point. Let
J denote the synchronizing job. Let S denote the na-
tive processors set of J’s threads. Initially, S is usually
small. .J’s computation pattern is a variation of alternat-
ing synchronization on S: Since J’s threads enjoy the
SAME_ADDRESS_SPACE_BONUS (see Appendix A.), then
when one of them blocks, there is high probability that
another thread from .J will immediately be chosen to re-
place it. Towards the end of the epoch the priorities of
the non synchronizing threads are very low (by definition)
while the priorities of their synchronizing counterparts are
relatively high (since they spent a lot of time in blocked
mode). This difference allows .J’s threads to overcome the
PROC_CHANGE_PENALTY factor and preempt low prior-
ity threads even when migration is involved. Consequently
S grows until |J| = |S]| causing J to perform rapid al-
ternating synchronization where every thread from an un-
blocked group is immediately assigned a processor. The
scheduler soon finds itself in a situation in which it has no
ready process with a positive counter value. It then starts

Figure 3. SSR
achieved by an 11-thread

synchronizing job run-
@& 1 ning against a backdrop

x .

@ T4 of non synchronizing

N threads and spinning for

S0 "ot the duration of CS. SSR

fine-grain —— is very high whenever

o mediym-grain <4 he load i Itinle of

32 48 64 g0 o6 112 (1€ loadisa mulliple o

Number of Threads 16.

M Blocked [| Running [| Ready
11
10
29
s 8
.-:: 7
55
S 4
Es
z 2
1
0

20500 21000 21500 22000 22500 23000

Time steps

Figure 4. The distribution of the states of a job’s threads
changes dramatically after the transition point, when they
suddenly manage to run together and then maintain this pat-
tern. From a simulation presented in Figure 3 associated
with load of 96 threads (backdrop of 85 non sync threads).

a new epoch, and re-initializes the counters of all threads.
The non-synchronizing threads thus suddenly gain in pri-
ority (like Popeye after eating a can of spinach [10]), and
soon cannot be preempted any more by .J’s threads — until
towards the end of the new epoch.

The immediate question that follows is why does .J
continue to perform alternating synchronization even when
|J| = |S| as each of its threads has its own “dedicated” pro-
cessor. The answer is simple: spinning for the duration of
CS is actually not enough. Consider a process that is the last
to arrive at barrier b;, and unblocks its peers. It then com-
putes for an expected time of yu, reaches the next barrier
b;+1, and spins for time CS before giving up. Its blocked
peers, in the mean time, take CS time to start running (con-
text switch that allocates them a processor), and then also
compute for an expected time of p until they reach b; 1.
They therefore reach b; 1 more or less at the same time the
original thread gives up and decides to block.

However, on rare occasions it happens that the two alter-
nating sets reach b; 1 in the correct order: first all newcom-
ers reach the barrier, and then all spinners decide whether
to block. As all newcommers have already arrived, they
decide not to block, and from then on all the treads are syn-
chronized — transition has been achieved.

Finally, we need to explain why this only happens when
the total number of threads is a multiple of 16. The reason is
that 16 is the only divisor of 32 (=system size) which is big-

ger than |.J| (=11). This allows the threads in the system to
be divided into groups that cleanly partition the system. For
other numbers, there are always extra non-synchronizing
threads that are left over and break the pattern for the syn-
chronizing ones and so even if transition is achieved, it lasts
only during the epoch in which it was established.

4.2 Using a Longer Maximal Spin Duration

Naturally, if transition occurred only within specific
loads, it wouldn’t be interesting. But in reality it illuminates
the condition needed to achieve complete synchronization
regardless of the load: increase the spin-waiting duration
beyond a context switch overhead!

Simulations using a spinning duration of slightly more
than a context switch overhead (denoted CS+) show an im-
provement, but not an optimal improvement. The reason
was traced to the fact that even this is not enough. Consider
a scenario in which a thread reaches a barrier and unblocks
one of its peers, but that peer thread had only just recently
decided to block. In this situation, the peer thread is still in
the process of being blocked, and can therefore not start the
unblocking process yet. Thus our thread must first wait for
it to block, and then to unblock, for a total time that is more
than twice the context switch overhead (denoted 2CS+).

Figure 5 shows that enlarging the maximal spin dura-
tion has indeed transformed all load conditions into the peak
conditions seen initially. Note that for medium grain jobs,
using 2CS+ makes the difference between preferring imme-
diate blocking to preferring spinning.

4.3 Effect of the Wakeup Scheme

When a job completes a barrier, the priority based sched-
uler checks whether consequently awakened threads (if ex-
ist) can be immediately scheduled to execute (possibly by
preempting lower priority threads). It is therefore faced
with the problem of determining which awakened thread
would be assigned to which processor. The algorithm that
makes this decision is called the wakeup-scheme. The
question that follows is how much computational resources
should a scheduler invest in this decision. Our analysis of
the Linux scheduler uncovered that unfortunately, it doesn’t
invest enough: the scheduler iterates through the awakened
threads and tries to find the “best” processor for each such
thread; however each iteration has no recollection of previ-
ous iterations’ decisions and therefore two or more (even
all) awakened threads may be assigned to the same pro-
cessor! (see Appendix A. for details). We compared this
scheme with a corrected scheme that avoids this pitfall (de-
noted AP), and with a more sophisticated (probably imprac-
tical) scheme that takes a global view of pairing threads with
processors [11, chapter 6] (denoted GV).

I I I I I I I
32 64 96 128 160 192 32 64 96 128 160 192

Number of Threads

—— Cs — CS+ —— 2CS+

Figure 5. Results from simulations similar to those pre-
sented in Figure 3. Comparing the performance of spinning
for CS, CS+, 2CS+. The latter provides the best combina-
tion of good performance and stability. Numbers in boxes
are the average % the average absolute deviation.

Our findings indicate that for some job mixes (like a sin-
gle synchronizing job running against a backdrop of CPU-
bound threads, or mixes composed from two jobs with size
bigger than %), AP resulted in a speedup of up to 3.3 in
comparison to the original wakeup scheme. We found that
using a more sophisticated algorithm is unwarranted as the
difference between AP and GV was minor.

5 Performance of Different Job Collections

After reviewing the specific findings in the previous sec-
tions, we now turn to how they interact and affect the per-
formance of various job mixes. The results reported here
are for the priority-based Linux scheduler.

5.1 Synthetic Job Mixes

As noted in Section 2.3, we used 3 types of job mixes:
The results for a single synchronizing job were strongly
dependent on the spin duration (Figure 5), and to some de-
gree also on the wakeup scheme. The important thing to
notice is that when the spin duration is long enough (2CS+),
an average SSR of 94% is achieved for fine-grain jobs, and
75% for medium-grain jobs. These number are an aver-
age of different load conditions, when the synchronizing job
competes with up to 200 non-synchronizing threads! Thus
we see that the scheduler gives this job’s threads a higher
priority than the others, which allows them to make good
progress regardless of the competing load.

The case of homogeneous jobs mix is exactly the op-
posite: all the competition is composed of threads with an
identical profile in terms of synchronization activity. There-
fore none will have a distinct advantage over the others, and
the scheduler will fall into a pattern similar to that of RR
scheduling. Indeed, simulation results turn out to be quite
similar to those shown in Figure 1. Again, reasonable SSR
values (above 50%) are achieved in the intermediate load
range, when the total number of threads is up to twice the

seed 0 seed 1
100 B

50 -1

SSR

seed 2

seed 3 .
Figure 6. The SSR

achieved by ditferent job
types executing simul-
taneously in heteroge-

T T T T 1 f T T T T 1 T T
0 32 64 96 128 160 0 32 64 96 128 160

Number of Threads
—4—— Fine-grain —¥———% Medium-grain
number of processors in the system.

Based on this, we would expect that for a heterogeneous
job mix the priority scheduler will again come into play.
Given jobs with different granularities, the fine-grain ones
may be expected to suffer more from blocking, as each syn-
chronization event is amortized by less useful computation.
The threads in these jobs will then be given a higher prior-
ity, which would enable them to make up for the loss. They
will not get above 90% SSR as when running alone, but they
should do better than when all competing threads are identi-
cal. The simulation results indeed corroborate these expec-
tations (Figure 6). For example, the system load that can
be tolerated while still maintaining an SSR above 50% for
fine-grain jobs sometimes reaches three times the number
of processors in the system. The average extra number of
threads tolerated under different conditions (like jobs’ num-
ber, granularity and size) is 52.2+1. and 2445 for fine and
medium grain jobs, respectively.

5.2 Spin vs. Always-Block

So far, most of our work has been concerned with un-
derstanding the behavior of spinning jobs, and with finding
conditions under which the SSR is improved. In this section
we finally compare our spinning algorithms with the obvi-
ous alternative of always blocking as suggested by others.
We do that by using the actual completion-time as a metric,
rather than the SSR.

Sample results shown in Figure 7 and Figure 8 confirm
that spinning is preferable to blocking, at least within the
intermediate load. Figure 8 shows that lengthening the spin
duration beyond CS plays a minor role within job mixes
that don’t contain non-synchronizing threads (as all spin du-
rations produced similar results). The major factor in these
mixes is actually idle processors. These exist due to blocked
threads which create a gap between the total load and the ef-
fective load (number of runnable threads).

5.3 Effect of Machine Size

The final point we will discuss is what happens when
we increase the machine’s size (Figure 9). Evidently, the
intermediate range in which it is preferable to spin shrinks
a bit. Nevertheless, for larger machines in the magnitude
of 128 and 256 processors, it’s clear that spinning will still

0 32 64 96 128 160

T 1 f T T T T 1
0 32 64 96 128 160

neous mix, using a spin
duration of 2CS+. Re-
sults for four different
———+ Coarse-grain random seeds are shown.
achieve better performance then blocking while the load is
smaller than 1.8 times the number of processors.

6 Discussion and Conclusions

Our goals in this research were to gain a better under-
standing of parallel barrier-based applications operating in
a multitasking environment, and check the implications of
high loads on such applications. We hope these understand-
ings will serve in the design and implementation of barrier
synchronization algorithms.

A main contribution of this work is identifying that in the
context of barrier synchronization, load should be a dom-
inant factor in the decision of whether to spin or block.
Most of our empirical results have shown that when the to-
tal number of threads in the system exceeds twice the num-
ber of processors, most spins will fail and therefore are best
avoided. On the other hand, in the intermediate load range,
namely when the surplus in threads is smaller than the num-
ber of processors, spinning can be highly beneficial.

Another requirement for successful spinning is doing it
for the right time. We have shown that the very popu-
lar fixed duration of spinning for the overhead of a con-
text switch is not enough for fine grain parallel jobs at-
tempting to complete a barrier. Indeed, this duration gives
an awakened thread enough time to resume its execution.
But, it denies the possibility to actually complete the short
computation phase and reach (in time) the synchronization
point at which its peer threads are waiting (while spinning).
Our findings indicate that a longer duration, of spinning for
somewhat more than twice the context switch overhead, is
required. This duration maximizes the probability that all
the threads of a job execute simultaneously, leading to re-
duced context switches, and to actual spin times that are
much smaller than the maximum. This is similar to the re-
sult of Arpaci-Dusseau et al. [1] who have shown that in a
cluster of workstations spinning for a duration five times the
context switch overhead is optimal.

Another important contribution of this work is the identi-
fication of the alternating synchronization pattern: When
jobs do not manage to synchronize, they tend to fall into
this computation pattern, in which their threads form two
groups. When one group is computing, the other is either
blocked or ready. Almost all our findings are related to and
can be explained based on this phenomenon. This refutes

Fine grain

Medium grain

Speedup
N

Number of Threads

—4—4 2CS+vs. AB —¥—* CS+vs. AB ——+ CSvs. AB

Figure 7. Comparing the performance of spinning for
CS, CS+, or 2CS+ against the always-block policy (denoted
AB). 2CS+ provides the best combination of good perfor-
mance and stability with an average speedup of 2.4+04 for
fine-grain jobs and 1.3+o02 for medium-grain jobs. From
simulations of a single synchronizing job similar to those
conducted in section 4.1.

Figure 8. Results for
fine-grain jobs from sim-

2CS+vs. AB ——
oA CS+vs. AB -
25 CSvs. AB ---2--- 1 A
J ulations of a heteroge-
neous job mix. Spinning
is beneficial for loads up

to about twice the num-

ber of processors. The
average speedup within
this domain is 1.9+03
when 2CS+ is used as a

o5 maximal spin duration.

32 64 96
Number of Threads

Figure 9. Results for
mixes similar to those

described in Figure 8 us-
ing 2CS+ as maximal
spin duration and ex-
ecuting on larger Ssys-
tems. The x axis shows

the number of threads

relative to the machine

0 size, rather than absolute

cPU# 1.8CPU# 2CPU#
Number of Threads numbers.

the common assumption that the occurrence of synchro-
nization events obeys some time invariant canonical prob-
ability distribution (e.g. the Poisson arrivals of [8]).

The importance of alternate synchronization is evident
when considering the effect of granularity on spin success.
All the positive results regarding spinning are for fine-
grain, or sometimes medium-grain jobs; we would like
coarse grain jobs not to spin. But in general the granular-
ity of a job is not known in advance, and a bad decision
may cause a loaded system to waste many cycles on hope-
less spinning. It is therefore reasonable to consider some

sort of granularity classification mechanism. But due to
the prevalence of the alternate synchronization pattern, us-
ing the near past as an indication for the future (as in the
variable-competitive-algorithms presented in [7]) is not a
good option: before the transition point failures are com-
mon, and the transition cannot be anticipated based on pre-
vious successes. A possible alternative to these methods
is for the barrier mechanism to maintain (for each thread)
a direct measure of the elapsed time between its few recent
synchronization trials (within the same quantum!). This can
be done relatively efficiently using hardware devices such as
the cycle counter on Pentium processors [4].

An important observation deriving from all the above is
that barriers are quite different from locks. In the con-
text of (mutex) lock synchronization, Karlin et al. [7] have
considered spinning as worth while only when the lock is
currently held by a running thread. But in barriers, when
a thread of a fine-grain job reaches a synchronization point,
its very own arrival probably means that the awaited threads
(in the consecutive synchronization point) are now being
scheduled to run. The alternating synchronization compu-
tation pattern implies that the practical meaning of follow-
ing the policy suggested by Karlin et al. (in barrier context)
would be to always block. This is contrary to our findings
that within the intermediate load, always block is inferior to
the fixed spinning policy.

Finally, our work on implementation of barriers also
exposed an issue related to the underlying scheduler.
When the last thread of a parallel job completes a barrier,
many other threads become unblocked at once. The sched-
uler then checks whether they can be scheduled to run at
once. It turns out that while the Linux (2.4) scheduler tries
to find the “best” processor for each such thread, it may end
up assigning all of them to the same processor! Our experi-
ments show that a simple improvement, which prevents the
scheduler from stumbling over its own feet (by simply re-
membering which processors have already been assigned),
produces better results at practically the same cost; more
sophisticated approaches seem unwarranted.

Acknowledgement: This research was supported in part
by the Israel Science Foundation (grant no. 219/99).

A. The Linux Scheduler

While Linux supports FIFO and Round-Robin schedul-
ing, the default scheduler is priority based. We remark that
in the Linux kernel, thread and process entities are indis-
tinguishable; the conventional term used to represent them
both is a task. The scheduler described here is of Linux-
2.4.5 (essentially unchanged since version 2.2).

Linux scheduling is based on the notion of an epoch. In a
single epoch, every task has a certain CPU time allocation,
which was set at the beginning of the epoch. The initial

allocation is equal for all tasks (unless they have different
“nice” values). When a task exhausts its allocation it is pre-
empted in favor of another runnable task. However, the task
can block and then continue to run if its allocation has not
yet been exhausted. An epoch ends when all the ready-to-
run tasks have exhausted their allocations (though blocked
and running tasks may still have part of their allocation). To
start a new epoch, all tasks receive new allocations. This
is computed as the default allocation plus half of what was
left of the previous allocation. Thus the maximal possible
allocation is twice the default allocation.

Within an epoch, runnable tasks are selected for execu-
tion based on their priority. The priority has a dynamic part,
which is simply the remaining time allocation. This is mea-
sured in “ticks” (typically 10 milliseconds). The default al-
location was 20 ticks in Linux 2.2, and was changed to 5
in 2.4'. The dynamic priority is also called the “counter
value”, as it is stored in a variable called the counter, and
essentially counts down the CPU usage of the task in this
epoch; when it reaches 0 the task will be preempted.

The actual scheduling algorithm is not based directly on
a task’s priority, but on its goodness relative to different
processors. The goodness is based on the counter value;
if this is zero the goodness is also zero. But for tasks that
have not exhausted their allocation, two modifications are
made. First, if the considered processor is different from
the one on which the task last ran, the goodness is reduced
by the PROC_CHANGE_PENALTY, which is equivalent to
15 ticks?. Second, if the previous task to run on this pro-
cessor had the same address space as this task (i.e. from the
same job), the goodness is improved by 1 tick which we
named SAME_ADDRESS_SPACE_BONUS.

In the context of our work, it is important to understand
what happens when tasks become unblocked (as when a
barrier is completed). Such tasks are moved to the ready
queue, and the reschedule_idle function is called for
each one of them in turn. This function tries to find a suit-
able processor for the awakened task, giving priority to the
one it ran on previously (if it’s idle) or to the longest idle
processor. If there are no idle processors, the goodness of
the awakened task is compared with the goodness of the
current task on all the processors. The processor with the
largest difference is then chosen, provided the difference is
larger than the preemption threshold (1 tick). The selected
processor (if any) is then marked as need_resched and
interrupted (which means that very soon the scheduler will
run in its context).

Unfortunately, reschedule_idle is invoked in a se-
rial manner independently for each awakened task, and each

"This means the scheduler has rather poor resolution when it tries to
distinguish between different jobs. We used the 2.2 value which is slightly
better. A still better solution would be to reduce the tick interval [3].

2Making a migration from one processor to another non idle processor
practically impossible in 2.4. This is another reason to use the 2.2 values.

invocation disregard previous invocations’ decisions. Thus
when many tasks are awakened at once, it is possible that
some (or all) of then will trigger the marking of the same
processor. Consequently, this wakeup scheme can (a) end
up leaving high-priority tasks in the ready queue despite the
fact that they could have preempted other tasks on other pro-
cessors, or (b) even worse: leave processors idle, even when
there exist (newly awakened) ready to run tasks!

The following is a simple example that demonstrates
this. Let ¢ be the longest idle processor. Changing ¢’s state
from idle to non-idle takes time, leading to a race between
this event and the reschedule_idle iteration. If the it-
eration finishes before ¢’s state was changed, only ¢ will be
marked. In our work we therefore also considered alterna-
tive wakeup schemes, that avoid this pitfall.

References

[1]1 A.C. Arpaci-Dusseau, D. E. Culler, and A. M. Mainwaring.
Scheduling with implicit information in distributed systems.
In SIGMETRICS Conf. Measurement and Modeling of Com-
puter Systems, pages 233-243, June 1998.

[2] D.E. Culler and J. P. Singh. Parallel Computer Architecture.
Morgan Kaufmann Publishers Inc., second edition, 1999.

[3] Y. Etsion and D. G. Feitelson. Clock Resolution and the
Scheduling of Interactive Processes. Technical report 2001-
14, School of Computer Science and Engineering, the He-
brew University of Jerusalem, Nov 2001.

[4] Y. Etsion and D. G. Feitelson. Time stamp counters li-
brary measurements with nano seconds resolution. Tech-
nical report 2000-36, School of Computer Science and En-
gineering, the Hebrew University of Jerusalem, Aug 2000.
http://www.cs.huji.ac.il/labs/parallel/tsclib.ps.

[5] D. Jiang and J. P. Singh. Scaling application performance
on a cache-coherent multiprocessor. In Proc. 26th Ann. Int’l
Symp. Computer Architecture, pages 305-316, May 1999.

[6] A. Karlin, M. S. Manasse, L. A. McGeoch, and S. Owicki.
Competitive randomized algorithms for non-uniform prob-
lems. In Proc. Ist ann. ACM-SIAM symp. Discrete Algo-
rithms, pages 301-309, January 1990.

[7] A. R. Karlin, K. Li, M. S. Manasse, and S. Owicki. Em-
pirical studies of competitive spinning for a shared-memory
multiprocessor. In Proc. 13th ACM Symp. Operating Systems
Principles, pages 41-45, October 1991.

[8] B.-H.Lim and A. Agarwel. Waiting algorithms for synchro-
nization in large-scale multiprocessors. ACM Trans. Com-
puter Systems, 11(3):253-294, August 1993.

[9] J. K. Ousterhout. Scheduling techniques for concurrent sys-
tems. In Proc. 3rd Int’l Conf. Distributed Computing Sys-
tems, pages 22-30, October 1982.

[10] E. Segar. Thimble Theatre, Popeye the Sailor Man. King
Features Syndicate, 1929.

[11] D. Tsafrir. Barrier synchronization on a loaded SMP using
two-phase waiting algorithms. Master’s thesis, School of
Computer Science and Engineering, The Hebrew University,
Sep 2001.

