
Barrier Syn
hronization on a Loaded SMPusing Two-Phase Waiting AlgorithmsDan Tsafrir and Dror G. FeitelsonS
hool of Computer S
ien
e and EngineeringThe Hebrew University, 91904 Jerusalem, IsraelAbstra
tLittle work has been done on the performan
e of barriersyn
hronization using two-phase blo
king, as the 
ommonwisdom is that it is useless to spin if the total number ofthreads in the system ex
eeds the number of pro
essors. We
hallenge this and show that it may be bene�
ial to spin-wait even if the number of threads is up to double the num-ber of pro
essors, espe
ially if the waiting time is at leasttwi
e the 
ontext swit
h overhead (rather than being equalto it). We also 
hara
terize the alternating syn
hronizationpattern that appli
ations based on barriers tend to fall into,whi
h is quite different from the patterns typi
ally assumedin theoreti
al analyses.1 Introdu
tionSymmetri
 multipro
essors (SMPs) are the most 
om-mon parallel ma
hines on the market [2℄. The two mainsyn
hronization 
onstru
ts used by parallel appli
ations onsu
h ma
hines are lo
ks and barriers. Lo
ks are used toprote
t shared data stru
tures in isolation. Barriers are usedto delimit phases of the 
omputation, and ensure that all thedata stru
tures from the previous phase are up to date.The nature of syn
hronization is that pro
esses may haveto wait for ea
h other. This 
an be done in either of twoways: a pro
ess 
an spin, using the CPU to repeatedly 
he
kthe syn
hronization 
ondition, or it 
an blo
k, in
urring the
ontext swit
h overhead (denoted CS) but freeing the CPUfor the bene�t of other pro
esses. This 
hoi
e is very impor-tant, as syn
hronization overhead is a major 
ause of perfor-man
e degradation; one study of the SPLASH2 ben
hmarksfound that some appli
ations spend half of their time wait-ing for syn
hronization [5℄, while another found that someappli
ations spend a third of their time on 
ontext swit
hingif they always 
hoose to blo
k [7℄.A promising solution to this dilemma is to use two-phaseblo
king, in whi
h the pro
ess spins for a 
ertain time andthen blo
ks if syn
hronization is not yet a
hieved [9℄. Whenwaiting for a lo
k, spinning for a time equal to CS is 2-
ompetitive, meaning that it results in an exe
ution that isat most a fa
tor of two from that of an optimal exe
ution

in whi
h wait times are known in advan
e [6℄. This isthe best possible result for a deterministi
 algorithm, buta randomized algorithm 
an a
hieve a 
ompetitive fa
tor ofee�1 � 1:58. The advantage of two-phase blo
king has alsobeen demonstrated experimentally [7℄.Different syn
hronization me
hanisms, however, havedifferent wait-time distributions. Spe
i�
ally, assumingPoisson arrivals, the expe
ted wait times at lo
ks are expo-nentially distributed, whereas the wait times at a barrier areuniformly distributed. Given that the distribution is known,better spin times 
an be found. Spe
i�
ally, for lo
ks (ex-ponential distribution) spinning for ln(e � 1) � 0:54 ofCS leads to a 
ompetitive fa
tor of ee�1 , and for barriers(uniform distribution) spinning for 12 �p5� 1� � 0:62 thatoverhead results in a 
ompetitive ratio of 12 �p5 + 1� �1:62 [8℄. However, when the number of pro
esses ex
eedsthe number of pro
essors, spinning was 
on
luded not to beuseful for barriers, and immediate blo
king was preferred.An important fa
tor that is la
king in previous work istaking a global view of the system when it is overloaded.For example, the 
laim that waiting for the duration of CSbefore blo
king is 2-
ompetitive is based on a lo
al viewof syn
hronization, taking one operation at a time. But in areal system, the de
ision to spin or blo
kmay affe
t the evo-lution of the 
omputation, and espe
ially the waiting time atsubsequent syn
hronization events. Consider a simple ex-ample of two identi
al jobs with two pro
esses ea
h, on atwo pro
essor system. If initially one pro
ess of ea
h jobis running, the lo
ally optimal algorithm will always blo
k.But a globally optimal algorithmwill only blo
k the pro
essof one job, 
ausing the system to move to a state in whi
hit always s
heduled both pro
esses of the same job, ratherthan always s
heduling one pro
ess from ea
h job. Thusinstead of paying the pri
e of a 
ontext swit
h for ea
h syn-
hronization, it be
omes essentially free.Moreover, it turns out that assumptions su
h as Poissonarrivals to a barrier do not ne
essarily hold in pra
ti
e. Oursimulations show that appli
ations using barrier syn
hro-nization tend to fall into an �alternating syn
hronization�pattern, in whi
h the job's pro
esses are partitioned into twogroups that run alternatively. Due to this pattern, it is some-times bene�
ial to spin even if the total number of pro
esses



in the system ex
eeds the number of pro
essors. Indeed,by extending the spin duration, it is sometimes possible tonudge the system into gang s
heduling all the pro
esses of a
ertain appli
ation, leading to mu
h more ef�
ient syn
hro-nization than that a
hieved by always blo
king.2 Methodology2.1 The SimulatorThroughout this work we use an event driven SMP sim-ulator. The simulator distinguishes between syn
hroniz-ing jobs, whi
h perform barrier syn
hronizations, and non-syn
hronizing jobs, whi
h provide a ba
kdrop of load onthe individual pro
essors. Syn
hronizing jobs may varyin many parameters, among whi
h are size (bounded by pwhi
h is typi
ally 32), and granularity (explained below). A�xed-spinning waiting algorithm is used to perform barrier-syn
hronization (unless stated otherwise, the maximal spinduration used is CS). A thread 
an be in one of three states:ready, running, or blo
ked (waiting for a syn
hronization).Spinning is, of 
ourse, done in running state.Typi
al values used in the simulations are a quantum of100 steps, and a 
ontext swit
h overhead (CS) of 6 steps.The latter is probably too long. However, aside from being
onsiderably shorter than a quantum duration, its only im-portan
e lies in the manner in whi
h we 
lassify granularityof jobs. Che
king larger values for the quantum, in order toimprove the resolution, showed pra
ti
ally identi
al results.All 
omputation intervals of threads are normally dis-tributed (i.e. they are not deterministi
). Granularity is ex-pressed based on the mean and standard deviation of thisdistribution. LetXJ denote a random-variable representingthe duration of 
omputation intervals between 
onse
utivebarriers of threads from job J . We 
lassify J as being �ne-grained if around 90% of XJ 's values are smaller than CS.J is 
ategorized as medium-grained if around 90% ofXJ 'svalues are smaller than 5CS. Otherwise, J is 
onsidered tobe 
oarse-grained.The simulator is event based. Only one event is allowedper pro
essor on a given time step. Ea
h transition betweenthe various thread states is asso
iated with an event. In ad-dition, events are used to denote the end of a 
omputationphase in syn
hronizing threads, and for the implementationof spinning. The 
ontention due to syn
hronization was notsimulated. This is a reasonable simpli�
ation when assum-ing that a barrier 
ompletion time (with 
ontention) is stillshorter than CS.Ea
h simulation starts by reading a 
on�guration �lewhi
h des
ribes the various SMP parameters (p, CS et
.)and the parameters of the jobs it exe
utes (e.g. granular-ity, sizes, number of barriers, et
.). The simulator's outputdes
ribes how well the syn
hronization poli
y performed.

2.2 The SSR Metri
In order to evaluate the advisability of spinning, we willuse the su

essful-spin-rate (SSR). This metri
 is de�nedto be the per
entage of 
ases in whi
h a pro
ess su

eeds tosyn
hronizewhile spinning, ex
luding the last one to arrive.More formally it is: SSR = Pt2S su

essfulSpin(t)Pt2S totalSpin(t) � 100where S is the set of all syn
hronizing threads in thesimulation, totalSpin(t) is the number of times threadt started to spin when waiting for syn
hronization, andsu

essfulSpin(t) is the number of times syn
hronizationwas a
hieved before t blo
ked. Note that this does not in-
lude the times t was the last thread of its job to rea
h a bar-rier, sin
e no spinning was performed. As a rule of thumb, ifthe SSR is smaller than 50%, we'll 
onsider spinning as notworth while, be
ause threads failed more than su

eeded.We remark that SSR is not a perfe
t metri
 and shouldbe used 
arefully. For example, if the always-spin waitingalgorithm is used, jobs exe
uting on a preemptive s
heduler(whi
h is what we use in this work) will always a
hieve anSSR of 100%. Thus we also use elapsed time and speedupin parts of this work.2.3 The Linux S
hedulerThe performan
e of syn
hronizing jobs also dependson the s
heduler, whi
h 
hooses the order in whi
h readythreads are allo
ated to pro
essors. Our simulator in
ludesa rather detailed emulation of the Linux s
heduler. Linuxis POSIX 
ompliant, and supports three poli
ies: FIFO,Round-Robin (RR), and �OTHER�. OTHER is not de�nedby POSIX, but its presen
e is mandated, and it is the de-fault. In Linux it is a priority-based preemptive s
heduler.Additional details are given in Appendix A.As the priority fun
tion tends to give higher priority tothreads that run less, it is expe
ted to have a strong ef-fe
t on syn
hronizing threads that spend mu
h of their timeblo
ked waiting for syn
hronization. However, it is easierto understand the behavior of the system under RR s
hedul-ing. We therefore performed extensive simulations of allsix 
ombinations of the two s
heduling s
hemes (RR andOTHER) and three workloads:� A single syn
hronizing job against a ba
kdrop of non-syn
hronizing threads that just get in the way.� A homogeneous set of identi
al syn
hronizing jobs.� A heterogeneous mixture of syn
hronizing jobs withdifferent sizes and different granularities.Analyzing the �rst workloads was instrumental in gain-ing insights that helped understand the latter, more realisti
workload. As tens of thousands of simulation runs were per-formed, the following se
tions only present the main �nd-ings. A mu
h more detailed des
ription 
an be found in[11℄.



3 Alternating Syn
hronizationThe phenomenon of alternating syn
hronization is themain result dis
overed in the RR simulations. It explainsthe �nding that many of the simulations led to similar per-forman
e, insensitive of the jobs size and (to some degree)of the system load. For example, simulations of homoge-neous sets of �ne and medium grain jobs 
onverged to anSSR in the range of 25-42% (Figure 1). The exa
t numberdepended on the job sizes and granularity, but not on howmany jobs were 
ompeting with ea
h other!The answer to this puzzle is that ea
h job's threads be-
ome partitioned into two sets, that are either running simul-taneously or 
ontiguous in the ready queue. This pattern is
reated by itself, within a short time, even if initially theorder of threads in the ready queue is randomized.The reason this pattern is 
reated is as follows (Figure 2):Consider a �ne-grain job 
omposed of s threads, runningon a p-pro
essor SMP with a total load of n threads. As-suming all threads are randomly ordered at the beginning,the probability of all s threads being allo
ated pro
essors atthe outset isQs�1i=0 p�in�i , whi
h tends to zero for high loads.Thus only a subset of the job's threads will run initially. Asthey are �ne-grained, they will 
omplete their �rst iteration,spin for a while, and blo
k. This s
enario will be repeatedseveral times, as more threads get s
heduled, leading to thestair-like pattern at the left of Figure 2. But when the lastthread arrives, the job is partitioned into two: those threadsthat have previously blo
ked move in unison to the end ofthe ready queue, whereas those that are spinning a
hievesyn
hronization and 
ontinue for the next iteration. Whenthis se
ond subset rea
hes the next barrier, they will all spinand blo
k together, be
ause the �rst subset is still in theready queue. Hen
e we �nd a pattern of alternating syn-
hronization, where the syn
hronization is a
hieved by twosubsets of threads alternatively. Note, however, that the sub-sets are not �xed, and that threads may pass from one to theother if they are not all s
heduled at 
lose proximity.The 
onsequen
es of alternating syn
hronizationWe've seen that jobs with relatively small granularity , havea tenden
y to fall into an alternating syn
hronization pat-tern. For this type of 
omputation the SSR has a 50% upperbound. This is true be
ause the best we 
an expe
t from athread is to su

essfully spin at the �rst barrier it rea
hes(
ausing the blo
ked threads in its job to move to the readyqueue) and fail spinning at the next barrier (thus enteringblo
ked state). We get that for every su

essful spin a threadperforms, it also performs an unsu

essful one.An immediate result of this s
enario is dismal CPU uti-lization. As spinning su

eeds not more than half the time,it fails more than half the time. That means that at least onein every two barriers in
ludes the 
ost of unsu

essful spin-

5 Threads Per Job

Number of Threads

0 32 64 96 128

S
S

R

0

50

100

Fine-grain Medium-grain Coarse-grain

11 Threads Per Job

0 32 64 96 128Figure 1. Example SSR values a
hieved for homoge-neous sets of syn
hronizing jobs with various sizes, as afun
tion of the number of threads. From simulation usingRR s
heduling. Reasonable SSR values are a
hieved up totwi
e the number of pro
essors, whi
h is 32. However afterthis point, SSR is below 50% and is load invariant.
Time steps

0 200 400 600 800 1000

N
um

be
r 

of
 th

re
ad

s

0
1
2
3
4
5
6
7
8
9

10
Blocked Running Ready

Figure 2. Distribution of states of 10-thread-job show-ing how it enters into an alternating syn
hronization pattern.From a homogeneous simulation of 19 medium grain jobs.ning and subsequent blo
king. Assuming that the spinningtime is set to be equal to CS, this means that ea
h barrier
osts a 
ontext swit
h. If the granularity is very �ne, i.e.the 
omputation is shorter than this overhead, the effe
tiveCPU utilization is less than 50%.Another interesting feature of the simulations used tostudy the alternating syn
hronization pattern is that this pat-tern does not o

ur immediately as the load is in
reased.Rather, there is as �intermediate load� range where the sys-tem is already full (more than 32 threads), but the SSR isstill higher than 50% (Figure 1). This 
ontradi
ts the argu-ment made above that the SSR is bounded by 50%. Thisphenomenon, to be further dis
ussed below, indi
ates thatthe simple solution of using an �always blo
k� algorithm toredu
e the overhead of useless spinning may not be advis-able, at least in this load range.4 Spin Duration and Wakeup S
hemeThe simulations used to elu
idate the alternating syn-
hronization pattern were based on an RR s
heduler. Thissimpli�ed matters be
ause threads retain their order in



the ready queue. But produ
tion systems typi
ally use apriority-based s
heduler, in whi
h threads are entered intothe ready queue a

ording to their priority. Priority, in turn,is typi
ally based on CPU usage (or la
k thereof), implyingthat �ne-grain threads may be pla
ed higher than 
oarse-grain threads. The results presented from here on are basedon using the Linux s
heduler, as des
ribed in Appendix A.4.1 Conditions for Transition PointThe �rst simulations done with the Linux s
heduler, inwhi
h a single syn
hronizing job 
omposed of 11 threadsran against a ba
kdrop of non-syn
hronizing threads, re-vealed an interesting pattern: for �ne grain syn
hronization,the SSR was around 50%most of the time, but whenever thetotal number of threads in the system was a multiple of 16 itshot up to near 100% (Figure 3). The maximal spin durationused in these simulations was CS.A detailed analysis of what happens at these loads re-vealed the following. Initially, the syn
hronizing job did notdo very well. Its threads spent mu
h of their time blo
ked,and typi
ally did not manage to pass more than a single bar-rier. However, at some point in the simulation, everythingsuddenly fell into pla
e: all the job's threads were s
hed-uled at the same time, and they therefore 
ompleted mul-tiple barriers in rapid su

ession. This 
aused them to a
-
umulate CPU time, and their priority dropped. They werethen all preempted more or less together in favor of othernon-syn
hronizing threads, and moved to the ready queue.This pattern of interspersed intervals of work and waitingin the ready queue repeated until the end of the simulation(Figure 4). We 
all the point in the simulation at whi
h thejob started to work ef�
iently the transition point.The 
hara
teristi
s of the Linux s
heduler are appar-ent in the job's behavior before the transition point. LetJ denote the syn
hronizing job. Let S denote the na-tive pro
essors set of J's threads. Initially, S is usuallysmall. J's 
omputation pattern is a variation of alternat-ing syn
hronization on S: Sin
e J's threads enjoy theSAME ADDRESS SPACE BONUS (see Appendix A.), thenwhen one of them blo
ks, there is high probability thatanother thread from J will immediately be 
hosen to re-pla
e it. Towards the end of the epo
h the priorities ofthe non syn
hronizing threads are very low (by de�nition)while the priorities of their syn
hronizing 
ounterparts arerelatively high (sin
e they spent a lot of time in blo
kedmode). This differen
e allows J's threads to over
ome thePROC CHANGE PENALTY fa
tor and preempt low prior-ity threads even when migration is involved. ConsequentlyS grows until jJ j = jSj 
ausing J to perform rapid al-ternating syn
hronization where every thread from an un-blo
ked group is immediately assigned a pro
essor. Thes
heduler soon �nds itself in a situation in whi
h it has noready pro
ess with a positive 
ounter value. It then starts

0

50

100

32 48 64 80 96 112

S
S

R

Number of Threads

fine-grain
medium-grain

Figure 3. SSRa
hieved by an 11-threadsyn
hronizing job run-ning against a ba
kdropof non syn
hronizingthreads and spinning forthe duration of CS. SSRis very high wheneverthe load is a multiple of16.
Time steps

20500 21000 21500 22000 22500 23000

N
um

be
r 

of
 th

re
ad

s

0
1
2
3
4
5
6
7
8
9

10
11

Blocked Running Ready

Figure 4. The distribution of the states of a job's threads
hanges dramati
ally after the transition point, when theysuddenly manage to run together and then maintain this pat-tern. From a simulation presented in Figure 3 asso
iatedwith load of 96 threads (ba
kdrop of 85 non syn
 threads).a new epo
h, and re-initializes the 
ounters of all threads.The non-syn
hronizing threads thus suddenly gain in pri-ority (like Popeye after eating a 
an of spina
h [10℄), andsoon 
annot be preempted any more by J's threads � untiltowards the end of the new epo
h.The immediate question that follows is why does J
ontinue to perform alternating syn
hronization even whenjJ j = jSj as ea
h of its threads has its own �dedi
ated� pro-
essor. The answer is simple: spinning for the duration ofCS is a
tually not enough. Consider a pro
ess that is the lastto arrive at barrier bi, and unblo
ks its peers. It then 
om-putes for an expe
ted time of �, rea
hes the next barrierbi+1, and spins for time CS before giving up. Its blo
kedpeers, in the mean time, take CS time to start running (
on-text swit
h that allo
ates them a pro
essor), and then also
ompute for an expe
ted time of � until they rea
h bi+1.They therefore rea
h bi+1 more or less at the same time theoriginal thread gives up and de
ides to blo
k.However, on rare o

asions it happens that the two alter-nating sets rea
h bi+1 in the 
orre
t order: �rst all new
om-ers rea
h the barrier, and then all spinners de
ide whetherto blo
k. As all new
ommers have already arrived, theyde
ide not to blo
k, and from then on all the treads are syn-
hronized� transition has been a
hieved.Finally, we need to explain why this only happens whenthe total number of threads is a multiple of 16. The reason isthat 16 is the only divisor of 32 (=system size) whi
h is big-



ger than jJ j (=11). This allows the threads in the system tobe divided into groups that 
leanly partition the system. Forother numbers, there are always extra non-syn
hronizingthreads that are left over and break the pattern for the syn-
hronizing ones and so even if transition is a
hieved, it lastsonly during the epo
h in whi
h it was established.4.2 Using a Longer Maximal Spin DurationNaturally, if transition o

urred only within spe
i�
loads, it wouldn't be interesting. But in reality it illuminatesthe 
ondition needed to a
hieve 
omplete syn
hronizationregardless of the load: in
rease the spin-waiting durationbeyond a 
ontext swit
h overhead!Simulations using a spinning duration of slightly morethan a 
ontext swit
h overhead (denoted CS+) show an im-provement, but not an optimal improvement. The reasonwas tra
ed to the fa
t that even this is not enough. Considera s
enario in whi
h a thread rea
hes a barrier and unblo
ksone of its peers, but that peer thread had only just re
entlyde
ided to blo
k. In this situation, the peer thread is still inthe pro
ess of being blo
ked, and 
an therefore not start theunblo
king pro
ess yet. Thus our thread must �rst wait forit to blo
k, and then to unblo
k, for a total time that is morethan twi
e the 
ontext swit
h overhead (denoted 2CS+).Figure 5 shows that enlarging the maximal spin dura-tion has indeed transformed all load 
onditions into the peak
onditions seen initially. Note that for medium grain jobs,using 2CS+ makes the differen
e between preferring imme-diate blo
king to preferring spinning.4.3 Effe
t of the Wakeup S
hemeWhen a job 
ompletes a barrier, the priority based s
hed-uler 
he
ks whether 
onsequently awakened threads (if ex-ist) 
an be immediately s
heduled to exe
ute (possibly bypreempting lower priority threads). It is therefore fa
edwith the problem of determining whi
h awakened threadwould be assigned to whi
h pro
essor. The algorithm thatmakes this de
ision is 
alled the wakeup-s
heme. Thequestion that follows is how mu
h 
omputational resour
esshould a s
heduler invest in this de
ision. Our analysis ofthe Linux s
heduler un
overed that unfortunately, it doesn'tinvest enough: the s
heduler iterates through the awakenedthreads and tries to �nd the �best� pro
essor for ea
h su
hthread; however ea
h iteration has no re
olle
tion of previ-ous iterations' de
isions and therefore two or more (evenall) awakened threads may be assigned to the same pro-
essor! (see Appendix A. for details). We 
ompared thiss
heme with a 
orre
ted s
heme that avoids this pitfall (de-noted AP), and with a more sophisti
ated (probably impra
-ti
al) s
heme that takes a global view of pairing threads withpro
essors [11, 
hapter 6℄ (denotedGV).

Fine grain

Number of Threads

32 64 96 128 160 192

S
S

R

0

50

100

CS CS+ 2CS+

Medium grain

32 64 96 128 160 192

49�10PPi 79�8AAK 94�3� 25�7� 38�13� 75�9�
Figure 5. Results from simulations similar to those pre-sented in Figure 3. Comparing the performan
e of spinningfor CS, CS+, 2CS+. The latter provides the best 
ombina-tion of good performan
e and stability. Numbers in boxesare the average � the average absolute deviation.Our �ndings indi
ate that for some job mixes (like a sin-gle syn
hronizing job running against a ba
kdrop of CPU-bound threads, or mixes 
omposed from two jobs with sizebigger than p2 ), AP resulted in a speedup of up to 3.3 in
omparison to the original wakeup s
heme. We found thatusing a more sophisti
ated algorithm is unwarranted as thedifferen
e between AP and GV was minor.5 Performan
e of Different Job Colle
tionsAfter reviewing the spe
i�
 �ndings in the previous se
-tions, we now turn to how they intera
t and affe
t the per-forman
e of various job mixes. The results reported hereare for the priority-based Linux s
heduler.5.1 Syntheti
 Job MixesAs noted in Se
tion 2.3, we used 3 types of job mixes:The results for a single syn
hronizing job were stronglydependent on the spin duration (Figure 5), and to some de-gree also on the wakeup s
heme. The important thing tonoti
e is that when the spin duration is long enough (2CS+),an average SSR of 94% is a
hieved for �ne-grain jobs, and75% for medium-grain jobs. These number are an aver-age of different load 
onditions, when the syn
hronizing job
ompetes with up to 200 non-syn
hronizing threads! Thuswe see that the s
heduler gives this job's threads a higherpriority than the others, whi
h allows them to make goodprogress regardless of the 
ompeting load.The 
ase of homogeneous jobs mix is exa
tly the op-posite: all the 
ompetition is 
omposed of threads with anidenti
al pro�le in terms of syn
hronization a
tivity. There-fore none will have a distin
t advantage over the others, andthe s
heduler will fall into a pattern similar to that of RRs
heduling. Indeed, simulation results turn out to be quitesimilar to those shown in Figure 1. Again, reasonable SSRvalues (above 50%) are a
hieved in the intermediate loadrange, when the total number of threads is up to twi
e the



seed 0

Number of Threads

0 32 64 96 128 160

S
S

R

0

50

100

Fine-grain Medium-grain Coarse-grain

seed 1

0 32 64 96 128 160

seed 2

0 32 64 96 128 160

seed 3

0 32 64 96 128 160

Figure 6. The SSRa
hieved by different jobtypes exe
uting simul-taneously in heteroge-neous mix, using a spinduration of 2CS+. Re-sults for four differentrandom seeds are shown.number of pro
essors in the system.Based on this, we would expe
t that for a heterogeneousjob mix the priority s
heduler will again 
ome into play.Given jobs with different granularities, the �ne-grain onesmay be expe
ted to suffer more from blo
king, as ea
h syn-
hronization event is amortized by less useful 
omputation.The threads in these jobs will then be given a higher prior-ity, whi
h would enable them to make up for the loss. Theywill not get above 90% SSR as when running alone, but theyshould do better than when all 
ompeting threads are identi-
al. The simulation results indeed 
orroborate these expe
-tations (Figure 6). For example, the system load that 
anbe tolerated while still maintaining an SSR above 50% for�ne-grain jobs sometimes rea
hes three times the numberof pro
essors in the system. The average extra number ofthreads tolerated under different 
onditions (like jobs' num-ber, granularity and size) is 52.2�19.1 and 24�5.6 for �ne andmedium grain jobs, respe
tively.5.2 Spin vs. Always­Blo
kSo far, most of our work has been 
on
erned with un-derstanding the behavior of spinning jobs, and with �nding
onditions under whi
h the SSR is improved. In this se
tionwe �nally 
ompare our spinning algorithms with the obvi-ous alternative of always blo
king as suggested by others.We do that by using the a
tual 
ompletion-time as a metri
,rather than the SSR.Sample results shown in Figure 7 and Figure 8 
on�rmthat spinning is preferable to blo
king, at least within theintermediate load. Figure 8 shows that lengthening the spinduration beyond CS plays a minor role within job mixesthat don't 
ontain non-syn
hronizing threads (as all spin du-rations produ
ed similar results). The major fa
tor in thesemixes is a
tually idle pro
essors. These exist due to blo
kedthreads whi
h 
reate a gap between the total load and the ef-fe
tive load (number of runnable threads).5.3 Effe
t of Ma
hine SizeThe �nal point we will dis
uss is what happens whenwe in
rease the ma
hine's size (Figure 9). Evidently, theintermediate range in whi
h it is preferable to spin shrinksa bit. Nevertheless, for larger ma
hines in the magnitudeof 128 and 256 pro
essors, it's 
lear that spinning will still

a
hieve better performan
e then blo
king while the load issmaller than 1.8 times the number of pro
essors.6 Dis
ussion and Con
lusionsOur goals in this resear
h were to gain a better under-standing of parallel barrier-based appli
ations operating ina multitasking environment, and 
he
k the impli
ations ofhigh loads on su
h appli
ations. We hope these understand-ings will serve in the design and implementation of barriersyn
hronization algorithms.A main 
ontribution of this work is identifying that in the
ontext of barrier syn
hronization, load should be a dom-inant fa
tor in the de
ision of whether to spin or blo
k.Most of our empiri
al results have shown that when the to-tal number of threads in the system ex
eeds twi
e the num-ber of pro
essors, most spins will fail and therefore are bestavoided. On the other hand, in the intermediate load range,namely when the surplus in threads is smaller than the num-ber of pro
essors, spinning 
an be highly bene�
ial.Another requirement for su

essful spinning is doing itfor the right time. We have shown that the very popu-lar �xed duration of spinning for the overhead of a 
on-text swit
h is not enough for �ne grain parallel jobs at-tempting to 
omplete a barrier. Indeed, this duration givesan awakened thread enough time to resume its exe
ution.But, it denies the possibility to a
tually 
omplete the short
omputation phase and rea
h (in time) the syn
hronizationpoint at whi
h its peer threads are waiting (while spinning).Our �ndings indi
ate that a longer duration, of spinning forsomewhat more than twi
e the 
ontext swit
h overhead, isrequired. This duration maximizes the probability that allthe threads of a job exe
ute simultaneously, leading to re-du
ed 
ontext swit
hes, and to a
tual spin times that aremu
h smaller than the maximum. This is similar to the re-sult of Arpa
i-Dusseau et al. [1℄ who have shown that in a
luster of workstations spinning for a duration �ve times the
ontext swit
h overhead is optimal.Another important 
ontribution of this work is the identi-�
ation of the alternating syn
hronization pattern: Whenjobs do not manage to syn
hronize, they tend to fall intothis 
omputation pattern, in whi
h their threads form twogroups. When one group is 
omputing, the other is eitherblo
ked or ready. Almost all our �ndings are related to and
an be explained based on this phenomenon. This refutes



Fine grain

Number of Threads

32 64 96

S
pe

ed
up

0

1

2

3

4

2CS+ vs. AB CS+ vs. AB CS vs. AB

Medium grain

32 64 96

0.5

1

1.5

2

Figure 7. Comparing the performan
e of spinning forCS, CS+, or 2CS+ against the always-blo
k poli
y (denotedAB). 2CS+ provides the best 
ombination of good perfor-man
e and stability with an average speedup of 2.4�0.4 for�ne-grain jobs and 1.3�0.2 for medium-grain jobs. Fromsimulations of a single syn
hronizing job similar to those
ondu
ted in se
tion 4.1.
0.5

1

1.5

2

2.5

32 64 96

S
pe

ed
up

Number of Threads

2CS+ vs. AB
CS+ vs. AB

CS vs. AB

Figure 8. Results for�ne-grain jobs from sim-ulations of a heteroge-neous job mix. Spinningis bene�
ial for loads upto about twi
e the num-ber of pro
essors. Theaverage speedup withinthis domain is 1.9�0.3when 2CS+ is used as amaximal spin duration.
0

0.5

1

1.5

2

2.5

3

1.8CPU# 2CPU#

S
pe

ed
up

Number of Threads
CPU#

64 CPUs
128 CPUs
256 CPUs

Figure 9. Results formixes similar to thosedes
ribed in Figure 8 us-ing 2CS+ as maximalspin duration and ex-e
uting on larger sys-tems. The x axis showsthe number of threadsrelative to the ma
hinesize, rather than absolutenumbers.the 
ommon assumption that the o

urren
e of syn
hro-nization events obeys some time invariant 
anoni
al prob-ability distribution (e.g. the Poisson arrivals of [8℄).The importan
e of alternate syn
hronization is evidentwhen 
onsidering the effe
t of granularity on spin su

ess.All the positive results regarding spinning are for �ne-grain, or sometimes medium-grain jobs; we would like
oarse grain jobs not to spin. But in general the granular-ity of a job is not known in advan
e, and a bad de
isionmay 
ause a loaded system to waste many 
y
les on hope-less spinning. It is therefore reasonable to 
onsider some

sort of granularity 
lassi�
ation me
hanism. But due tothe prevalen
e of the alternate syn
hronization pattern, us-ing the near past as an indi
ation for the future (as in thevariable-
ompetitive-algorithms presented in [7℄) is not agood option: before the transition point failures are 
om-mon, and the transition 
annot be anti
ipated based on pre-vious su

esses. A possible alternative to these methodsis for the barrier me
hanism to maintain (for ea
h thread)a dire
t measure of the elapsed time between its few re
entsyn
hronization trials (within the same quantum!). This 
anbe done relatively ef�
iently using hardware devi
es su
h asthe 
y
le 
ounter on Pentium pro
essors [4℄.An important observation deriving from all the above isthat barriers are quite different from lo
ks. In the 
on-text of (mutex) lo
k syn
hronization, Karlin et al. [7℄ have
onsidered spinning as worth while only when the lo
k is
urrently held by a running thread. But in barriers, whena thread of a �ne-grain job rea
hes a syn
hronization point,its very own arrival probablymeans that the awaited threads(in the 
onse
utive syn
hronization point) are now beings
heduled to run. The alternating syn
hronization 
ompu-tation pattern implies that the pra
ti
al meaning of follow-ing the poli
y suggested by Karlin et al. (in barrier 
ontext)would be to always blo
k. This is 
ontrary to our �ndingsthat within the intermediate load, always blo
k is inferior tothe �xed spinning poli
y.Finally, our work on implementation of barriers alsoexposed an issue related to the underlying s
heduler.When the last thread of a parallel job 
ompletes a barrier,many other threads be
ome unblo
ked at on
e. The s
hed-uler then 
he
ks whether they 
an be s
heduled to run aton
e. It turns out that while the Linux (2.4) s
heduler triesto �nd the �best� pro
essor for ea
h su
h thread, it may endup assigning all of them to the same pro
essor! Our experi-ments show that a simple improvement, whi
h prevents thes
heduler from stumbling over its own feet (by simply re-membering whi
h pro
essors have already been assigned),produ
es better results at pra
ti
ally the same 
ost; moresophisti
ated approa
hes seem unwarranted.A
knowledgement: This resear
h was supported in partby the Israel S
ien
e Foundation (grant no. 219/99).A. The Linux S
hedulerWhile Linux supports FIFO and Round-Robin s
hedul-ing, the default s
heduler is priority based. We remark thatin the Linux kernel, thread and pro
ess entities are indis-tinguishable; the 
onventional term used to represent themboth is a task. The s
heduler des
ribed here is of Linux-2.4.5 (essentially un
hanged sin
e version 2.2).Linux s
heduling is based on the notion of an epo
h. In asingle epo
h, every task has a 
ertain CPU time allo
ation,whi
h was set at the beginning of the epo
h. The initial



allo
ation is equal for all tasks (unless they have different�ni
e� values). When a task exhausts its allo
ation it is pre-empted in favor of another runnable task. However, the task
an blo
k and then 
ontinue to run if its allo
ation has notyet been exhausted. An epo
h ends when all the ready-to-run tasks have exhausted their allo
ations (though blo
kedand running tasks may still have part of their allo
ation). Tostart a new epo
h, all tasks re
eive new allo
ations. Thisis 
omputed as the default allo
ation plus half of what wasleft of the previous allo
ation. Thus the maximal possibleallo
ation is twi
e the default allo
ation.Within an epo
h, runnable tasks are sele
ted for exe
u-tion based on their priority. The priority has a dynami
 part,whi
h is simply the remaining time allo
ation. This is mea-sured in �ti
ks� (typi
ally 10 millise
onds). The default al-lo
ation was 20 ti
ks in Linux 2.2, and was 
hanged to 5in 2.41. The dynami
 priority is also 
alled the �
ountervalue�, as it is stored in a variable 
alled the 
ounter, andessentially 
ounts down the CPU usage of the task in thisepo
h; when it rea
hes 0 the task will be preempted.The a
tual s
heduling algorithm is not based dire
tly ona task's priority, but on its goodness relative to differentpro
essors. The goodness is based on the 
ounter value;if this is zero the goodness is also zero. But for tasks thathave not exhausted their allo
ation, two modi�
ations aremade. First, if the 
onsidered pro
essor is different fromthe one on whi
h the task last ran, the goodness is redu
edby the PROC CHANGE PENALTY, whi
h is equivalent to15 ti
ks2. Se
ond, if the previous task to run on this pro-
essor had the same address spa
e as this task (i.e. from thesame job), the goodness is improved by 1 ti
k whi
h wenamed SAME ADDRESS SPACE BONUS.In the 
ontext of our work, it is important to understandwhat happens when tasks be
ome unblo
ked (as when abarrier is 
ompleted). Su
h tasks are moved to the readyqueue, and the res
hedule idle fun
tion is 
alled forea
h one of them in turn. This fun
tion tries to �nd a suit-able pro
essor for the awakened task, giving priority to theone it ran on previously (if it's idle) or to the longest idlepro
essor. If there are no idle pro
essors, the goodness ofthe awakened task is 
ompared with the goodness of the
urrent task on all the pro
essors. The pro
essor with thelargest differen
e is then 
hosen, provided the differen
e islarger than the preemption threshold (1 ti
k). The sele
tedpro
essor (if any) is then marked as need res
hed andinterrupted (whi
h means that very soon the s
heduler willrun in its 
ontext).Unfortunately, res
hedule idle is invoked in a se-rial manner independently for ea
h awakened task, and ea
h1This means the s
heduler has rather poor resolution when it tries todistinguish between different jobs. We used the 2.2 value whi
h is slightlybetter. A still better solution would be to redu
e the ti
k interval [3℄.2Making a migration from one pro
essor to another non idle pro
essorpra
ti
ally impossible in 2.4. This is another reason to use the 2.2 values.

invo
ation disregard previous invo
ations' de
isions. Thuswhen many tasks are awakened at on
e, it is possible thatsome (or all) of then will trigger the marking of the samepro
essor. Consequently, this wakeup s
heme 
an (a) endup leaving high-priority tasks in the ready queue despite thefa
t that they 
ould have preempted other tasks on other pro-
essors, or (b) even worse: leave pro
essors idle, even whenthere exist (newly awakened) ready to run tasks!The following is a simple example that demonstratesthis. Let 
 be the longest idle pro
essor. Changing 
's statefrom idle to non-idle takes time, leading to a ra
e betweenthis event and the res
hedule idle iteration. If the it-eration �nishes before 
's state was 
hanged, only 
 will bemarked. In our work we therefore also 
onsidered alterna-tive wakeup s
hemes, that avoid this pitfall.Referen
es[1℄ A. C. Arpa
i-Dusseau, D. E. Culler, and A. M. Mainwaring.S
heduling with impli
it information in distributed systems.In SIGMETRICS Conf. Measurement and Modeling of Com-puter Systems, pages 233�243, June 1998.[2℄ D. E. Culler and J. P. Singh. Parallel Computer Ar
hite
ture.Morgan Kaufmann Publishers In
., se
ond edition, 1999.[3℄ Y. Etsion and D. G. Feitelson. Clo
k Resolution and theS
heduling of Intera
tive Pro
esses. Te
hni
al report 2001-14, S
hool of Computer S
ien
e and Engineering, the He-brew University of Jerusalem, Nov 2001.[4℄ Y. Etsion and D. G. Feitelson. Time stamp 
ounters li-brary measurements with nano se
onds resolution. Te
h-ni
al report 2000-36, S
hool of Computer S
ien
e and En-gineering, the Hebrew University of Jerusalem, Aug 2000.http://www.
s.huji.a
.il/labs/parallel/ts
lib.ps.[5℄ D. Jiang and J. P. Singh. S
aling appli
ation performan
eon a 
a
he-
oherent multipro
essor. In Pro
. 26th Ann. Int'lSymp. Computer Ar
hite
ture, pages 305�316, May 1999.[6℄ A. Karlin, M. S. Manasse, L. A. M
Geo
h, and S. Owi
ki.Competitive randomized algorithms for non-uniform prob-lems. In Pro
. 1st ann. ACM-SIAM symp. Dis
rete Algo-rithms, pages 301�309, January 1990.[7℄ A. R. Karlin, K. Li, M. S. Manasse, and S. Owi
ki. Em-piri
al studies of 
ompetitive spinning for a shared-memorymultipro
essor. In Pro
. 13th ACM Symp. Operating SystemsPrin
iples, pages 41�45, O
tober 1991.[8℄ B.-H. Lim and A. Agarwel. Waiting algorithms for syn
hro-nization in large-s
ale multipro
essors. ACM Trans. Com-puter Systems, 11(3):253�294, August 1993.[9℄ J. K. Ousterhout. S
heduling te
hniques for 
on
urrent sys-tems. In Pro
. 3rd Int'l Conf. Distributed Computing Sys-tems, pages 22�30, O
tober 1982.[10℄ E. Segar. Thimble Theatre, Popeye the Sailor Man. KingFeatures Syndi
ate, 1929.[11℄ D. Tsafrir. Barrier syn
hronization on a loaded SMP usingtwo-phase waiting algorithms. Master's thesis, S
hool ofComputer S
ien
e and Engineering, The Hebrew University,Sep 2001.


